Articles | Volume 30, issue 1
https://doi.org/10.5194/npg-30-13-2023
https://doi.org/10.5194/npg-30-13-2023
Research article
 | 
09 Jan 2023
Research article |  | 09 Jan 2023

Guidance on how to improve vertical covariance localization based on a 1000-member ensemble

Tobias Necker, David Hinger, Philipp Johannes Griewank, Takemasa Miyoshi, and Martin Weissmann

Related authors

An ensemble Kalman filter-based ocean data assimilation system improved by adaptive observation error inflation (AOEI)
Shun Ohishi, Takemasa Miyoshi, and Misako Kachi
Geosci. Model Dev., 15, 9057–9073, https://doi.org/10.5194/gmd-15-9057-2022,https://doi.org/10.5194/gmd-15-9057-2022, 2022
Short summary
Vertical structure of the lower-stratospheric moist bias in the ERA5 reanalysis and its connection to mixing processes
Konstantin Krüger, Andreas Schäfler, Martin Wirth, Martin Weissmann, and George C. Craig
Atmos. Chem. Phys., 22, 15559–15577, https://doi.org/10.5194/acp-22-15559-2022,https://doi.org/10.5194/acp-22-15559-2022, 2022
Short summary
An ensemble Kalman filter system with the Stony Brook Parallel Ocean Model v1.0
Shun Ohishi, Tsutomu Hihara, Hidenori Aiki, Joji Ishizaka, Yasumasa Miyazawa, Misako Kachi, and Takemasa Miyoshi
Geosci. Model Dev., 15, 8395–8410, https://doi.org/10.5194/gmd-15-8395-2022,https://doi.org/10.5194/gmd-15-8395-2022, 2022
Short summary
A local particle filter and its Gaussian mixture extension implemented with minor modifications to the LETKF
Shunji Kotsuki, Takemasa Miyoshi, Keiichi Kondo, and Roland Potthast
Geosci. Model Dev., 15, 8325–8348, https://doi.org/10.5194/gmd-15-8325-2022,https://doi.org/10.5194/gmd-15-8325-2022, 2022
Short summary
Investigation of dynamical scenarios leading to particularly high impact of Aeolus on NWP forecasts
Anne Martin, Martin Weissmann, and Alexander Cress
EGUsphere, https://doi.org/10.5194/egusphere-2022-1150,https://doi.org/10.5194/egusphere-2022-1150, 2022
Short summary

Related subject area

Subject: Predictability, probabilistic forecasts, data assimilation, inverse problems | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere | Techniques: Big data and artificial intelligence
Weather pattern dynamics over western Europe under climate change: predictability, information entropy and production
Stéphane Vannitsem
Nonlin. Processes Geophys., 30, 1–12, https://doi.org/10.5194/npg-30-1-2023,https://doi.org/10.5194/npg-30-1-2023, 2023
Short summary
Calibrated ensemble forecasts of the height of new snow using quantile regression forests and ensemble model output statistics
Guillaume Evin, Matthieu Lafaysse, Maxime Taillardat, and Michaël Zamo
Nonlin. Processes Geophys., 28, 467–480, https://doi.org/10.5194/npg-28-467-2021,https://doi.org/10.5194/npg-28-467-2021, 2021
Short summary
Enhancing geophysical flow machine learning performance via scale separation
Davide Faranda, Mathieu Vrac, Pascal Yiou, Flavio Maria Emanuele Pons, Adnane Hamid, Giulia Carella, Cedric Ngoungue Langue, Soulivanh Thao, and Valerie Gautard
Nonlin. Processes Geophys., 28, 423–443, https://doi.org/10.5194/npg-28-423-2021,https://doi.org/10.5194/npg-28-423-2021, 2021
Short summary
Training a convolutional neural network to conserve mass in data assimilation
Yvonne Ruckstuhl, Tijana Janjić, and Stephan Rasp
Nonlin. Processes Geophys., 28, 111–119, https://doi.org/10.5194/npg-28-111-2021,https://doi.org/10.5194/npg-28-111-2021, 2021
Short summary
Data-driven predictions of a multiscale Lorenz 96 chaotic system using machine-learning methods: reservoir computing, artificial neural network, and long short-term memory network
Ashesh Chattopadhyay, Pedram Hassanzadeh, and Devika Subramanian
Nonlin. Processes Geophys., 27, 373–389, https://doi.org/10.5194/npg-27-373-2020,https://doi.org/10.5194/npg-27-373-2020, 2020
Short summary

Cited articles

Anderson, J.: Exploring the need for localization in ensemble data assimilation using a hierarchical ensemble filter, Physica D, 230, 99–111, https://doi.org/10.1016/j.physd.2006.02.011, 2007. a, b, c
Anderson, J. and Lei, L.: Empirical Localization of Observation Impact in Ensemble Kalman Filters, Mon. Weather Rev., 141, 4140–4153, https://doi.org/10.1175/MWR-D-12-00330.1, 2013. a, b, c
Anderson, J., Hoar, T., Raeder, K., Liu, H., Collins, N., Torn, R., and Avellano, A.: The Data Assimilation Research Testbed: A Community Facility, B. Am. Meteor. Soc., 90, 1283–1296, https://doi.org/10.1175/2009BAMS2618.1, 2009. a, b
Anderson, J. L.: An Ensemble Adjustment Kalman Filter for Data Assimilation, Mon. Weather Rev., 129, 2884–2903, https://doi.org/10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2, 2001. a
Anderson, J. L.: Localization and Sampling Error Correction in Ensemble Kalman Filter Data Assimilation, Mon. Weather Rev., 140, 2359–2371, https://doi.org/10.1175/MWR-D-11-00013.1, 2012. a, b, c, d, e, f, g, h
Download
Short summary
This study investigates vertical localization based on a convection-permitting 1000-member ensemble simulation. We derive an empirical optimal localization (EOL) that minimizes sampling error in 40-member sub-sample correlations assuming 1000-member correlations as truth. The results will provide guidance for localization in convective-scale ensemble data assimilation systems.