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Abstract. The success of ensemble data assimilation systems substantially depends on localization, which is re-
quired to mitigate sampling errors caused by modeling background error covariances with undersized ensembles.
However, finding an optimal localization is highly challenging, as covariances, sampling errors, and appropriate
localization depend on various factors. Our study investigates vertical localization based on a unique convection-
permitting 1000-member ensemble simulation; 1000-member ensemble correlations serve as truth for examining
vertical correlations and their sampling error. We discuss requirements for vertical localization by deriving an
empirical optimal localization (EOL) that minimizes the sampling error in 40-member subsample correlations
with respect to the 1000-member reference. Our analysis covers temperature, specific humidity, and wind cor-
relations on various pressure levels. Results suggest that vertical localization should depend on several aspects,
such as the respective variable, vertical level, or correlation type (self- or cross-correlations). Comparing the
empirical optimal localization with common distance-dependent localization approaches highlights that finding
suitable localization functions bears substantial room for improvement. Furthermore, we examine approaches for
achieving positive semi-definiteness for covariance localization that hardly affect the sampling error reduction.
Finally, we discuss the gain of combining different localization approaches with an adaptive statistical sampling
error correction.

1 Introduction

The accuracy of the initial conditions provided by data as-
similation systems strongly determines the skill of numer-
ical weather prediction (NWP). Data assimilation (DA) re-
lies on accurate estimates of forecast errors and error covari-
ances that determine the weighting and spreading of obser-
vational information. However, modeling suitable error co-
variances is intrinsically difficult given various atmospheric
processes acting on different scales, leading to situation- and
flow-dependent error covariance structures. A breakthrough
in estimating background errors has been the development
of ensemble and hybrid data assimilation algorithms (e.g.,
Evensen, 1994; Bonavita et al., 2016; Bannister, 2017).

Considering the large state space of atmospheric models
with a hundred million or more degrees of freedom, estimat-

ing error covariances with an ensemble forecast is demand-
ing. Computational restrictions usually limit the number of
affordable ensemble members to about 20 to 80 members
(Bannister, 2017; Gustafsson et al., 2018). Ensemble sys-
tems, therefore, suffer from severe undersampling and sam-
pling errors. For this reason, all ensemble and hybrid data
assimilation systems require some form of sampling error
correction for horizontal and vertical covariances, usually re-
ferred to as localization. Localization mitigates spurious cor-
relations that arise from undersampling. During the assim-
ilation procedure, spurious correlations lead to sub-optimal
analysis increments, resulting in a sub-optimal analysis and
forecast as well as an inaccurate representation of forecast er-
ror by the ensemble. Horizontal and vertical localizations are
both challenging topics. Since fundamentally different pro-
cesses are acting in the horizontal and vertical directions, the
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two structures require different solutions. Depending on the
specific data assimilation algorithm, localization may also
be important for other reasons, such as computational effi-
ciency or rank deficiency. However, in this study, we focus on
mitigating sampling errors independent of algorithm-specific
constraints.

In the past decade, advanced high-performance comput-
ing systems such as the Japanese K-computer (Miyoshi et al.,
2015, 2016a, b) enabled the first atmospheric ensemble sim-
ulations with thousands of ensemble members that can pro-
vide reliable error covariances (Kunii, 2014; Miyoshi et al.,
2014; Kondo and Miyoshi, 2016; Necker et al., 2020a).
The assumption that such large ensembles provide covari-
ances close to true covariances allows one to investigate
sampling errors in smaller subsets. Necker et al. (2020b),
for example, evaluated a statistical sampling error correc-
tion method based on a 1000-member ensemble. Preceding
studies used a similar approach but with a smaller ensemble
size or lower resolution (e.g., Hamill et al., 2001; Poterjoy
et al., 2014; Bannister et al., 2017). Wu et al. (2020), for
example, showed the potential of a 256-member ensemble
for studying sampling errors in a 40-member ensemble fo-
cusing on covariances of radar observations on convective
scales. Our present study aims to guide advances in verti-
cal localization by analyzing vertical error correlations and
the empirical optimal vertical localization derived from the
convection-permitting 1000-member ensemble simulation of
Necker et al. (2020a, b).

In recent years, several approaches for vertical localization
have been developed. The most frequently applied localiza-
tion approach is a distance-dependent localization that damp-
ens long-range correlations (e.g., Houtekamer and Mitchell,
1998, 2001; Hamill et al., 2001; Miyoshi and Yamane, 2007).
For example, many data assimilation algorithms use the
Gaspari–Cohn tapering function (Gaspari and Cohn, 1999),
which has a cut-off at a defined distance to dampen corre-
lations depending on the spatial distance. However, long-
distance vertical error correlations often have a physical
meaning. Vertically, e.g., radiative effects of clouds, deep
convection, or hydrostatic balance can cause relevant cor-
relations. Inappropriate localization can therefore eliminate
meaningful error correlations (Miyoshi et al., 2014; Kondo
and Miyoshi, 2016) or cause imbalances in the initial condi-
tions (Kepert, 2009; Greybush et al., 2011; Lei et al., 2015).

Several studies investigated different aspects of optimal lo-
calization but often focused on horizontal localization. These
studies cover fundamental research on sampling errors and
their correction (e.g., Anderson, 2007, 2012; Flowerdew,
2015). Besides, some studies discuss suitable tapering func-
tions for localization (e.g., Gaspari and Cohn, 1999; Gaspari
et al., 2006; Bolin and Wallin, 2016; Stanley et al., 2021).
Distance-dependent localization always requires tuning of
localization scales. Consequently, multiple studies aim to de-
rive optimal localization scales and functions by minimizing
the error in correlations or the subsequent analysis (e.g., Peri-

anez et al., 2014; Anderson and Lei, 2013; Lei and Anderson,
2014; Kirchgessner et al., 2014; Flowerdew, 2015).

Localization approaches can roughly be grouped into
two categories: adaptive and non-adaptive approaches. Non-
adaptive approaches apply fixed domain- or variable-uniform
localization functions and scales that do not change with
time. Adaptive localization approaches, such as statistical
sampling error correction methods, enable a flow- or error-
correlation-dependent localization (e.g., Anderson, 2007;
Bishop and Hodyss, 2009a, b; Anderson, 2012; Ménétrier
et al., 2015a, b). A promising adaptive localization approach
is the global group ensemble filter (GGF; Lei and Ander-
son, 2014). The GGF enables adaptive vertical localization of
satellite radiances (Lei et al., 2016, 2020). However, adaptive
methods usually require additional computational resources,
which can be a limiting factor in operational applications.

Current regional NWP models exhibit a grid spacing
of a few kilometers, allowing an explicit representation of
deep convection (Bouttier et al., 2016; Hagelin et al., 2017;
Gustafsson et al., 2018). Finding optimal localization scales
or functions is challenging, particularly for convection-
permitting simulations (Michel et al., 2011; Ménétrier et al.,
2014; Destouches et al., 2021). In these simulations, cor-
relations and sampling errors depend on strongly nonlinear
dynamics, the chaotic nature of convection, and uncertain-
ties in microphysical processes that all contribute to rapid er-
ror growth (Hohenegger and Schaer, 2007; Ménétrier et al.,
2014; Wu et al., 2020). However, little knowledge exists on
the structure of short-term forecast errors in regions with at-
mospheric convection (Hu et al., 2023). Consequently, better
understanding of optimal vertical localization for convection-
permitting simulations has the potential to improve forecasts
of convective precipitation and related hazards.

This paper investigates how vertical error covariances
should be localized based on an existing convection-
permitting 1000-member ensemble simulation (Necker et al.,
2020a). Our study focuses on correlations instead of co-
variances as correlation sampling errors are the main con-
tributor to covariance sampling error (Anderson, 2012). We
will investigate domain-uniform vertical localization but will
also partly address the potential of adaptive localization ap-
proaches by applying a statistical sampling error correction
(SEC Anderson, 2012, 2016). Furthermore, we will analyze
vertical correlations and empirically derive an optimal ver-
tical localization that minimizes the sampling error in sub-
samples of the 1000-member ensemble. Since the optimal lo-
calization matrix is not necessarily symmetric positive semi-
definite (SPSD), we explore methods to ensure SPSD. Our
setup allows for general conclusions independent of a spe-
cific DA algorithm. Among different aspects of localization,
we will address the following research questions.

– How do vertical error correlations for humidity, temper-
ature, or wind behave on average?
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– How should we localize vertical error correlations from
small ensembles?

– How much error reduction can be achieved with a
domain-uniform vertical localization or by combining
different localization approaches?

The remainder of the paper is outlined as follows: Sect. 2
introduces the 1000-member ensemble, the experimental
setup, and the weather period. Furthermore, we explain how
vertical correlations and the empirical optimal localization
are derived from the 1000-member ensemble using subsam-
pling. Section 3.1 evaluates vertical correlations and the em-
pirical optimal localization for single variable pairs to ex-
plore requirements for a variable-dependent localization. In
Sect. 3.2, we group variables and correlations based on sim-
ilar behavior to derive an empirical optimal localization for
self- and cross-correlations. Section 3.3 evaluates the error
reduction achieved by different localization approaches and
settings. Section 3.4 discusses different methods to ensure
that the localization matrix is SPSD. Finally, we summarize
our results in Sect. 4 and discuss implications for improving
vertical localization.

2 Methods and experiments

2.1 1000-member ensemble simulation

Our study uses an existing convective-scale 1000-member
ensemble simulation described in detail by Necker et al.
(2020a). The 1000-member ensemble applies the full-
physics non-hydrostatic Scalable Computing for Advanced
Library and Environment regional model (SCALE-RM) and
the SCALE Localized Ensemble Transform Kalman Filter
(SCALE-LETKF) DA system (Lien et al., 2017). Using an
offline nesting approach, the 1000-member ensemble setup
couples two domains with different horizontal resolutions.
Ensemble forecasts in the outer domain covering central Eu-
rope (15 km grid spacing) delivered the boundary and initial
conditions for the convective-scale ensemble forecasts in the
inner domain covering Germany (3 km grid spacing). High-
resolution short-term forecasts from the inner domain will be
analyzed to evaluate correlations and localization.

Initial and boundary conditions: the data assimilation cy-
cling has been performed in the coarse European domain as-
similating conventional observations with a LETKF (Hunt
et al., 2007). A set of 1000 independent and specifically
constructed ensemble boundary conditions (BCs) drives the
European-scale forecasts. These BCs combine 1000 clima-
tologically scaled random perturbations with a 20-member
analysis ensemble of the NCEP Global Ensemble Forecast
System (GEFS). The GEFS 20-member analysis ensemble
is used 50 times to reach 1000 BCs and afterwards com-
bined with 1000 random climatologically scaled perturba-
tions. This approach yields 1000 independent BCs that en-
sure sufficient ensemble spread when combined with relax-

ation to prior spread (RTPS Whitaker and Hamill, 2012). The
boundary and initial conditions for the inner and convective-
scale forecast domain are downscaled from 15 to 3 km reso-
lution based on simulations in the European domain.

Our study uses the model output from the inner model do-
main with a 250×230 grid area centered over Germany with
a 3 km horizontal resolution. This sub-domain excludes the
Alps and regions within 10 grid points of the domain bound-
ary. The model output has 30 vertical levels ranging from
the surface to the model top at 16.9 km. The original verti-
cal grid is terrain-following and has fixed height levels above
the surface (m). For practical reasons, we extracted tempera-
ture (T ), specific humidity (Q), and horizontal zonal (U ) and
meridional (V ) wind components on 20 vertical pressure lev-
els (100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600,
650, 700, 750, 800, 850, 900, 925, 950, 975 hPa). Performing
our analysis on this modified grid allows horizontal averag-
ing of data on pressure levels where needed. Overall, our ex-
amination includes 10 short-term forecasts that were initial-
ized twice per day from 29 May to 2 June 2016 at 00:00 and
12:00 UTC. The 3 h forecasts valid at 03:00 and 15:00 UTC
serve as a basis for computing and investigating background
error correlations.

2.2 Weather period

Atmospheric blocking over the Atlantic influenced the large-
scale flow over Europe in the 5 d experimental period. The
blocking led to a quasi-stationary weather pattern over cen-
tral Europe with an upper-level trough over western Europe
and a shallow surface low over central Europe. The low-
pressure system was associated with a cold front and a warm
front that moved over Germany during the period. A conver-
gence zone over southern Germany caused large-scale lifting.
Furthermore, mid-level winds advected warm and moist air
masses from southern Europe towards Germany at the begin-
ning of the experimental period. Combined with the conver-
gence zone, atmospheric conditions led to intense convection
and heavy precipitation, including hail. Weak pressure gradi-
ents and slowly moving convective cells resulted in high lo-
cal precipitation rates and flash flooding. Due to these severe
weather events, several studies focused on this exceptional
period (e.g., Piper et al., 2016). Necker et al. (2020a, b),
Nomokonova et al. (2022), and Craig et al. (2022) provide
further details on the weather situation in this period as these
studies also explore the 1000-member ensemble simulation
with a different purpose.

2.3 Vertical localization

Error covariances are a key component in data assimilation
and determine how assimilated information is weighted and
distributed in state space. Given a sample of state vectors
xn provided by a background forecast ensemble, the flow-
dependent sample error covariance matrix P can be com-
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puted as follows:

P=
1

N − 1

N∑
n=1

(xn− x)(xn− x)T , (1)

where N is the ensemble size and x is the ensemble mean
state. The covariance matrix P by definition is a symmetric,
positive semi-definite matrix with variances on its diagonal
entries and covariances on its off-diagonal entries. Each off-
diagonal element contains a sample covariance (cov) of two
state variables xi :

cov(x1,x2)= r(x1,x2)σ (x1)σ (x2), (2)

where r ∈ [−1,1] is the sample correlation and σ is the sam-
ple standard deviation.

Usually, the number of affordable ensemble members is
limited in NWP due to a huge state space and computational
restrictions. This deficit causes severe sampling errors. Con-
sequently, all ensemble filters require a correction of sam-
pling errors, often referred to as localization. For example,
Anderson (2012) highlighted that the sampling error in co-
variances is dominated by sampling error in the sample cor-
relation r , not by sampling error in the variances. Therefore,
our analysis will solely tackle sampling errors in sample cor-
relations. Sample correlations are normalized with standard
deviations and possess no unit. The normalization allows
comparison or combination of correlations of different vari-
ables, facilitating the interpretation.

The implementation of localization depends on various
factors determined by the type of ensemble filter. Usually,
localization is applied directly to the background error co-
variance matrix using a Schur product:

Ploc = C ◦P, (3)

where C is the localization matrix (Gaspari and Cohn, 1999;
Bannister, 2008). The matrix C consists of tapering factors α
that are determined using the localization approach of choice.
Based on the Schur product theorem (Horn and Johnson,
2012, theorem 7.5.3), positive semi-definite matrices C and P
guarantee positive semi-definiteness of the localized covari-
ance matrix Ploc. Furthermore, localization matrices should
feature ones on the diagonal similar to a correlation matrix to
avoid undesired inflation of variances (Flowerdew, 2015).

2.3.1 Distance-dependent localization

The most common localization approach is a distance-
dependent localization that determines tapering factors α
based on distance (Houtekamer and Mitchell, 1998, 2001).
The vertical separation distance in our study is defined in
ln(p). We consider the widely used Gaspari–Cohn function
(GC; Eq. 4.10, Gaspari and Cohn, 1999) for comparison with
other methods. Applying a GC function always requires the
selection of the separation distance but guarantees positive

definiteness. The separation distance is often referred to as
the localization scale, while the cut-off radius is usually twice
the localization scale. In our study, we apply vertical localiza-
tion according to the definition of the Deutscher Wetterdienst
(DWD) (Schraff et al., 2016). For the DWD, the localization
scale is determined by a pre-selected localization length that
is multiplied by a factor of (

√
10/3). Operationally, the local-

ization length of the DWD is height-dependent and increases
linearly in ln(p) from the surface (0.075) to 300 hPa (0.5).

In Sect. 3.3, we apply three different domain-uniform GC
localization setups. (a) GC: an optimally tuned GC localiza-
tion scale that applies a uniform localization scale for all vari-
ables and heights. (b) GCLEV: a height-dependent optimally
tuned GC localization scale that is uniform for all variables.
(c) DWD: a localization setting similar to the DWD as de-
scribed above that is also domain- and variable-uniform.

2.3.2 SEC

Necker et al. (2020b) showed that an adaptive statistical SEC
(Anderson, 2012, 2016) substantially reduces the sampling
error in sample correlations and ensemble sensitivities. The
SEC is a look-up table-based approach and corrects the over-
estimation of correlations caused by sampling noise. The
look-up table is computed offline and is based on Monte
Carlo simulations that consider the likelihood of the corre-
lation r . The SEC depends on the sample correlation, the
ensemble size, and the assumed prior distribution of corre-
lations. Here, we assume a uniform default prior distribution
and apply the SEC table that is provided within the Data As-
similation Research Testbed (DART; Anderson et al., 2009).
In Sect. 3.3, we will compare the benefit of the SEC with
different localization approaches. The comparison includes
combinations of the SEC with these approaches.

2.4 Subsampling and vertical correlations

The sampling noise expected for zero correlation estimates
and sample size N is (

√
N )−1 (Houtekamer and Mitchell,

1998). For the 1000-member ensemble (N = 1000), this es-
timation yields a very small sampling noise of approximately
3%. In comparison, a 40-member ensemble reveals an ex-
pected sampling noise of approximately 16%. Throughout
this study, correlations computed using the full 1000-member
ensemble serve as truth (r1000) for the interpretation of ver-
tical correlations and the evaluation of sampling errors and
localization in smaller subsamples of the full ensemble. We
focus on vertical correlations and sampling errors in 40-
member subsamples as this is a typical ensemble size applied
by operational weather services such as, e.g., the Deutscher
Wetterdienst. Preceding studies applied a similar approach
for studying sampling errors (Hamill et al., 2001; Poterjoy
et al., 2014; Bannister et al., 2017; Necker et al., 2020a, b).

The present study will adopt the subsampling approach
from Necker et al. (2020a) and Craig et al. (2022). The 1000-
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Table 1. Analyzed correlation pairs. Self-correlations on the diagonal and cross-correlations on the off-diagonal of the table. The first variable
of each pair represents the ensemble at the reference level.

Variable Temperature (T ) Humidity (Q) Zon. wind (U ) Mer. wind (V )

Temperature (T ) T T TQ TU T V

Humidity (Q) QT QQ QU QV

Zon. wind (U ) UT UQ UU UV

Mer. wind (V ) V T VQ VU VV

member ensemble provides 25 randomly drawn 40-member
subsamples without repetition of members (illustrated in
Fig. 1a). We assume that the 40-member sub-ensembles
of the 1000-member ensemble statically have sampling er-
rors similar to what those independent 40-member ensemble
EnKF systems would have. As mentioned above, we will an-
alyze 10 3 h forecasts. This setup results in a sample of 250
ensemble forecasts with 40 members that we can compare to
the 10 ensemble forecasts with 1000 members. The model
domain has 250× 230 grid points yielding 57 500 vertical
columns in our domain. We will, therefore, analyze approx-
imately 11.5× 106 true and 287.5× 106 40-member vertical
correlation profiles per variable pair, accounting for all 20
reference levels. This data set allows robust statistical anal-
ysis of error correlations, but it should be noted that error
correlations may differ for other periods and regions.

In the present study, we will analyze four prognostic vari-
ables: temperature (T ), specific humidity (Q), zonal wind
(U ), and meridional wind (V ). This setup yields 16 corre-
lation pairs (Table 1) that we will inspect for different refer-
ence levels. Furthermore, we will group correlations as “self”
(e.g., temperature–temperature as shown in Fig. 1) or “cross”
(e.g., temperature–humidity) correlations to highlight com-
mon behavior. Subsequently, we will use the correlation cod-
ing shown in Table 1. For example, “TQ” combines all tem-
perature correlations from the reference level to specific hu-
midity at all other vertical levels in a column. Throughout the
paper, we will mainly present results for the U -wind compo-
nent as conclusions for the V -wind component are similar.

Example of vertical correlations

Figure 1a shows an example of vertical self-correlations of
temperature (T T ) from reference level 500 hPa to all other
levels in a single random vertical column. The 1000-member
correlation (also referred to as the true correlation) is 1 at the
reference level and drops to 0.5 after approximately 100 hPa
vertical distance. Given the true correlation, the tempera-
ture at 500 hPa weakly correlates with the temperature in
the boundary layer. This weak correlation is linked to cloud
shadowing by mid-tropospheric clouds and resulting colder
near-surface temperatures. Almost no correlation is visible to
levels above the tropopause, which lies around 200 hPa. Most
40-member sample correlations strongly deviate from the
true correlation, highlighting the severe undersampling is-

sue. Sampling errors appear to be larger with increasing dis-
tance and smaller correlation values. This behavior motivates
most distance-based localization approaches with predefined
tapering functions that damp distant correlations. However,
such an approach might cut off significant non-zero correla-
tions, as seen for the boundary layer close to the surface in
this example.

Throughout this paper we will analyze the 1000-member
horizontally averaged absolute vertical correlation to support
the discussion of the empirical optimal localization. Aver-
aged absolute correlations are computed as follows:

r1000(t,z,p,A)=
1
K

K∑
k=1

(|r1000
k |), (4)

where K is the number of vertical columns in the domain.
This analysis will be done separately for different forecasts
t , reference levels z, pressure levels p, and variable pairs A.

Figure 1b displays an example of a mean absolute temper-
ature self-correlation (T T ) for reference level 500 hPa and
a single date. On average, the mean absolute correlation of
all 40-member subsamples well captures the shape of the
true mean absolute correlation. However, 40-member ensem-
bles overestimate the absolute correlation due to sampling
error for weaker correlations and larger distances. Further-
more, the 40-member correlations reveal a larger variance.
Plotted in ln(p), true and 40-member mean absolute corre-
lations decay nearly symmetrically with increasing vertical
distance from the reference level. This behavior explains why
distance-dependent vertical localization scales are defined in
logarithmic pressure coordinates.

2.5 Empirical optimal localization (EOL)

Our goal is to empirically find the optimal localization factor
α that minimizes the sampling error or cost function J :

J (α, t,z,p,A)=

√√√√ S∑
s=1

K∑
k=1

(
αr40
s,k − r

1000
k

)2
, (5)

where the minimization is done separately for each forecast
time t , reference level z, pressure level p, and variable pair
A. S is the number of 40-member ensembles (S = 25). This
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18 T. Necker et al.: Guidance on how to improve vertical covariance localization

Figure 1. Vertical temperature–temperature correlations and empirical optimal localization for reference level 500 hPa on 29 May 2016,
15:00 UTC. (a) Single random column. (b) Domain average. (c) Estimated domain-uniform EOL and absolute error reduction. The sample
includes the correlations from all 25 40-member subsamples. Shading indicates spatial variability.

is equivalent to finding the α that minimizes

S∑
s=1

K∑
k=1

[
α2
(
r40
s,k

)2
− 2αr40

s,kr
1000
k +

(
r1000
k

)2
]
. (6)

Taking a derivative with respect to α and finding the mini-
mum gives us

α =

∑S
s=1
∑K
k=1r

40
s,kr

1000
k∑S

s=1
∑K
k=1

(
r40
s,k

)2 . (7)

In other words, the EOL minimizes the root mean square dif-
ference (RMSD) between the 1000-member correlation and
all 25 40-member subsample correlations for a chosen set-
ting. For technical reasons, we minimized the cost function
using the Brents method as implemented in scipy.optimize
(Virtanen et al., 2020). Note that the range of localization
is not confined to [0,1], which means that the EOL could
increase correlations if required. Values larger than 1 can oc-
cur when the true correlation is larger than the sample cor-
relation. For example, this can happen when estimating the
EOL after applying other localization approaches. Negative
EOL values can be observed when the EOL is computed for
a small correlation sample (e.g., a single vertical column),
which is not the case in the present study. However, we sug-
gest setting negative EOL values to 0 in case they might oc-
cur.

Applying the EOL by construction yields a symmetric but
not necessarily positive semi-definite localization matrix. In
our case, constructed localization matrices were not posi-
tive semi-definite. Depending on the data assimilation algo-
rithm, additional steps could be required to apply the EOL
results to guarantee the positive semi-definiteness of the lo-
calized covariance matrix. For this purpose, Sect. 3.4 will as-
sess approaches for achieving positive semi-definiteness of

the EOL. The assessment includes a numerical approach to
approximate the EOL matrix with the nearest correlation ma-
trix, which is SPSD.

Our approach for empirically estimating localization is in-
spired by Lei and Anderson (2014), who compare two meth-
ods: the GGF and empirical localization functions (ELFs).
The GGF minimizes the RMSD between the estimated re-
gression coefficients in subsets of the ensemble using a hi-
erarchical ensemble filter (Anderson, 2007; Lei et al., 2016).
ELFs are derived from an observing system simulation ex-
periment (OSSE) by minimizing the RMSD between the
true values of the state variables and the posterior ensem-
ble mean (Anderson and Lei, 2013). In contrast to ELFs, the
GGF and EOL purely judge localization based on ensemble
sampling error without an OSSE. Furthermore, in contrast to
the GGF, the EOL assumes the large ensemble correlation
as truth for minimizing the sampling error. The EOL pre-
sented in our study corresponds to a non-adaptive distant-
dependent domain-uniform vertical localization that is com-
mon for operational convective-scale regional data assimila-
tion systems.

Figure 1c displays the EOL (α(p)) as estimated for the
example of T T correlations introduced above and reference
level 500 hPa. The domain-uniform EOL equals 1 at the ref-
erence level 500 hPa as no correction is needed. The EOL
appears broader and follows the shape of the mean abso-
lute correlation. For example, this localization behavior was
also described by Flowerdew (2015). The error reduction is
largest for weak and distant correlations.

3 Results

This section presents mean absolute 1000-member vertical
correlations and EOLs for various settings. First, we will
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evaluate how vertical localization for various single variable
pairs should be constructed. Afterward, we will group vari-
able pairs based on similar behavior. Finally, at the end of the
results section, we will evaluate the error reduction of all dis-
cussed localization approaches, including combinations with
the SEC.

3.1 Vertical localization for single variable pairs

As discussed in Sect. 2.4, the domain-averaged absolute ver-
tical correlation can aid the interpretation of the EOL. For
this reason, we will first evaluate the mean absolute verti-
cal correlation and then the EOL. Figure 2 shows the mean
absolute vertical correlation for all possible variable combi-
nations and reference level 500 hPa. Self-correlations of the
same variable all peak at the reference level. In contrast,
cross-correlations are weaker and do not always exhibit a
maximum correlation at 500 hPa. The T U correlation, for
example, peaks around the tropopause, while the UT cor-
relation reveals a minimum at that height. The mean vertical
correlation length is variable-dependent, shortest for specific
humidity and longest for wind. The domain-averaged abso-
lute vertical correlation only exhibits a fairly small variability
within the 5 d experimental period. The variability between
day and night also appears to be small (not shown). Results
could, however, differ for other conditions or seasons, e.g.,
situations with strong atmospheric stability.

Next, we focus on the EOL derived for 40-member sub-
samples from all forecasts. Figure 3 displays the EOL for
all variable combinations and reference level 500 hPa. The
EOL depends on the prevailing correlation but has a differ-
ent shape and vertical extent. As seen for the single forecast
example in Sect. 2.5, weaker correlations are more affected
by sampling errors and require stronger correction. Conse-
quently, all cross-correlations require a stronger localization.
The localization for cross-correlations reveals an amplitude
smaller than 1 at the reference level. Given this behavior,
tapering functions for cross-correlations should not be 1 at
zero distance when applying a distance-dependent localiza-
tion. Self-correlations are less affected by sampling error and
require only a weaker correction, especially close to the ref-
erence level.

EOLs for humidity correlations all peak at the reference
level 500 hPa (Fig. 3a). However, temperature and wind
EOLs behave differently (Fig. 3b, c) and do not peak at the
reference level following the correlation pattern (Fig. 2b, c).
For example, the T U EOL peaks around the tropopause,
where winds are typically strongest. Wind correlations (e.g.,
UU ; Fig. 3c) require only a small correction. The EOL for
UV correlations is almost constant with height and does not
show a distinct maximum. All self- and cross-correlations
involving humidity peak at the reference level 500 hPa (for
example, see UQ localization).

Overall, the variability of domain-averaged correlations
from forecast to forecast is small (Fig. 2). EOLs exhibit

a larger variability than domain-averaged correlations. For
most variables, the variability is larger close to the sur-
face, especially for temperature correlations (Fig. 3b). Re-
sults should be treated with caution where changes in the
EOL with height are smaller than the variability from fore-
cast to forecast.

Subsequently, we will discuss the EOL for two additional
reference levels to highlight changes in height within the
troposphere. Figure 4 shows the EOL for a reference level
300 hPa. For reference level 300 hPa, EOLs appear to be
broader compared to 500 hPa. This height dependence is in
line with larger vertical correlation length scales found for
the upper troposphere, in contrast to the lower troposphere,
boundary layer, or close to the surface. Similar to other ref-
erence levels in the middle and upper troposphere, EOLs for
correlations between wind and temperature reveal a maxi-
mum (T U ; Fig. 4b) and minimum (UT ; Fig. 4c) above the
tropopause level.

All reference levels within the boundary layer show simi-
lar behavior of the EOL (see, for example, Fig. 5 using ref-
erence level 900 hPa). The EOL shows a narrow optimal ver-
tical localization for reference levels close to the surface.
In contrast to higher reference levels, the EOL of cross-
correlations also peaks at the reference level (Fig. 5). The
EOL drops to different constant values with increasing dis-
tance. For wind and humidity, the EOL reveals an almost
constant value above 550 hPa. In contrast, the EOL for tem-
perature steadily declines with increasing distance until the
domain top. Temperature self-correlations (T T ) exhibit a
second peak in the upper troposphere. EOLs do not converge
to 0 for large vertical distances. Separation distances where
the EOL converges to a small constant value could indicate
suitable cut-off distances. A common aspect of the choice of
cut-off distance is the signal-to-noise ratio that depends on
the ensemble size and correlation strength.

Error reduction for different variables

Assessing the EOL for single variable pairs revealed sev-
eral requirements for vertical localization. Now, we evaluate
the error reduction by the EOL, considering each possible
correlation pair separately. The 1000-member ensemble cor-
relation serves as truth to compute the RMSD of each 40-
member subsample correlation. Figure 6 displays the RMSD
before and after applying the EOL. The applied EOL varies
for each forecast and height level for the error evaluation.
The final result shows the average RMSD of all 40-member
subsamples, forecasts, and height levels. The results can be
interpreted as a benchmark of the maximum possible corre-
lation error reduction achieved by a domain-uniform height
and variable-dependent localization. Results for optimizing
the analysis may lead to different optimal localization values
under some circumstances, but this analysis is beyond the
scope of this paper.
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Figure 2. Domain-averaged absolute 1000-member (true) vertical correlations for reference level 500 hPa and different variable pairs. (a) Hu-
midity. (b) Temperature. (c) u-wind. Mean and standard deviation over 10 forecasts from 29 May to 2 June 2016.

Figure 3. EOL for vertical sample correlations of 40-member ensembles: (a) humidity; (b) temperature; (c) u-wind. Mean and standard
deviation over 10 forecasts from 29 May to 2 June 2016.

The sampling error of the 40-member correlation of most
correlations lies within the expected range and close to
(
√

40)−1 (Fig. 6). Self-correlations exhibit a smaller sam-
pling error as, on average, they are stronger and less affected
by spurious correlations. The error reduction achieved by the
EOL ranges approximately from 10 % to 40 %, depending on
the variable pair. TheQQ self-correlation benefits most from
localization, whereas the UU self-correlation benefits least.
Correlations involving humidity are weaker and, therefore,
benefit most from localization. On the other hand, correcting
temperature correlations seems most challenging. Tempera-
ture correlations exhibit the largest RMSD, even after apply-
ing the EOL. The error is larger than for wind correlations,
which is surprising considering a larger correlation strength
and length for wind. This result could originate from a larger
variability of vertical temperature correlations within the do-

main, given strong convective processes and the associated
latent heat release. Temperature correlations, consequently,
could benefit from an adaptive localization that applies dif-
ferent localization scales within the domain depending on,
e.g., vertical velocity. The first tests showed promising re-
sults for such a situation-dependent approach, but a thorough
evaluation will be left for subsequent study.

3.2 Vertical localization for grouped variable pairs

Some operational DA systems apply a uniform distance-
based vertical localization that does not change with time,
height, variable, or observation type. In this case, appropri-
ate localization needs to meet several requirements using a
suitable uniform localization approach. Results in Sect. 3.1
showed that cross-correlations systematically behave differ-
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Figure 4. Same as Fig. 3 but for reference level 300 hPa.

Figure 5. Same as Fig. 3 but for reference level 900 hPa.

ently than self-correlations. For this reason, we will now
evaluate the mean absolute correlation and EOL of three
groups of variables: self-correlations, cross-correlations, or
all correlations combined. Derived EOLs now minimize the
sampling error for all gathered correlations of each group.

Figure 7 displays the mean absolute correlation for the
three groups of correlations. The results show the average
correlation and its variability over the 10 forecasts. Self-
correlations again highlight the height dependence of the ver-
tical correlation length and always exhibit a peak that is 1.
Cross-correlations are weaker and only exhibit a narrow peak
at the reference level. For all correlations combined, the peak
amplitude is closer to the peak of cross-correlations as there
are more cross-correlations than self-correlations. Combin-
ing all correlations or only cross-correlations results in a peak
amplitude smaller than 1 at the reference level.

In contrast, the peak amplitude of the EOL for all cor-
relations is closer to the peak of self-correlation (Fig. 8).

The shape of EOLs substantially differs from the single vari-
able pair cases. The EOL is weaker due to wind correlations
that account for half of all correlations. The change in the
shape of the EOL indicates that different tapering functions
could be needed for different variables. Minimizing the error
for grouped correlations, the strength of the EOL is always
weaker than 0.4. Finally, domain-averaged absolute corre-
lations reveal a small variability from forecast to forecast
(Fig. 7). The same applies to EOLs. Only the EOL of self-
correlations exhibits a slightly larger variability, especially
far from the reference level (Fig. 8).

3.3 Evaluation of error reduction

3.3.1 Setting

As discussed in Sect. 3.1, the maximum reduction of sam-
pling errors achieved by an EOL ranges from 11 % to
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Figure 6. Root mean square difference before and after the EOL was applied to each vertical correlation. Shading and numbers (%) indicate
the change in RMSD analyzed for each variable pair averaged over all reference levels, columns, subsamples, and 10 forecasts from 29 May
to 2 June 2016. Self correlations are highlighted via hatching.

Figure 7. Domain mean absolute 1000-member (true) vertical correlations for different variable combinations (self, cross, and all): reference
levels (a) 300 hPa, (b) 500 hPa, and (c) 900 hPa. Mean and standard deviation over 10 forecasts from 29 May to 2 June 2016. Note that the
standard deviations are small and hardly distinguishable from the curves themselves.

44 % depending on the variable pair. Now, we will com-
pare the performance of the EOL with different localiza-
tion setups that use two common localization approaches, a
distance-dependent localization using a Gaspari–Cohn taper-
ing function (GC; Houtekamer and Mitchell, 1998; Gaspari
and Cohn, 1999) and a statistical sampling error correction
(Anderson, 2012). Furthermore, we investigate the benefit
of combining non-adaptive localization approaches with the
adaptive SEC. Compared to Sect. 3.1, the improvement will
be evaluated using 1000-member correlations from indepen-
dent background forecasts. Again we will analyze the im-
provement relative to uncorrected 40-member ensemble sub-
sample correlations (REF40, Fig. 9). The first eight forecasts
(29 May to 1 June 2016) serve as training data for estimating
EOLs. Similarly, localization scales for distance-dependent
localization are tuned using the same training period. We
then verified the performance using the last two independent
forecasts on 2 June 2016.

3.3.2 EOL

Figure 9 displays the error reduction achieved by all consid-
ered vertical localization setups. REF40 shows the RMSD
found when modeling error correlations using small 40-
member ensembles without localization. First, we will eval-
uate the performance of different EOL settings. Applying a
different EOL for each variable pair and height (as presented
in Sect. 3.1) gives the largest error reduction of all the se-
tups (SINGLE, 26.7 %). Only small differences are visible
between day and night (not shown). Using different EOLs
only for self- and cross-correlations leads to a slightly re-
duced performance but still gives about 23 % error reduction
(SELF). Applying an EOL that was estimated for all corre-
lations at once reduces the error by 17 % (ALL). Given these
results, treating variable pairs and self- or cross-correlations
differently enables substantial improvements. Finally, we
tested the error reduction for applying the EOL estimated for
self-correlations to both self- and cross-correlations of each
variable (e.g., EOL derived from T T applied to T T , TQ,
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Figure 8. EOL for vertical sample correlations of 40-member ensembles and different variable combinations (self, cross, and all): reference
levels (a) 300 hPa, (b) 500 hPa, and (c) 900 hPa. Mean and standard deviation over 10 forecasts from 29 May to 2 June 2016.

Figure 9. Root mean square difference before and after localization of 40-member vertical subsample correlations. EOL and Gaspari–Cohn
scales are obtained and tuned using the first eight forecasts. Errors are evaluated using two independent forecasts on 2 June 2016: 03:00 UTC
(opaque) and 15:00 UTC (hatched). Numbers (%) indicate the average change in RMSD analyzed for different settings (x-axis labels).

T U , and T V ). For this setting, the error reduction was simi-
lar to ALL or SEC (not shown), which underlines the benefit
of treating self- and cross-correlations differently.

3.3.3 Distance-dependent localization

Now, we will compare the performance of EOLs to three dif-
ferent domain-uniform distance-dependent localization ap-
proaches using Gaspari–Cohn functions. Section 2.3.1 pro-
vides more details on distance-dependent Gaspari–Cohn lo-
calization and details on all three considered localization
setups (GC, GCLEV, and DWD). We will first evaluate
two optimized setups with tuned localization scales (GC
and GCLEV) and then compare them to a non-tuned setup
(DWD).

GC uses a uniform localization scale for all levels and
variable pairs, and GCLEV uses a height-dependent opti-
mal localization scale that changes with the reference level.
GC reduces the sampling error by about 10 %. Using height-
dependent localization scales (GCLEV) slightly improves the

performance further by about 1 %. However, the small gain
of the height-dependent localization is partly associated with
a sub-optimal shape of the tapering function, given the error
reduction achieved by the uniform EOL (ALL). This com-
parison highlights that finding suitable tapering scales and
functions bears great potential for improving vertical local-
ization.

In contrast, a vertical localization constructed similarly to
the regional DA system of the DWD increases the differ-
ence of the 40-member ensemble correlation with respect to
the 1000-member ensemble. The increased difference origi-
nates from the damping of meaningful error correlations. The
DWD system employs a LETKF that uses observation-space
localization, tuned to function in all seasons and weather sit-
uations that may differ from our investigation period. Fur-
thermore, it needs to be considered that localization in the
LETKF also affects the degrees of freedom of the analy-
sis (Hotta and Ota, 2021). The DWD setup illustrates that
an appropriate localization depends on various aspects. Con-
sequently, our findings will likely have different implica-
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tions for different DA algorithms. However, the LETKF, for
example, could benefit from applying different localization
scales for different observed variables. Based on the results
in Sect. 3.1, humidity, temperature, or wind require different
vertical localization scales.

3.3.4 SEC

Now, we will evaluate the benefit of using a look-up table-
based SEC that adjusts correlations based on predefined sta-
tistical assumptions. The SEC is an adaptive localization ap-
proach that corrects sampling errors as a function of the cor-
relation value. Therefore, the SEC applies an individual cor-
rection for each correlation within the domain. An adaptive
localization (SEC) achieves 17.5 % error reduction and out-
performs a optimal domain-uniform GC localization. The
SEC exhibits a similar error reduction to that seen for ALL
but cannot outperform the SELF or SINGLE setup. An opti-
mal domain-uniform localization can compete with an adap-
tive statistical sampling error correction for the evaluated pe-
riod.

3.3.5 Combined approaches

Finally, we investigate the benefit of combining the statisti-
cal SEC with an EOL or a distance-dependent localization.
For this analysis, EOLs have been estimated after applying
the SEC to highlight the maximum error reduction achieved
by combining SEC with an optimal localization. The local-
ization scale of the distance-dependent localization is kept
the same as for the GC setup to emphasize required changes
for the localization scale. SEC+GC reveals a similar per-
formance to the SEC alone but outperforms the GC setup.
Combining SEC with GC requires a re-tuning of localization
scales to larger values (not shown). Combining the SEC with
a uniform EOL (SEC+ALL) reduces the sampling error by
about 20 %. However, combining the SEC with the SELF or
SINGLE EOL leads to less error reduction. The poor perfor-
mance could originate from sub-optimal assumptions made
in the derivation of the SEC (Anderson, 2016; Necker et al.,
2020b). For example, the EOL exhibited values larger than
1 when estimated after applying the SEC, compensating for
an overcorrection of sampling errors, especially close to the
reference level (not shown). In this study, we apply the most
general SEC look-up table as provided in DART (Anderson
et al., 2009), which assumes that each correlation value is
equally likely. Studying more informed prior assumptions in
the SEC may lead to better results but is beyond the scope of
the present study.

3.4 Covariance localization and positive
semi-definiteness

The EOL approach empirically yields an optimal localization
by minimizing differences between sample correlations and

a defined true correlation. By design, the results discussed
above exclude algorithm-specific requirements to better un-
derstand how vertical localization should behave in differ-
ent situations. However, further steps might be required to
apply EOL results depending on the data assimilation algo-
rithm. As mentioned in Sect. 2.5, using EOL estimates does
not necessarily yield a positive semi-definite localization ma-
trix. Consequently, EOL localization could cause non-proper
mathematical covariance matrices and undermine the data as-
similation process. For example, positive semi-definite co-
variance matrices are elemental when solving a quadratic
cost function as they ensure a global minimum. For this rea-
son, we will now discuss different approaches that allow one
to achieve positive semi-definiteness of the EOL.

Ménétrier et al. (2015a) applied a Gaussian fitting based
on the Gaspari–Cohn function (Gaspari and Cohn, 1999) to
ensure SPSD. However, fitting a correlation function restricts
the localization to a specific function shape. This restriction
can diminish the error reduction. In our case, the error re-
duction achieved by an optimally tuned Gaspari–Cohn func-
tion is substantially smaller than by the EOL, as discussed
in Sect. 3.3 and Fig. 9. This finding motivates exploration
of other localization functions (Daley et al., 2015; Bolin and
Wallin, 2016), including multivariate localization functions
(Stanley et al., 2021), to improve fitting approaches.

Besides function fitting, re-conditioning of matrices can
help achieve positive definiteness (Tabeart et al., 2019).
Given its aim, a localization matrix should have similar prop-
erties to a correlation matrix, which exhibits ones on the di-
agonal. Higham (2002, theorem 2.5) states that for a sym-
metric matrix with t non-positive eigenvalues and diagonal
elements ≥ 1, the nearest correlation matrix has at least t
zero eigenvalues. Following this theorem, we attempted to
set all negative eigenvalues to zero using an EOL-based lo-
calization matrix and eigendecomposition. Forcing negative
eigenvalues to zero ensured positive semi-definiteness but led
to values larger than one on the diagonal of the matrix. Fur-
ther matrix transformations were required to achieve a proper
correlation matrix.

Finally, our most successful attempt at achieving posi-
tive definiteness aiming for the least changes in the EOL
was by searching for the nearest correlation matrix using
specifically designed mathematical algorithms. For example,
Higham (2002) highlighted that the convexity properties of
the problem allow one to find a unique nearest correlation
matrix (NCM) for a given symmetric matrix, in our case the
EOL-based localization matrix. The distance between matri-
ces can be measured using weighted Frobenius norms. We
apply the NCM algorithm (Higham, 2002) for the SINGLE
EOL case as a proof of concept. Employing four state vari-
ables on 20 vertical levels yields an 80× 80 EOL-based ver-
tical localization matrix for one vertical column (Fig. 10a).
The eigenvalues of this EOL matrix range from about−0.5 to
50, with approximately half the eigenvalues being negative.
The EOL localization matrix features ones on the diagonal
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and reconfirms that cross-correlations require stronger taper-
ing. The nearest correlation matrix computed by the NCM
algorithm exhibits small changes in off-diagonal elements
compared to the EOL-based matrix (Fig. 10b, c). Zooming
in, the SPSD matrix appears to be smoother. Comparing the
error reduction (not shown), the nearest SPSD matrix per-
forms only marginally worse than the EOL matrix. The rela-
tive difference in sampling error reduction for a test case was
lower than 1 %. However, the EOL achieves the larger error
reduction as it is designed to minimize the sampling error
without any constraints.

This example suggests that ensuring SPSD can be
achieved with minor changes to the EOL estimate. How-
ever, providing a general answer on how the EOL needs to be
adapted is difficult as changes will depend on the construc-
tion of the localization matrix and its unique nearest corre-
lation matrix. NCM algorithms can iteratively determine the
nearest correlation matrix for a symmetric matrix and could
be a useful tool for data assimilation. Choosing the best ap-
proach to guaranteeing SPSD is likely case-dependent given
changing properties of the problem and potentially very large
matrices in NWP.

4 Conclusions and discussion

Current ensemble data assimilation systems suffer from se-
vere undersampling requiring vertical localization of error
covariances. Our study analyzes vertical correlations from an
existing convection-permitting 1000-member ensemble sim-
ulation (Necker et al., 2020a, b). The 1000-member ensemble
correlation is assumed as truth for studying reliable vertical
correlations and optimal vertical localization in 40-member
subsamples. The unique convective-scale simulation covers
10 forecasts in a 5 d mid-latitude summer period. Our anal-
ysis includes four prognostic variables (humidity, tempera-
ture, and two horizontal wind components) on 20 pressure
levels. We apply the 1000-member ensemble and various 40-
member subsamples to derive an empirical optimal localiza-
tion (EOL) for different settings. Those settings include lo-
calization for single variable pairs and variables grouped by
common behavior. Presented EOLs minimize the sampling
error in sample correlations assuming the 1000-member cor-
relation as truth and provide insights into how to construct
an optimal vertical localization independent of algorithm-
specific constraints.

Furthermore, we use the 1000-member ensemble to eval-
uate the error reduction achieved by different localiza-
tion approaches. These approaches include EOLs, distance-
dependent localization approaches using a Gaspari–Cohn ta-
pering function (Houtekamer and Mitchell, 1998; Gaspari
and Cohn, 1999), and an adaptive statistical sampling error
correction (Anderson, 2012). Overall, our results lead to the
following conclusions for vertical localization.

– Localization scales. All investigated variables reveal
different average correlation scales, which result in dif-
ferent EOL scales. Within the troposphere, EOL scales
increase with height. Humidity requires the strongest
localization with short scales. EOL scales for temper-
ature appear to be larger than for humidity and exhibit
the largest variability from forecast to forecast. Given
a high variability, temperature correlations could ben-
efit most from using adaptive localization. Our results
indicate that winds can be vertically correlated through-
out the troposphere, resulting in the largest localization
scales. Given this outcome, it could be beneficial not to
cut off wind correlations within the troposphere.

– Localization shape. The EOL provides insights into the
required shape of localization functions. Correlations
of different variable pairs require differently shaped lo-
calization functions. Localization functions should not
necessarily be symmetric in ln(p), as seen for wind. Fur-
thermore, the optimal center of a distance-dependent lo-
calization can deviate from the reference level. For ex-
ample, correlations of temperature and wind peak below
the tropopause if the reference level is above the bound-
ary layer. The maximum vertical correlation could in-
dicate a suitable positioning of distance-dependent ta-
pering functions. Finally, EOLs do not reveal a clear lo-
calization cut-off distance for tropospheric correlations.
However, other considerations, e.g., continuity, compu-
tational efficiency, or matrix rank, may also need to be
considered when deciding on a cut-off.

– Self- and cross-correlations. Self- (e.g., temperature–
temperature) and cross-correlations (e.g., temperature–
humidity) should be localized differently. This fact
could allow the development of correlation-dependent
localization approaches. For example, self-correlations
require no localization at zero distance, while the ampli-
tude of cross-correlations should be tapered by at least
25 %. Differently treating self- and cross-correlations
resulted in performance close to a variable-dependent
localization.

– Domain-uniform localization. A tuned uniform
distance-dependent localization using Gaspari–Cohn
functions reduces the sampling error by about 10 %.
Using tapering functions with an optimal shape could
improve the localization substantially. The maximum
error reduction was found for domain-uniform, vari-
able, and height-dependent EOLs with about 27 %
improvement. Distinguishing between self- and cross-
correlations leads to a similar but slightly smaller error
reduction.

– Adaptive localization. A statistical sampling error cor-
rection (SEC) achieves similar error reduction to a
variable- and domain-uniform localization. Combining
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Figure 10. Examples of EOL-based localization matrices for a single vertical column: (a) matrix C constructed based on the SINGLE case,
(b) the resulting nearest correlation matrix C following the NCM algorithm, and (c) changes due to enforcing positive definiteness.

the SEC with a Gaspari–Cohn localization improves
the error reduction. However, combining distance-
dependent and statistical approaches requires re-tuning
of localization scales. Combining SEC and EOLs led
to an overcorrection of correlations, which slightly de-
graded the error reduction. This change could be re-
lated to sub-optimal prior assumptions when deriving
SEC, as discussed by Anderson (2016) and Necker et al.
(2020b).

Our results allow a better understanding of the require-
ments for vertical localization. When employing these con-
clusions, it is important to consider the specific demands of
different ensemble filter algorithms. In ensemble transform
Kalman filters, localization increases the degrees of freedom
of the analysis and thereby enables the assimilation of more
observations (Hotta and Ota, 2021). Furthermore, our eval-
uation excluded considerations about the rank of the error
covariance matrix and computational efficiency. Hence, our
findings might need to be adapted to improve the analysis
performance depending on the data assimilation system. Lo-
calization in operational NWP has many system-dependent
requirements and is tuned to avoid bad signal-to-noise ratios
during assimilation. For example, while we find no strong
support for a vertical cut-off within the troposphere for some
variables, this could be beneficial for the reasons discussed
above.

How to apply EOL estimates will vary with the data assim-
ilation algorithm as the application of localization is highly
algorithm-specific. In case of covariance localization, con-
structing a generally non-SPSD localization matrix based
on the EOL does not guarantee a symmetric positive semi-
definite localized covariance matrix. However, different ap-
proaches allow one to achieve positive semi-definiteness of
localization matrices. Applying an NCM algorithm (Higham,
2002) to achieve positive semi-definiteness resulted in only
very minor changes in the EOL that hardly affect the error
reduction.

For a serial filter (e.g., the ensemble adjustment Kalman
filter (EAKF) by Anderson, 2001), an EOL-based localiza-
tion can be applied directly, and it is planned to test this in

follow-on studies. The EAKF does not involve a Schur prod-
uct localization of a covariance matrix as each single obser-
vation is assimilated at a time, serially. Instead, the EAKF
localizes the increment or gain. The gain between the obser-
vation and each state variable is multiplied by a scalar be-
tween 0 and 1. This localization factor can be provided by
the EOL.

Our study solely judges localization based on ensemble
sampling error, assuming the 1000-member ensemble corre-
lation as truth. It is difficult to predict the number of ensem-
bles needed to apply our method, as it will vary for differing
scenarios. However, we do not expect our results to change
drastically if we had a larger ensemble. Besides, it would be
interesting to compare the EOL with the ELF or GGF ap-
proach. For example, comparing ELF and EOL could allow
us to investigate other error sources in the assimilation that
can influence localization (Anderson and Lei, 2013). How-
ever, a proper comparison would require an OSSE with a
sufficiently large ensemble.

We have found robust results for a mid-latitude convective
summer period. The ever-increasing computational capabili-
ties will enable extended data sets and a higher vertical reso-
lution that is comparatively coarse in the current setup. Fur-
thermore, our approach can be easily applied to other large
ensemble simulations to study additional aspects, including
horizontal localization. Extending this analysis is desirable
given that localization can depend on the underlying weather
condition (Lei et al., 2015; Destouches et al., 2021). For ex-
ample, using a global simulation with a higher model top
would allow us to study different geographical regions, sea-
sons, and stratospheric correlations that are particularly im-
portant for satellite data assimilation (Lei et al., 2018; Scheck
et al., 2020).

Code and data availability. Code and processed data such as
derived empirical optimal localizations are shared on Zenodo:
https://doi.org/10.5281/zenodo.7254119 (Necker, 2022). The 1000-
member ensemble data set and derived covariances and correlations
(approximately 60 TB of data) are too large for an upload but are
available upon request to the corresponding author.
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