Articles | Volume 31, issue 2
https://doi.org/10.5194/npg-31-207-2024
https://doi.org/10.5194/npg-31-207-2024
Research article
 | 
23 Apr 2024
Research article |  | 23 Apr 2024

Transformation of internal solitary waves at the edge of ice cover

Kateryna Terletska, Vladimir Maderich, and Elena Tobisch

Related authors

Estimate of energy loss from internal solitary waves breaking on slopes
Kateryna Terletska and Vladimir Maderich
Nonlin. Processes Geophys., 29, 161–170, https://doi.org/10.5194/npg-29-161-2022,https://doi.org/10.5194/npg-29-161-2022, 2022
Short summary
Head-on collision of internal waves with trapped cores
Vladimir Maderich, Kyung Tae Jung, Kateryna Terletska, and Kyeong Ok Kim
Nonlin. Processes Geophys., 24, 751–762, https://doi.org/10.5194/npg-24-751-2017,https://doi.org/10.5194/npg-24-751-2017, 2017
Short summary

Related subject area

Subject: Bifurcation, dynamical systems, chaos, phase transition, nonlinear waves, pattern formation | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere | Techniques: Simulation
A new approach to understanding fluid mixing in process-study models of stratified fluids
Samuel George Hartharn-Evans, Marek Stastna, and Magda Carr
Nonlin. Processes Geophys., 31, 61–74, https://doi.org/10.5194/npg-31-61-2024,https://doi.org/10.5194/npg-31-61-2024, 2024
Short summary
Aggregation of slightly buoyant microplastics in 3D vortex flows
Irina I. Rypina, Lawrence J. Pratt, and Michael Dotzel
Nonlin. Processes Geophys., 31, 25–44, https://doi.org/10.5194/npg-31-25-2024,https://doi.org/10.5194/npg-31-25-2024, 2024
Short summary
An approach for projecting the timing of abrupt winter Arctic sea ice loss
Camille Hankel and Eli Tziperman
Nonlin. Processes Geophys., 30, 299–309, https://doi.org/10.5194/npg-30-299-2023,https://doi.org/10.5194/npg-30-299-2023, 2023
Short summary
On the interaction of stochastic forcing and regime dynamics
Joshua Dorrington and Tim Palmer
Nonlin. Processes Geophys., 30, 49–62, https://doi.org/10.5194/npg-30-49-2023,https://doi.org/10.5194/npg-30-49-2023, 2023
Short summary
Estimate of energy loss from internal solitary waves breaking on slopes
Kateryna Terletska and Vladimir Maderich
Nonlin. Processes Geophys., 29, 161–170, https://doi.org/10.5194/npg-29-161-2022,https://doi.org/10.5194/npg-29-161-2022, 2022
Short summary

Cited articles

Carr, M., Fructus, D., Grue, J., Jensen, A., and Davies, P. A.: Convectively induced shear instability in large amplitude internal solitary waves, Phys. Fluids, 20, 126601, https://doi.org/10.1063/1.3030947, 2008. a
Carr, M., Stastna, M., and Davies, P. A.: Internal solitary wave-induced flow over a corrugated bed, Ocean Dynam., 60, 1007–1025, https://doi.org/10.1007/s10236-010-0286-2, 2010. a, b, c, d, e
Carr, M., Sutherland, P., Haase, A., Evers, K.-U., Fer, I., Jensen, A., Kalisch, H., Berntsen, J., Parau, E., Thiem, O., and Davies, P. A.: Laboratory experiments on internal solitary waves in ice-covered waters, Geophys. Res. Lett., 21, 12230–12238, https://doi.org/10.1029/2019GL084710, 2019. a, b
Chen, C. Y.: An experimental study of stratified mixing caused by internal solitary waves in a two layered fluid system over variable seabed topography, Ocean Eng., 34, 1995–2008, https://doi.org/10.1016/j.oceaneng.2007.02.014, 2007. a
Du, H., Wang, S. D., Wang, X. L., Xu, J. N., Guo, H. L., and Wei, G.: Experimental investigation of elevation internal solitary wave propagation over a ridge, Phys. Fluids, 33, 1–9, https://doi.org/10.1063/5.0046407, 2021. a
Download
Short summary
The transformation of internal waves at the edge of ice cover can enhance the turbulent mixing and melting of ice in the Arctic Ocean and Antarctica. We studied numerically the transformation of internal solitary waves of depression under smooth ice surfaces compared with the processes beneath the ridged underside of the ice. For large keels, more than 40% of wave energy is lost on the first keel, while for relatively small keels energy losses on the first keel are less than 6%.