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Abstract. Internal wave-driven mixing is an important factor in the balance of heat and salt fluxes in the polar
regions of the ocean. Transformation of internal waves at the edge of the ice cover can enhance the mixing
and melting of ice in the Arctic Ocean and Antarctica. In the polar oceans, internal solitary waves (ISWs) are
generated by various sources, including tidal currents over bottom topography, the interaction of ice keels with
tides, time-varying winds, vortices, and lee waves. In this study, a numerical investigation of the transformation
of ISWs propagating from open water in the stratified sea under the edge of the ice cover is carried out to compare
the depression ISW transformation and loss of energy on smooth ice surfaces, including those on the ice shelf
and glacier outlets, with the processes beneath the ridged underside of the ice. They were carried out using
a non-hydrostatic model that is based on the Reynolds-averaged Navier–Stokes equations in the Boussinesq
approximation for a continuously stratified fluid. The Smagorinsky turbulence model extended for stratified fluid
was used to describe the small-scale turbulent mixing explicitly. Two series of numerical experiments were
carried out in an idealized 2D setup. The first series aimed to study the processes of the ISWs of depression
transformation under an ice cover of constant submerged ice thickness. Energy loss was estimated based on a
budget of depth-integrated pseudoenergy before and after the wave transformation. The transformation of ISWs
of depressions is controlled by the blocking parameter β, which is the ratio of the minimum thickness of the
upper layer under the ice cover to the incident wave amplitude. The energy loss was relatively small for large
positive and large negative values of β. The maximal value of energy loss was about 38 %, and it was reached
at β ≈ 0 for ISWs. In the second series of experiments, a number of keels were located on the underside of the
constant-thickness ice layer. The ISW transformation under ridged ice also depends on the blocking parameter
β. For large keels (β < 0), more than 40 % of energy is lost on the first keel, while for relatively small keels
(β > 0.3), the losses on the first keel are less than 6 %. Energy losses due to all keels depend on the distance
between them, which is characterized by the parameter µ, i.e. the ratio of keel depth to the distance between
keels. In turn, for a finite length of the ice layer, the distance between keels depends on the keel quantity.
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1 Introduction

Internal wave-driven mixing is an important factor in the
balance of heat and salt fluxes in the polar regions of the
ocean (Guthrie et al., 2013). In these areas, internal grav-
ity waves are generated by various sources, including tidal
currents over the bottom topography (Urbancic et al., 2022),
time-varying winds (Rainville and Woodgate, 2009), vortices
(Johannessen et al., 2019), and lee waves (Vlasenko et al.,
2003). Another source of energy for internal waves in the
near-surface pycnocline can be interaction of ice keels with
tides (Zhang et al., 2022a). These waves, in the form of in-
ternal solitary waves (ISWs), often propagate along the pyc-
nocline in a stratified ocean under ice cover. The interaction
between internal waves and ice cover is complex and depends
on both the characteristics of the ice and the characteristics
of internal waves (Carr et al., 2019). The transformation of
an ISW under an ice keel can cause the advection of water
below the ice layer due to wave motion, whereas ISW shear
and convective instabilities result in turbulent mixing. The
heat advection and turbulent flux will both contribute to the
vertical heat flux and consequently the change in tempera-
ture under the sea ice and the increase in melting (Zhang et
al., 2022b). An increased level of dissipation of the energy
of internal waves propagating from the open water should be
expected at the edge of the ice cover, which can represent the
edge of an ice shelf or pack ice. In turn, the relief of the un-
derside of the ice and, in particular, the presence of ice keels
can essentially affect ISW transformation, breaking, and en-
ergy dissipation. These aspects of the complicated problem
of the interaction of internal waves and ice cover have not
yet been investigated due to severe conditions for field ob-
servations in the polar regions of the ocean.

The problem of the transformation of a depression ISW
under smooth ice cover is mathematically close to the prob-
lem of the transformation of an elevation IWS over a bot-
tom step of constant height which has been considered an-
alytically (Grimshaw et al., 2008) and numerically using a
non-hydrostatic model (Maderich et al., 2009; Talipova et al.,
2013). It was found that the transformation of an ISW over
the step in a two-layer fluid depends on the ratio of the thick-
ness of the lower layer over the step to the ISW amplitude.
The transformation of the elevation ISW over a single obsta-
cle (ridge) on the bottom has been studied in the laboratory
(Wessels and Hutter, 1996; Chen, 2007; Du et al., 2021) and
numerically (Vlasenko and Hutter, 2001; Xu et al., 2016).
Wave breaking on the lee side of the ridge was accompanied
by the generation of second-mode ISWs. The propagation of
an elevation ISW over a corrugated bed (Carr et al., 2010)
was accompanied by shear instability in the form of billows.
ISWs propagating from open water to ice were studied in the
laboratory by Carr et al. (2019) for grease, level, and nilas
ice. The experiments showed that the dissipation of turbulent
kinetic energy under the ice is comparable to that of the ISW
in the water column. The disintegration of an ISW of a de-

pression under a single ice keel was simulated by Zhang et
al. (2022b). It was concluded that the corresponding turbu-
lent mixing can enhance the melting of ice keels.

In this study, a numerical investigation of the transforma-
tion of an ISW propagating from ice-free water in the strati-
fied sea under the edge of the ice cover is carried out to com-
pare the depression ISW transformation and loss of energy
on smooth ice surfaces, including those on the ice shelf, with
the processes beneath the ridged underside of the ice. The
rest of the paper is organized as follows. The formulation
of the problem, the model setup, and the relevant numerical
tools are given in Sect. 2. Section 3.1 presents the simulation
results for smooth ice cover, whereas the results of the sim-
ulation of ridged ice cover are considered in Sect. 3.2. The
results of the simulations are summarized and discussed in
Sect. 4.

2 Numerical experiment setup

The numerical simulations were carried out using a non-
hydrostatic model (Maderich et al., 2012). The numerical
model used here is based on the Reynolds-averaged Navier–
Stokes equations in the Boussinesq approximation for a con-
tinuously stratified fluid. The Smagorinsky turbulence model
extended for stratified fluid (Siegel and Domaradzki, 1994)
was used to explicitly describe the small-scale turbulent mix-
ing in the ocean-scale ISWs. Two series of numerical exper-
iments were carried out in an idealized 2D setup. The first
series aimed to study processes of the ISWs of depression
transformation under ice cover of constant submerged ice
thickness (draft) hice (Fig. 1a). The second series was carried
out to simulate the effect of ridged ice on ISWs of depression
propagation in a similar two-layer stratification (Fig. 1b). A
computational tank of constant depth H = 200 m and length
L= 10000 m was used. It was assumed that the ice layer
of length Lice = 5000 m is rigid and does not interact with
the ISWs. The coordinate x is directed along the computa-
tional domain, and z is directed vertically upward. Idealized
stratification of the vertical distribution of potential density
is considered in the form

σθ =
(σθ2− σθ1)

2
tanh

(
z−h1

1h

)
+

(σθ2+ σθ1)
2

, (1)

where h1 is the thickness of the upper layer of water in the
absence of the ice cover, h2 =H −h1 is the thickness of the
lower layer, and h1+ = h1−hice. As shown by Maderich et al.
(2010) and Talipova et al. (2013), the transformation of both
elevation and depression ISWs is controlled by the blocking
parameter β, which is the ratio of the height of the minimum
thickness of the upper layer under the ice cover h1+ to the
incident wave amplitude ai:

β =
h1+

ai
, (2)
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where β is positive in the case h1+ > 0, (h1 > hice) and neg-
ative for h1+ < 0, (h1 < hice). In the first series, submerged
ice thickness hice was constant along the computational tank
varying in different numerical experiments from 0.5 to 40 m
(Table 1). In the second series of experiments, several keels
were placed under the ice layer of constant thickness hice
(Fig. 1b). The ice keel shape was approximated by the Ver-
soria function (Skyllingstad et al., 2003) as

hkeel(δx)=
hkb

2
k

b2
k + (δx)2

, (3)

where hk is the maximal keel penetration, bk is a parameter
governing the determination of the keel width, and δx = x−
xk is the horizontal distance from the centre of the keel placed
at xk. The keel form was similar, i.e. hk/bk is constant. Fol-
lowing Zhang et al. (2022b), we define keel width as the hori-
zontal width of the consolidated ice zone at a depth of 4 m be-
low the bottom of the ice (Marchenko, 2008). Typical values
of hk are 3–28 m (Strub–Klein and Sudom, 2012), reaching
45 m (Leppäranta, 2007), whereas typical keel widths vary
in the range 3–200 m (Strub–Klein and Sudom, 2012). In the
ocean, the ratio of the maximum height of the keel hk to the
distance between the keels Lk varies from 1/20 for heavily
ridged ice to 1/1000 for moderately ridged ice (Lu et al.,
2011). For this idealized case study, the vertical distribution
of the potential density anomaly mimics the summer pro-
file of potential density over the Yermak Plateau (Randelhoff
et al., 2017) in the Arctic Ocean (Eq. 1), where h1 = 20 m,
4h= 10 m, σθ1 = 25.4 kgm−3, and σθ2 = 27.7 kgm−3. As
seen in Fig. 2, the summer profile of density does not have
a well-mixed surface layer due to the stratification caused by
ice melting. Free-slip boundary conditions were used at all
the boundaries, except along the ice–water boundary. The
Neumann-type boundary condition for the non-hydrostatic
pressure component was used at the solid boundaries. At
the free surface and open boundaries, this component was
set to zero (Maderich et al., 2012). At the corner of the un-
derwater step, this condition is violated. However, numeri-
cal experiments for different resolutions have shown that this
problem does not occur at simulated fields of velocity and
density. Ice–ocean tangential stress is parameterized using
the quadratic bulk formula with a drag coefficient CD. The
value of CD under ice varies in the range 10−3–10−2 (Lu
et al., 2011). A no-flux condition was also used at all the
boundaries. The model was initialized using the iterative so-
lution of the Dubreil–Jacotin–Long (DJL) equation (Dubreil-
Jacotin, 1932), with the initial guess obtained from a weakly
non-linear theory. The DJLES spectral solver from the MAT-
LAB package (https://github.com/mdunphy/DJLES/, last ac-
cess: 28 February 2024) was used to generate ISWs of de-
pression. To get around the difficulties associated with the
numerical solution of the non-hydrostatic model equations
in the presence of an ice layer, we considered the setting mir-
rored for the upper surface of the ocean, in which the ice

layer was replaced with a step on the bottom. Then the verti-
cal profile (Eq. 1) was replaced with the distribution

σθ =
(σθ1− σθ2)

2
tanh

(
z− (H −h1)

1h

)
+

(σθ2+ σθ1)
2

, (4)

where σθ1 = 27.7 kgm−3 and σθ2 = 25.4 kgm−3. The initial
ISW of the depression was changed to an ISW of elevation.
This approach is accurate when we consider the problem
with rigid-lid approximation at the free surface. However, the
numerical model is a free-surface model, which leads to bot-
tom fluctuations outside the step in the computational flume.
Therefore, we conducted tests with ISWs of the same am-
plitude propagating as an ISW of depression and as an ISW
of elevation in stratifications (1) and (4). The tests aimed to
estimate the effect of the free surface on the wave character-
istics for free-slip boundary conditions. These results demon-
strate a weak effect of the free surface on ISW dynamics in
the considered cases, which made it possible in this problem
to replace the conditions on the free surface with conditions
on the rigid lid. The results of the comparison for horizontal
velocity taking into account the mirror reflection of the ver-
tical coordinate in Fig. 3 showed that the difference in the
velocity between the two configurations of the model does
not exceed 1 %. Note that, in laboratory experiments (Carr et
al., 2008; Luzzatto-Fegiz and Helfrich, 2014), the influence
of a free surface on the stability of waves with a trapped core
was shown. This effect has been interpreted as the influence
of surfactants, which are essential in laboratory-scale pro-
cesses. However, these Marangoni effects have a negligible
impact on the interior of full-scale oceanic waves (Luzzatto-
Fegiz and Helfrich, 2014). In the first series of experiments,
48 runs were performed using the generalized vertical sys-
tem of coordinates (Maderich et al., 2012). The vertical and
horizontal grid resolution was 400×3000. The quasi-z-level
coordinate system (Maderich et al., 2012) was used to de-
scribe this step-like ice layer. These runs cover a range of in-
cident ISWs with moderate, ai = 8 m, and large, ai = 33 m,
amplitudes (Table 1). The incident ISW amplitude is defined
as the maximum displacement of the undisturbed isopyc-
nals. The wavelength λ0.5 is estimated as the half-width at
the depth where the amplitude of the wave is reduced by
half. Two cases with different drag coefficients (CD = 0.001
and CD = 0.01) were considered to investigate the influence
of ice roughness on ISW transformation and energy loss. A
wide range of ice cover drafts hice from 0.5 to 40 m was used
to investigate processes under ice cover from first-year ice to
the ice shelf front. In the second series of experiments (see
Table 2), 12 runs (K1–K12) were performed using a sigma
system of coordinates, which allowed flow around the keel
to be described accurately. The vertical and horizontal grid
resolution was also 400× 3000. The density stratification in
this series was the same as in the first series. The ISW am-
plitude was ai = 15 m, the wavelength λ0.5 = 320 m, and the
drag coefficient CD = 0.001. The ice draft was 1 m, which
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mimics 1-year ice. The keel’s maximal penetration hk varied
from 7 to 21 m, and the width of the keel varied from 67 to
200 m at a depth of 4 m. To take into account the geometric
characteristics of the keels and their frequency, we introduce
the parameter µ, which is the ratio of the sum of submerged
ice thickness and maximal keel penetration to the distance
between keels:

µ= (hice+hk)/Lk. (5)

In turn, for a finite length of the ice layer Lice, the distance
between keels depends on keel number n as Lk = Lice/n. In
the second series,µ varies in experiments K1–K3 from 0.008
to 0.088 (Table 2). To directly compare with the step case,
calculations were made for step (S1) with the same draft as
the height of the keel in the K1–K4 experiments. In another
experiment (S2), the step draft was chosen to be equal to the
average draft in experiment K2.

3 Results

3.1 First series of experiments

The results of the first series of experiments for the trans-
formation of a depression ISW for an incident wave at the
ice were given for a wide range of ice drafts, incident wave
amplitudes, and drag coefficients (Table 1). The snapshots of
the density field for an incident ISW of amplitude ai = 15 m
passing under the ice cover are shown in Fig. 4 for different
β. Transformation under thin ice (hice = 0.5 m) with β = 1.3
occurs without any instability and essential disturbances. For
increased ice draft β = 0.7 (hice = 10 m), the incident wave
changes its form and amplitude as it passes under the ice. The
amplitudes of reflected and transmitted waves were well pre-
dicted by the theoretical model (Grimshaw et al., 2008). For
β = 0 (hice = 20 m), the transmitted wave has a smaller am-
plitude, and more energy is transferred to the reflected wave
at the ice edge. Waves under the ice transform into strongly
non-linear boluses, and more energy goes to the reflected
waves when the draft of the ice is equal to the depth of the up-
per layer (β = 0). The bolus under the ice becomes smaller,
and reflected waves form as a result of the strong interac-
tion with the ice front at β =−0.7 (hice = 30 m). An impor-
tant characteristic of the ISW–ice interaction is the loss of
kinetic and available potential energy during the ISW trans-
formation. Energy transformation due to mixing leads to the
transfer of energy to background potential energy and en-
ergy dissipation. Energy loss was estimated based on a bud-
get of depth-integrated pseudoenergy before and after the
wave transformation following Lamb (2007) and Maderich et
al. (2010). The characteristics of the incoming and reflected
waves were recorded in the cross sections XR (Fig. 1a),
which are located near the ice edge, and in two cross sections:
XL1 placed at a distance of 500 m from the ice edge and XL2
placed at a distance of 4500 m from the ice edge (Fig. 1a).

The energy loss 1Eloss in the cross section xL1 character-
izes energy transformations in the vicinity of the ice edge,
whereas energy losses 1Evisc take into account the dissipa-
tion of energy due to the underside ice friction effects. The
total energy of the incident, reflected, and transmitted waves
was calculated using the depth-integrated pseudoenergy flux
F (x, t) to find the balance of the total energy:

F (x, t)=

0∫
−H

(EPSE+p)Udz, (6)

where p is the pressure disturbance due to the passing wave,
U is the horizontal velocity, and EPSE is the pseudoenergy
density, which is the sum of the kinetic energy density Ek
and the available potential density Ea (part of the potential
energy available for conversion into kinetic energy). For the
calculation of Ea, we used a reference density profile that
was obtained by adiabatic rearranging of the density field.
The volume integration of these flows outside the mixing
zone allows us to estimate the energy of the incoming PSEin,
reflected PSEref, and ISWs transmitted under ice in cross sec-
tionsXL1,XL2 (see Fig. 1a), PSEtr1, and PSEtr2 respectively:

PSEin =

∫ L

XR

∫ 0

−H

EPSEdzdx =−
∫ t2

t1

F (XR, t)dt,

PSEtr1 =

∫ XL1

0

∫ 0

−H

EPSEdzdx =−
∫ t3

t2

F (XL1, t)dt,

PSEref =

∫ L

XR

∫ 0

−H

EPSEdzdx =
∫ t3

t2

F (XR, t)dt,

PSEtr2 =

∫ XL2

0

∫ 0

−H

EPSEdzdx =−
∫ t5

t4

F (XL2, t)dt, (7)

where t2–t1 is the interval of time when the incoming wave
passes the cross section XR, and t3–t2 is the interval of time
when transmitted and reflected waves pass the cross sections
XL1 and XR respectively. Time interval t5–t4 correspond-
ing to the transmitted wave passes the cross section XL2.
The normalized energy losses 1Eloss, 1Evisc, and 1Etot are
given by

1Eloss = (PSEin−PSEtr1−PSEref)/PSEin,

1Etot = (PSEin−PSEtr2−PSEref)/PSEin,

1Evisc =1Etot−1Eloss = (PSEtr1−PSEtr2)/PSEin. (8)

The energy loss as a result of ISW transformation under ice
1Eloss at interval XR–XL1 versus the blocking parameter β
is shown in Fig. 5a. This loss was relatively small for large
positive and large negative values of β. The maximal value
of energy loss was about 38 %, and it was reached at β ≈ 0.
The character of energy losses and the relationship between
transmitted and reflected ISW energy allows us to distin-
guish between different regimes for ISW interaction under
ice cover: the weak interaction (I), moderate interaction (II),
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Figure 1. Sketch of the numerical configuration for simulation of ISW transformation under the ice. (a) Smooth ice cover. (b) Ridged ice.

Figure 2. The comparison of the background stratification in the computational tank (Eq. 1) with the survey-averaged profile of the anomaly
of potential density σθ (Randelhoff et al., 2017) (a). The vertical cross section of the potential density and horizontal velocity fields in the
incident ISW of amplitude 15 m (b).

strong interaction (III), and reflection regime (IV). The weak
interaction (I) is when the ISW transforms under ice cover
without any instability; the energy losses are mainly due to
viscous dissipation. It corresponds to values β > 0.5. The en-
ergy losses at cross sections XR–XL1 are about 10 %. The
amplitudes and numbers of reflected and transmitted waves
are well predicted by the theoretical model of Grimshaw et
al. (2008). Moderate interaction (II) occurs when the waves
become unstable under ice cover, resulting in energy losses
due to the turbulent mixing varying from 10 % to 20 %. The
strong interaction (III) of the ISW with the ice is the regime
when the flow under the ice is supercritical. This regime
is identified by the condition that the maximal composite
Froude number Frmax at the step cross section is greater than

1, where Fr is defined as

Fr2
=

(U1)2

g′h1(x)
+

(U2)2

g′h2
, (9)

where U1 and U2 are the layer-averaged velocities in each
layer, g′ = g ·1ρ/ρ0, where g is the gravity acceleration,
1ρ and ρ0 are the density difference between the upper and
lower layers and the undisturbed density of the fluid respec-
tively. Supercritical flow Frmax = 1 with β = 0 resulted in
bolus formation and intensive mixing, which reached about
40 %. The reflection regime (IV) is when the height of the
ice floe is large enough to result in full reflection of the ISW.
The energy losses are again small (4Eloss less than 10 %–
15 %). In this regime, energy losses depend on the wave am-
plitude; small and moderate incident waves reflect without
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Table 1. The parameters of the first series of runs.

Run ai hice ai/h1 CD β

m m

1–6 33 0.5, 5, 10, 20, 30, 40 1.65 0.001 0.6, 0.45, 0.3, 0, −0.3, −0.6
7–12 25 0.5, 5, 10, 20, 30, 40 1.25 0.001 0.78, 0.6, 0.4, 0, −0.4, −0.8
13–18 15 0.5, 5, 10, 20, 30, 40 0.75 0.001 1.3, 1, 0.7, 0, −0.7, −1.33
19–24 8 0.5, 5, 10, 20, 30, 40 0.4 0.001 2.44, 1.88, 1.25, 0, −1.25, −2.5
25–30 33 0.5, 5, 10, 20, 30, 40 1.65 0.01 0.6, 0.45, 0.3, 0, −0.3, −0.6
31–36 25 0.5, 5, 10, 20, 30, 40 1.25 0.01 0.78, 0.6, 0.4, 0, −0.4, −0.8
37–42 15 0.5, 5, 10, 20, 30, 40 0.75 0.01 1.3, 1, 0.7, 0, −0.7, −1.33
43–48 8 0.5, 5, 10, 20, 30, 40 0.4 0.01 2.44, 1.88, 1.25, 0, −1.25, −2.5

Table 2. The parameters of the second series of runs.

Run hice hk bk Lk β µ Eloss Etot
m m m m % %

K1 1 21 49.5 250 −0.13 0.088 – 82.4
K2 1 21 49.5 500 −0.13 0.044 – 76.3
K3 1 21 49.5 1000 −0.13 0.022 – 64.3
K4 1 21 49.5 > 5000 −0.13 – 41.2 47.4
K5 1 14 33 250 0.33 0.06 – 42.6
K6 1 14 33 500 0.33 0.03 – 40.2
K7 1 14 33 1000 0.33 0.015 – 29.8
K8 1 14 33 > 5000 0.33 – 6.3 13.2
K9 1 7 16.5 250 0.8 0.032 – 43.6
K10 1 7 16.5 500 0.8 0.016 – 37.3
K11 1 7 16.5 1000 0.8 0.008 – 28.6
K12 1 7 16.5 > 5000 0.8 – 3.5 10.2
S1 22 0 – – −0.13 – 36.2 75.2
S2 5 0 – – 1 – 8.8 22

Figure 3. The comparison of the vertical cross section of horizon-
tal velocity fields in a wave of depression (black line) and a wave
of elevation (red line) in stratifications (1) and (4) respectively for
ISWs with an amplitude 33 m.

turbulent mixing. This dependence of 1Eloss on β is com-
parable to values for a bottom step (Talipova et al., 2013)
obtained using direct simulation by the Navier–Stokes equa-
tions (Fig. 5a). The differences in values of the energy losses
from Talipova et al. (2013) and from the present investiga-

tion can be explained by the fact that the field-scale prob-
lem was studied in this work using the Reynolds-averaged
equations, while in Talipova et al. (2013) the propagation of
ISWs in a laboratory-scale computational domain was stud-
ied using the Navier–Stokes equations. The eddy viscosity
and diffusivity calculated from the turbulence model (Siegel
and Domaradzki, 1994) vary in space and time, with charac-
teristic values of 10−4–10−3 m2 s−1. The difference between
the energy losses in the cross sections XL2 and XL1 char-
acterizes their losses due to friction effects. This difference
1Evisc =1Etot−1Eloss is shown in Fig. 5b as a function of
β. This shows that the contribution of friction is 15 %–20 %
of the energy of the incident wave. The simulations showed
a weak dependence of energy loss on the friction parameter
CD (Fig. 5b).

3.2 Second series of experiments

The results of the second series of experiments for the trans-
formation of depression ISWs under ridged ice for different
ice keel heights and distances between keels (Table 2) are
discussed in this section. Similarly to Eq. (2), we can intro-
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Figure 4. The snapshots of the density field for an incident ISW with amplitude 15 m passing under the ice cover with a different draft. The
integration region for the energetic calculations between XL1 and XR is shown.

Figure 5. (a) The ISW energy loss 1Eloss under the ice cover versus the blocking parameter β for various amplitudes of an incident wave
(b) 1Evisc that take into account the dissipation of energy due to the underside ice friction effects versus the blocking parameter β.

duce the blocking parameter for a single keel in the form

β =
h1−hice−hk

ai
. (10)

The snapshots of the density field for an incident ISW pass-
ing under the layer of constant draft (Run S1 from Table 2)
are compared in Fig. 6 with the results for a wave passing
under ridged ice (Run K2). In Run S1 the ISW amplitude is
comparable to the draft of ice and the thickness of the up-
per layer h1+; therefore, the interaction was strong. Initially

(time interval T = 1 h 30 min–1 h 35 min), the wave propa-
gated under the ice as a bolus (Fig. 6a). This process is ac-
companied by intensive mixing. The bolus gradually loses
mass. Estimates of energy loss at a distance of 500 m from
the ice front Eloss in Run S1 (Table 2) showed that 36.2 % of
the energy was lost to mixing and dissipation, whereas loss
of energy at the full length of the ice cover (5000 m) was
twice as much (Etot = 75.2 %). The processes of ISW dis-
integration and mixing for ridged ice differ essentially from

https://doi.org/10.5194/npg-31-207-2024 Nonlin. Processes Geophys., 31, 207–217, 2024
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Figure 6. (a) The transformation of ISWs of depression under a smooth ice layer (Run S1). (b) The transformation of ISWs of depression
under a ridged ice layer (Run K2).

the case of the ice layer of the constant draft. The snapshots
of the density field for the ISW passing under the ridged ice
(Run K2) are shown in Fig. 6b. As seen in the figure, the
flow accelerates on the rear side of the keel (T = 1 h 30 min;
Frmax reaches the value 1) entraining denser water from the
underlying layers. The resulting vortex is accompanied by
intense mixing (T = 1 h 33 min–1 h 45 min). The process of
transformation of this wave with a slightly smaller ampli-
tude is repeated on subsequent keels. As a result of passing
through the first keel, the wave loses about 41 % of the in-
cident wave energy. Energy losses due to all the keels de-
pend on the distance Lk between them, which in turn de-
pend on the keel quantity. When β =−0.13, Etot changes
from 47.4 % for a single keel to 82.4 % for Lk = 250 m. This
means that energy losses on the first keel account for about
half of all the losses. For Lk = 1000 m, the energy loss due
to all the keels was 64.3 %. As β increases to 0.8, the con-
tribution of the first keel decreases to 3.5 %. In the limiting

case of the interaction of an ISW with a single keel (Zhang et
al., 2022b), the maximum energy dissipation was about 25 %,
which is somewhat less than in our calculations, but we need
to keep in mind the differences in the calculation parame-
ters and turbulence parameterization. Zhang et al. (2022b)
used constant eddy coefficients, whereas in our study the tur-
bulence model was used with eddy coefficients varying in
space and time. To characterize the dependence of 1Etot on
keel height and distance between keels, we introduced pa-
rameter µ (Eq. 5). As seen in Fig. 7, this dependence can
be approximated by logarithmic curves 1Eloss = q lnµ+ r ,
where β = (0.8,0.33,−0.13), q = (1.60,11.24,11.96), and
r = (16.21,75.84,111.85). The energy loss 1Etot increases
with the decrease in distance between keels or an increase in
keel height. The level of 1Etot is highest for β values near
zero. As seen in Fig. 5a, this range of β corresponds to the
regime of strong interaction (III). Energy loss in this regime
is maximal, both in the case of the ridged underside of the ice
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Figure 7. The ISW energy loss 4Eloss under the ice cover versus
parameterµ. The logarithmic curves approximate calculated depen-
dencies.

and in the case of smooth ice surfaces with the same parame-
ter β. When β values increase, the dependence of energy loss
on the µ and distance between the keels decreases. β = 0.8
is on the boundary between regimes (II) and (I) (moderate
and weak), and the distance between the keels is no longer
significant.

In another limiting case, an ISW of elevation propagates
over a corrugated bottom when the bottom element length
was much lower than the ISW wavelength (Carr et al., 2010).
A comparison with an ISW propagated under an ensemble of
ice keels of horizontal scales greater than the ISW length was
not straightforward. In addition, Reynolds equations with tur-
bulent closure describe real-scale processes in the ocean, in
contrast to laboratory scales in Carr et al. (2010). Unlike Carr
et al. (2010), we cannot describe in detail the instant spatial–
temporal dynamics of high shear layers near the ice. How-
ever, Fig. 6b shows wave-induced currents over the keels,
their interaction with the apex of the keels, and a sequence
of lee vortices formed as a result of such interaction (see
Fig. 6b: T = 1 h 35 min, T = 1 h 41 min). Similarly to Carr et
al. (2010), the vortices developed after the main wave passed
over the keel (see Fig. 6b: T = 1 h 44 min, T = 1 h 45 min),
resulting in deformation of the overlying pycnocline and, in
some instances, significant vertical mixing.

4 Conclusions

In this study, a numerical investigation of the transforma-
tion of ISWs propagating from open water in a stratified
sea into an ice-covered region is carried out. We compared
the transformation and energy loss of depression ISWs under
smooth ice surfaces, with the processes beneath ridged ice. It
was shown that the transformation of depression ISWs under
smooth ice cover is controlled by the blocking parameter β.
Several regimes of ISW transformation at the ice–open wa-
ter boundary were identified: (I) the weak interaction when

the ISW transforms under ice cover without any instability;
the energy losses are caused mainly by viscous dissipation.
It corresponds to values β > 0.5. (II) Moderate interaction,
which occurs when the waves become unstable under ice
cover, results in energy losses due to the turbulent mixing
varying from 10 % to 20 %. (III) Strong interaction of ISWs
with the ice (β ' 0) is the regime when the flow under the
ice is supercritical and the values of energy loss are about
38 %. The reflection regime (IV) is when the depth of the ice
cover is large enough to result in full reflection of the ISW.
The ice’s roughness has relatively little effect on energy con-
versions under ice cover.

The ISW transformation under ridged ice also depends on
the blocking parameter β. For large keels (β < 0), more than
40 % of the energy is lost on the first keel, while for relatively
small keels (β > 0.3), the losses on the first keel are less than
6 %. The energy losses in the flow around the ridges can be
of the same order as for the ice cover, in which the draft is
commensurate with the amplitude of the keels. Energy losses
due to all the keels depend on the distance between them,
which in turn depends on a keel quantity. These losses are
characterized by the parameter µ, which is the ratio of the
keel depth to the distance between the keels.

The energy loss processes of ISWs under ice deserve more
in-depth studies to bridge ISW mixing and the heat balance
of polar oceans (Pinkel, 2005). The next step could be an ex-
plicit representation of heat and salt fluxes between the ice
cover due to the ISW interaction with the ridged ice, e.g. fol-
lowing the flux parametrization by McPhee et al. (1987).

Code and data availability. Code and data are available from
https://doi.org/10.5281/zenodo.10984509 (Maderich and Terletska,
2024).

Author contributions. VM designed the study, contributed to the
visualization of the results, and wrote the manuscript with support
from all the authors. KT contributed to the method development,
simulation, data processing, and manuscript writing. ET contributed
to the interpretation of the results and manuscript editing. All the au-
thors contributed to the article and approved the submitted version.

Competing interests. The contact author has declared that none
of the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

https://doi.org/10.5194/npg-31-207-2024 Nonlin. Processes Geophys., 31, 207–217, 2024

https://doi.org/10.5281/zenodo.10984509


216 K. Terletska et al.: Transformation of internal solitary waves

Special issue statement. This article is part of the special issue
“Turbulence, wave–current interactions, and other nonlinear physi-
cal processes in lakes and oceans”. It is a result of the EGU General
Assembly 2023 session NP6.1 Turbulence, wave-currents interac-
tions and other nonlinear physical processes in lakes and oceans,
Vienna, Austria, 25 April 2023.

Acknowledgements. The authors would like to thank
Kevin Lamb for his help in preparing the final version of the
manuscript and for his useful comments and suggestions.

Financial support. This research has been supported by the Aus-
trian Science Foundation (FWF) under project nos. P30887 and
P31163 and by the European Union’s Horizon 2020 research and
innovation framework program (PolarRES, grant agreement no.
101003590).

Review statement. This paper was edited by Kevin Lamb and re-
viewed by two anonymous referees.

References

Carr, M., Fructus, D., Grue, J., Jensen, A., and Davies,
P. A.: Convectively induced shear instability in large am-
plitude internal solitary waves, Phys. Fluids, 20, 126601,
https://doi.org/10.1063/1.3030947, 2008.

Carr, M., Stastna, M., and Davies, P. A.: Internal solitary wave-
induced flow over a corrugated bed, Ocean Dynam., 60, 1007–
1025, https://doi.org/10.1007/s10236-010-0286-2, 2010.

Carr, M., Sutherland, P., Haase, A., Evers, K.-U., Fer, I., Jensen,
A., Kalisch, H., Berntsen, J., Parau, E., Thiem, O., and Davies,
P. A.: Laboratory experiments on internal solitary waves in
ice-covered waters, Geophys. Res. Lett., 21, 12230–12238,
https://doi.org/10.1029/2019GL084710, 2019.

Chen, C. Y.: An experimental study of stratified mixing caused
by internal solitary waves in a two layered fluid system
over variable seabed topography, Ocean Eng., 34, 1995–2008,
https://doi.org/10.1016/j.oceaneng.2007.02.014, 2007.

Du, H., Wang, S. D., Wang, X. L., Xu, J. N., Guo, H. L., and
Wei, G.: Experimental investigation of elevation internal soli-
tary wave propagation over a ridge, Phys. Fluids, 33, 1–9,
https://doi.org/10.1063/5.0046407, 2021.

Dubreil-Jacotin, L.: Sur les ondes type permanent dans les liquides
heterogenes, Atti R. Accad. Naz. Lincei, Mem. Cl. Sci. Fis., Mat.
Nat., 15, 44–72, 1932.

Grimshaw, R., Pelinovsky, E., and Talipova, T.: Fis-
sion of a weakly nonlinear interfacial solitary wave
at a step, Geophys. Astro. Fluid, 102, 179–194,
https://doi.org/10.1080/03091920701640115, 2008.

Guthrie, J. D., Morison, J. H., and Fer, I.: Revisiting internal waves
and mixing in the Arctic Ocean, J. Geophys. Res.-Oceans, 118,
3966–3977, https://doi.org/10.1002/jgrc.20294, 2013.

Johannessen, O. M., Sandven, S., Chunchuzov, I. P., and
Shuchman, R. A.: Observations of internal waves gener-
ated by an anticyclonic eddy: a case study in the ice

edge region of the Greenland Sea, Tellus A, 71, 1652881,
https://doi.org/10.1080/16000870.2019.1652881, 2019.

Lamb, K.: Energy and pseudoenergy flux in the internal wave field
generated by tidal flow over topography, Cont. Shelf Res., 27,
1208–1232, https://doi.org/10.1016/j.csr.2007.01.020, 2007.

Leppäranta, M.: The drift of sea ice, Springer Berlin, Heidelberg,
266 pp., ISBN 978-3-642-04682-7, 2007.

Lu, P., Li, Z., Cheng, B., and Leppäranta, M.: A parameterization
of the ice–ocean drag coefficient, J. Geophys. Res., 116, C07019,
https://doi.org/10.1029/2010JC006878, 2011.

Luzzatto-Fegiz, P. and Helfrich, K.: Laboratory experiments and
simulations for solitary waves with trapped cores, J. Fluid Mech.,
757, 354–380, 2014.

Maderich, V. and Terletska, K.: Dataset of velocity and den-
sity fields from numerical simulations, Zenodo [data set],
https://doi.org/10.5281/zenodo.10984510, 2024.

Maderich, V., Talipova, T., Grimshaw, R., Pelinovsky, E., Choi,
B. H., Brovchenko, I., Terletska, K., and Kim, D. C.: The
transformation of an interfacial solitary wave of elevation
at a bottom step, Nonlin. Processes Geophys., 16, 33–42,
https://doi.org/10.5194/npg-16-33-2009, 2009.

Maderich, V., Talipova, T., Grimshaw, R., Terletska, K.,
Brovchenko, I., Pelinovsky, E., and Choi, B. H.: Inter-
action of a large amplitude interfacial solitary wave of
depression with a bottom step, Phys. Fluids, 22, 076602,
https://doi.org/10.1063/1.3455984, 2010.

Maderich, V., Brovchenko, I., Terletska, K., and Hutter, K.: Numer-
ical simulations of the nonhydrostatic transformation of basin-
scale internal gravity waves and wave-enhanced meromixis in
lakes, in: Nonlinear internal waves in lakes, Springer Series:
Advances in Geophysical and Environmental Mechanics, edited
by: Hutter, K., Springer, 193–276, https://doi.org/10.1007/978-
3-642-23438-5_4, 2012.

Marchenko, A.: Thermodynamic consolidation and melting of
sea ice ridges, Cold Reg. Sci. Technol., 52, 278–301,
https://doi.org/10.1016/j.coldregions.2007.06.008, 2008.

McPhee, M. G., Maykut, G. A., and Morison, J. H.: Dynamics and
thermodynamics of the ice/upper ocean system in the marginal
ice zone of the Greenland Sea, J. Geophys. Res., 92, 7017–7031,
1987.

Pinkel, R.: Near-inertial wave propagation in the
western Arctic, J. Phys. Oceanogr., 35, 645–665,
https://doi.org/10.1175/JPO2715.1, 2005.

Rainville, L. and Woodgate, R. A.: Observations of internal wave
generation in the seasonally ice-free Arctic, Geophys. Res. Lett.,
36, L23604, https://doi.org/10.1029/2009GL041291, 2009.

Randelhoff, A., Fer, I., and Sundfjord, A.: Turbulent upper-ocean
mixing affected by Meltwater layers during arctic summer, J.
Phys. Oceanogr., 47, 835–853, https://doi.org/10.1175/jpo-d-16-
0200.1, 2017.

Siegel, D. A. and Domaradzki, J. A.: Large-eddy simulation of de-
caying stably stratified turbulence, J. Phys. Oceanogr., 24, 2353–
2386, 1994.

Skyllingstad, E. D., Paulson, C. A., Pegau, W. S., Mcphee,
M. G., and Stanton, T. P.: Effects of keels on ice bot-
tom turbulence exchange, J. Geophys. Res., 108, 3372,
https://doi.org/10.1029/2002JC001488, 2003.

Strub–Klein, L. and Sudom, D.: A comprehensive analysis of the
morphology of first-year sea ice ridges, Cold Reg. Sci. Technol.,

Nonlin. Processes Geophys., 31, 207–217, 2024 https://doi.org/10.5194/npg-31-207-2024

https://doi.org/10.1063/1.3030947
https://doi.org/10.1007/s10236-010-0286-2
https://doi.org/10.1029/2019GL084710
https://doi.org/10.1016/j.oceaneng.2007.02.014
https://doi.org/10.1063/5.0046407
https://doi.org/10.1080/03091920701640115
https://doi.org/10.1002/jgrc.20294
https://doi.org/10.1080/16000870.2019.1652881
https://doi.org/10.1016/j.csr.2007.01.020
https://doi.org/10.1029/2010JC006878
https://doi.org/10.5281/zenodo.10984510
https://doi.org/10.5194/npg-16-33-2009
https://doi.org/10.1063/1.3455984
https://doi.org/10.1007/978-3-642-23438-5_4
https://doi.org/10.1007/978-3-642-23438-5_4
https://doi.org/10.1016/j.coldregions.2007.06.008
https://doi.org/10.1175/JPO2715.1
https://doi.org/10.1029/2009GL041291
https://doi.org/10.1175/jpo-d-16-0200.1
https://doi.org/10.1175/jpo-d-16-0200.1
https://doi.org/10.1029/2002JC001488


K. Terletska et al.: Transformation of internal solitary waves 217

82, 94–109, https://doi.org/10.1016/j.coldregions.2012.05.014,
2012.

Talipova, T., Terletska, K., Maderich, V., Brovchenko, I., Peli-
novsky, E., Jung, K. T., and Grimshaw, R.: Solitary wave trans-
formation on the underwater step: Loss of energy, Phys. Fluids,
25, 032110, https://doi.org/10.1063/1.4797455, 2013.

Urbancic, G. H., Lamb, K. G., Fer, I., and Padman, L.: The genera-
tion of linear and nonlinear internal waves forced by sub-inertial
tides over the Yermak Plateau, Arctic Ocean, J. Phys. Oceanogr.,
52, 2183–2203, https://doi.org/10.1175/JPO-D-21-0264.1, 2022.

Vlasenko, V., Stashchuk, N., Hutter, K., and Sabinin, K.: Non-
linear internal waves forced by tides near the critical latitude,
Deep-Sea Res. Pt I, 50, 317–338, https://doi.org/10.1016/S0967-
0637(03)00018-9, 2003.

Vlasenko, V. I. and Hutter, K.: Generation of second mode solitary
waves by the interaction of a first mode soliton with a sill, Nonlin.
Processes Geophys., 8, 223–239, https://doi.org/10.5194/npg-8-
223-2001, 2001.

Wessels, F. and Hutter, K.: Interaction of internal waves with a to-
pographic sill in a two-layered fluid, J. Phys. Oceanogr, 26, 5–20,
1996.

Xu, C., Subich, C., and Stastna, M.: Numerical simulations of shoal-
ing internal solitary waves of elevation, Phys. Fluids, 28, 076601,
https://doi.org/10.1063/1.4958899, 2016.

Zhang, P., Li, Q., Xu, Z., and Yin, B.: Internal solitary wave
generation by the tidal flows beneath ice keel in the Arctic
Ocean, Journal of Oceanology and Limnology, 40, 831–845,
https://doi.org/10.1007/s00343-021-1052-7, 2022a.

Zhang, P., Xu, Z., Li, Q., You, J., Yin, B., Robertson, R., and
Zheng, Q.: Numerical simulations of internal solitary wave
evolution beneath an ice keel, J. Geophys. Res.-Oceans, 127,
e2020JC017068, https://doi.org/10.1029/2020JC017068, 2022b.

https://doi.org/10.5194/npg-31-207-2024 Nonlin. Processes Geophys., 31, 207–217, 2024

https://doi.org/10.1016/j.coldregions.2012.05.014
https://doi.org/10.1063/1.4797455
https://doi.org/10.1175/JPO-D-21-0264.1
https://doi.org/10.1016/S0967-0637(03)00018-9
https://doi.org/10.1016/S0967-0637(03)00018-9
https://doi.org/10.5194/npg-8-223-2001
https://doi.org/10.5194/npg-8-223-2001
https://doi.org/10.1063/1.4958899
https://doi.org/10.1007/s00343-021-1052-7
https://doi.org/10.1029/2020JC017068

	Abstract
	Introduction
	Numerical experiment setup
	Results 
	First series of experiments
	Second series of experiments

	Conclusions
	Code and data availability
	Author contributions
	Competing interests
	Disclaimer
	Special issue statement
	Acknowledgements
	Financial support
	Review statement
	References

