Buizza, R.: Ensemble forecasting and the need for calibration, in: Statistical
Postprocessing of Ensemble Forecasts, edited by: Vannitsem, S., Messner, J. W., and Wilks, D. S., Elsevier, 15–48, ISBN: 978-0-12-812372-0, 2019.
a,
b
Charron, M., Pellerin, G., Spacek, L., Houtekamer, P., Gagnon, N., Mitchell,
H. L., and Michelin, L.: Toward random sampling of model error in the
Canadian ensemble prediction system, Mon. Weather Rev., 138,
1877–1901, 2010.
a,
b
Counillon, F., Sakov, P., and Bertino, L.: Application of a hybrid EnKF-OI to ocean forecasting, Ocean Sci., 5, 389–401,
https://doi.org/10.5194/os-5-389-2009, 2009.
a,
b,
c,
d
Cressie, N.: Statistics for Spatial Data, Revised Edition, Wiley Classics Library, John Wiley & Sons, ISBN: 978-1-119-11461-1, 2015. a
Ebert, E.: Ability of a poor man's ensemble to predict the probability and
distribution of precipitation, Mon. Weather Rev., 129, 2461–2480, 2001. a
ECCC: Regional Ensemble Prediction System (REPS) Version 3.0.0 Summary of
changes with respect to version 2.4.0 and validation, Dorval,
Qc, Canada, Tech. rep.,
https://collaboration.cmc.ec.gc.ca/cmc/cmoi/product_guide/docs/lib/technote_reps-300_20190703_e.pdf (last access: 28 September 2022),
2019. a
ECCC: Index of /ensemble/reps/10km/grib2, Government of Canada [data set],
https://dd.meteo.gc.ca/ensemble/reps/10km/grib2, last access: 28 September 2022a. a
ECCC: Index of /analysis/precip/rdpa/grib2/polar_stereographic, Government of Canada [data set],
https://dd.meteo.gc.ca/analysis/precip/rdpa/grib2/polar_stereographic, last access: 28 September 2022b. a
Evans, A. M.: Investigation of enhancements to two fundamental components of
the statistical interpolation method used by the Canadian Precipitation
Analysis (CaPA), MS thesis, University of Manitoba,Winnipeg, Manitoba,
https://mspace.lib.umanitoba.ca/xmlui/handle/1993/22276
(last access: 28 September 2022),
2013. a
Fortin, V., Roy, G., Donaldson, N., and Mahidjiba, A.: Assimilation of radar
quantitative precipitation estimations in the Canadian Precipitation Analysis
(CaPA), J. Hydrol., 531, 296–307,
https://doi.org/10.1016/j.jhydrol.2015.08.003, 2015.
a,
b,
c,
d,
e,
f,
g,
h,
i,
j,
k,
l
Fortin, V., Roy, G., Stadnyk, T., Koenig, K., Gasset, N., and Mahidjiba, A.:
Ten Years of Science Based on the Canadian Precipitation Analysis: A CaPA
System Overview and Literature Review, Atmos. Ocean, 56, 178–196,
https://doi.org/10.1080/07055900.2018.1474728, 2018.
a,
b
Hamill, T. M. and Snyder, C.: A hybrid ensemble Kalman filter–3D variational
analysis scheme, Mon. Weather Rev., 128, 2905–2919,
https://doi.org/10.1175/1520-0493(2000)128<2905:AHEKFV>2.0.CO;2, 2000.
a,
b,
c,
d,
e,
f,
g
Houtekamer, P. L., Deng, X., Mitchell, H. L., Baek, S.-J., and Gagnon, N.:
Higher Resolution in an Operational Ensemble Kalman Filter, Mon. Weather Rev., 142, 1143–1162,
https://doi.org/10.1175/MWR-D-13-00138.1, 2014.
a,
b
Houtekamer, P. L., Buehner, M., and De La Chevrotière, M.: Using the hybrid
gain algorithm to sample data assimilation uncertainty, Q. J. Roy. Meteorol. Soc., 145, 35–56,
https://doi.org/10.1002/qj.3426, 2019.
a,
b
Jacques, D., Michelson, D., Caron, J. F., , and Fillion, L.: Latent heat
nudging in the Canadian Regional Deterministic Prediction System, Mon. Weather Rev., 146, 3995–4014,
https://doi.org/10.1175/MWR-D-18-0118.1, 2018.
a
Kalnay, E., Li, H., Miyoshi, T., Yang, S.-C., and Ballabrera-Poy, J.: 4D-Var
or ensemble Kalman filter?, Tellus A, 59, 758–773,
https://doi.org/10.1111/j.1600-0870.2007.00261.x, 2007.
a
Kleist, D. T. and Ide, K.: An OSSE-Based Evaluation of Hybrid
Variational–Ensemble Data Assimilation for the NCEP GFS. Part I: System
Description and 3D-Hybrid Results, Mon. Weather Rev., 143, 433–451,
https://doi.org/10.1175/MWR-D-13-00351.1, 2015.
a
Kollias, P., Bharadwaj, N., Clothiaux, E. E., Lamer, K., Oue, M., Hardin, J., Isom, B., Lindenmaier, I., Matthews, A., Luke, E. P., Giangrande, S. E., Johnson, K., Collis, S., Comstock, J., and Mather, J. H.: The ARM Radar
Network: At the Leading-edge of Cloud and Precipitation Observations,
B. Am. Meteorol. Soc., 101, E588–E607,
https://doi.org/10.1175/BAMS-D-18-0288.1, 2020.
a
Lespinas, F., Fortin, V., Roy, G., Rasmussen, P., and Stadnyk, T.: Performance
Evaluation of the Canadian Precipitation Analysis (CaPA), J.
Hydrometeorol., 16, 2045–2064,
https://doi.org/10.1175/JHM-D-14-0191.1, 2015.
a,
b,
c,
d,
e,
f,
g,
h,
i
Lin, Y. and Mitchell, K.: The NCEP Stage II/IV hourly precipitation analyses:
development and applications, in: Preprints of the 19th Conference on
Hydrology, American Meteorological Society, San Diego, CA, 9–13 January 2005, 1–3,
https://www.google.com/url2ahUKEwjXvYQ
(last access: 28 September 2022), 2005.
a,
b
Lorenz, E. N.: Deterministic nonperiodic flow, J. Atmos. Sci., 20, 130–141, 1963. a
Mahfouf, J., Brasnett, B., and Gagnon, S.: A Canadian Precipitation
Analysis (CaPA) project: Description and preliminary results,
Atmos. Ocean, 45, 1–17,
https://doi.org/10.3137/ao.v450101, 2007.
a
Nelson, B. R., Prat, O. P., Seo, D. J., and Habib, E.: Assessment and
implications of NCEP stage IV quantitative precipitation estimates for
product intercomparisons, Weather Forecast., 31, 371–394,
https://doi.org/10.1175/WAF-D-14-00112.1, 2016.
a
Penny, S. G., Behringer, D. W., Carton, J. A., and Kalnay, E.: A Hybrid Global
Ocean Data Assimilation System at NCEP, Mon. Weather Rev., 143,
4660–4677,
https://doi.org/10.1175/MWR-D-14-00376.1, 2015.
a
Rasmussen, R., Baker, B., Kochendorfer, J., Meyers, T., Landolt, S., Fischer, A. P., Black, J., Thériault, J. M., Kucera, P., Gochis, D., Smith, C., Nitu, R., Hall, M., Ikeda, K., and Gutmann, E.: How
well are we measuring snow: The NOAA/FAA/NCAR winter precipitation test bed,
B. Am. Meteorol. Soc., 93, 811–829, 2012. a
Roberts, N. M. and Lean, H. W.: Scale-Selective Verification of Rainfall
Accumulations from High-Resolution Forecasts of Convective Events, Mon. Weather Rev., 136, 78–97,
https://doi.org/10.1175/2007MWR2123.1, 2008.
a
Schwartz, C. S., Kain, J. S., Weiss, S. J., Xue, M., Bright, D. R., Kong, F.,
Thomas, K. W., Levit, J. J., and Coniglio, M. C.: Next-Day
Convection-Allowing WRF Model Guidance: A Second Look at 2-km versus 4-km
Grid Spacing, Mon. Weather Rev., 137, 3351–3372,
https://doi.org/10.1175/2009MWR2924.1, 2009.
a
Wang, X., Hamill, T. M., Whitaker, J. S., and Bishop, C. H.: A Comparison of
Hybrid Ensemble Transform Kalman Filter – Optimum Interpolation and Ensemble
Square Root Filter Analysis Schemes, Mon. Weather Rev., 135,
1055–1076,
https://doi.org/10.1175/MWR3307.1, 2007.
a,
b
Wang, X., Barker, D. M., Snyder, C., and Hamill, T. M.: A hybrid ETKF–3DVAR
data assimilation scheme for the WRF model. Part I: Observing system
simulation experiment, Mon. Weather Rev., 136, 5116–5131,
https://doi.org/10.1175/2008MWR2444.1, 2008a.
a,
b,
c,
d,
e,
f
Wang, X., Barker, D. M., Snyder, C., and Hamill, T. M.: A Hybrid ETKF–3DVAR
Data Assimilation Scheme for the WRF Model. Part II: Real Observation
Experiments, Mon. Weather Rev., 136, 5132–5147,
https://doi.org/10.1175/2008MWR2445.1, 2008b.
a,
b