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Abstract. Several data assimilation (DA) approaches exist to
generate consistent and continuous precipitation fields valu-
able for hydrometeorological applications and land data as-
similation. Usually, DA is based on either static or dynamic
approaches. Static methods rely on deterministic forecasts to
estimate background error covariance matrices, whereas dy-
namic approaches use ensemble forecasts. Associating the
two methods is known as hybrid DA, and it has proven ben-
eficial for different applications as it combines the advan-
tages of both approaches. The present study intends to ex-
plore hybrid DA for the 6 h Canadian Precipitation Analysis
(CaPA). Based on optimal interpolation (OI), CaPA blends
forecasts and observations from surface stations and ground-
based radar datasets to provide precipitation fields over the
North American domain. The application of hybrid DA to
CaPA consisted of finding the optimal linear combination
between (i) an OI based on the Regional Deterministic Pre-
diction System (RDPS) and (ii) an ensemble Kalman filter
(EnKF) based on the 20-member Regional Ensemble Predic-
tion System (REPS). The results confirmed the known effec-
tiveness of the hybrid approach when low-density observa-
tion networks are assimilated. Indeed, the experiments con-
ducted for the summer without radar datasets and for the win-
ter (characterized by very few observations in CaPA) showed
that attributing a relatively high weight to the EnKF (50 %
and 70 % for summer and winter, respectively) resulted in
better analysis skill and a reduction in false alarms compared
with the Ol method. A deterioration in the moderate- to high-
intensity precipitation bias was, however, observed during
summer. Reducing the weight attributed to the EnKF to 30 %
alleviated the bias deterioration while improving skill com-
pared with the OI-based CaPA.

1 Introduction

Errors inherent in the observed data, the parameterization
of subgrid processes, the initial conditions, and the model
physics, to name a few, combined with the chaotic nature of
the atmosphere (Lorenz, 1963), lead to uncertain numerical
weather prediction (NWP) forecasts, especially for precipita-
tion fields (Ebert, 2001). Today, most meteorological centers
have developed their operational ensemble prediction sys-
tems (EPSs) to consider these uncertainties (Buizza, 2019).
EPSs provide, for the same time and location, a set of fore-
casts obtained by introducing perturbations at different mod-
eling stages (e.g., initial and boundary conditions; Buizza,
2019).

EPSs deliver probabilistic meteorological information that
is also valuable for data assimilation (DA) systems, which
will be the focus of this paper for the particular case of
the Canadian Precipitation Analysis (CaPA; Mahfouf et al.,
2007; Fortin et al., 2015). The CaPA system produces grid-
ded precipitation fields based on NWP forecasts adjusted
with observed precipitation (ground stations and radars) us-
ing optimal interpolation (OI) assimilation methods (Fortin
et al., 2015; Lespinas et al., 2015; Fortin et al., 2018). Using
EPSs in CaPA would allow the estimate of the “errors of the
day” from short-term ensemble forecasts via the computation
of flow-dependent background error covariances (Kalnay
et al., 2007). As opposed to a static assimilation approach,
weights attributed to the background and the observations
would be potentially better distributed (Wang et al., 2007).
However, DA systems using EPSs such as ensemble Kalman
filter (EnKF; Evensen, 2003) often require large ensembles
to avoid sampling errors and the associated rank problem of
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covariance matrices (Houtekamer and Zhang, 2016). In con-
trast, DA systems using deterministic forecasts such as stan-
dard variational approaches are more computationally effi-
cient (Wang et al., 2008a; Houtekamer and Mitchell, 1998).
Nevertheless, these DA methods use assumptions on the ho-
mogeneity, the isotropy, and the invariance of error covari-
ance matrices. To combine the desirable aspects of both DA
scheme families (Houtekamer and Zhang, 2016), linear com-
binations of the static and the dynamic error covariance ma-
trices, known as hybrid approaches, have been developed
(Hamill and Snyder, 2000; Wang et al., 2008a; Kleist and
Ide, 2015).

Hybrid assimilation schemes have been thoroughly and
successfully tested for many applications. Hamill and Snyder
(2000) combined the three-dimensional variational (3DVar)
and EnKF DA schemes for atmospheric assimilation for
the United States of America (USA) domain. The authors
showed improvements over 3DVar alone, especially in data-
poor networks and, to a lesser extent, in denser networks.
For the same domain, Wang et al. (2008a) also showed that
analyses generated with the same hybrid approach (3DVar-
EnKF) produced 12 h forecasts that were more accurate than
3DVar and confirmed the efficiency of the method in regions
with low observation density. Other studies worked on differ-
ent hybridization variants; for example, Wang et al. (2008b)
combined the ensemble transform Kalman filter (ETKF) and
3DVar for the DA system over the USA using the Weather
Research and Forecasting (WRF) model. The authors drew
the same conclusions regarding the density of observations.
In ocean forecasting, Counillon et al. (2009) combined op-
timal interpolation (OI) and an EnKF method. They demon-
strated a reduction in forecast errors using hybrid covariances
for small dynamic ensembles (10 members) relative to OI or
EnKF.

The successful combination of two different DA schemes
in order to produce better analysis and forecasts has led
various meteorological centers to use this approach for op-
erational products, such as Houtekamer et al. (2019) for
the Canadian Centre for Meteorological and Environmental
Prediction (CCMEP) of Environment and Climate Change
Canada (ECCC), Bonavita et al. (2015) for the European
Centre for Medium-Range Weather Forecasts (ECMWF),
and Penny et al. (2015) for ocean forecasting at the National
Centers for Environmental Prediction (NCEP). Several other
studies have shown the relevance of hybrid approaches for
DA, but a full review of their uses is beyond this research
scope.

At CCMEP, the availability of the Regional Ensemble Pre-
cipitation System (REPS) encompassing the North Ameri-
can domain allows the investigation of hybrid approaches
for analyses at a higher resolution than those currently exist-
ing (see Houtekamer et al., 2019, for the global domain with
its horizontal grid spacing of about 39 km). The 20-member
REPS product is available at an approximately 10km grid
spacing and has been operational since summer 2019. The
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purpose of this study is to explore the potential improvements
brought by hybrid approaches to the operational 6 h CaPA,
which is solely based on an OI where the background field is
the Regional Deterministic Prediction System (RDPS; Caron
et al., 2015). Various factors motivated the exploration of the
well-established and well-documented hybrid DA methods.
First of all, the REPS is fully operational and has the same
domain and resolution as CaPA; therefore, it can be used as a
background field without any interpolation. Second, the hy-
brid approaches may positively impact the several data-poor
areas (e.g., northern Canada) of the CaPA domain where OI
has its limitations. Third, to our knowledge, no other stud-
ies have explored this approach for precipitation analyses.
Finally, the specificity of OI in CaPA makes it interesting
to explore in the context of hybrid DA approaches. Indeed,
conclusions from several studies on hybrid DA methods have
been generally obtained when combining static and dynamic
DA approaches (Wang et al., 2007; Counillon et al., 2009).
However, Ol in CaPA is not, strictly speaking, static as obser-
vations, and forecasting errors are updated for each analysis
time using variographic analysis (Fortin et al., 2015) as op-
posed to static errors estimated with the climatology.

The rest of the article is organized as follows: Sects. 2
and 3 introduce the datasets and the hybrid analysis scheme
methodology, respectively; Sect. 4 describes the method to
select the optimal weighting for the hybrid approach; Sect. 5
presents the experimental design; the verification strategy is
given in Sect. 6; the results of the experiments are made avail-
able in Sect. 7; and the conclusion is given in Sect. 8.

2 Datasets
2.1 Model description

The operational 20-member Regional Ensemble Precipita-
tion System (REPS, version 3.0.0; ECCC, 2019) and the
Regional Deterministic Prediction System (RDPS; Caron
et al., 2015) use the same configuration. The domain cov-
ers the North American continent (Fig. 1) with a horizon-
tal grid spacing of 0.09° (~ 10km) and 84 vertical levels.
The RDPS and REPS generate 72 h forecasts four times per
day — at 00:00, 06:00, 12:00, and 18:00 UTC. Uncertainty in
the REPS is represented by perturbed initial conditions (ICs)
and lateral boundary conditions (LBCs) and stochastically
perturbed physics tendencies (SPPTs; Charron et al., 2010)
but with the same physical parameterization for all members.
The atmospheric ICs derive from a 20-member interpolated
Global Ensemble Prediction System (GEPS; Charron et al.,
2010; Houtekamer et al., 2014) analysis perturbation cen-
tered around the RDPS initial analysis. Every hour, the LBCs
are also provided by the GEPS.
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Figure 1. Blue and orange dots represent the various precipitation
networks and the surface synoptic observation (SYNOP) stations
assimilated in summer 2019, respectively. Shaded gray areas de-
note the assimilated portion of radar beams. The inset illustrates the
analysis domain.

2.2 Observations

The 6h analysis assimilates precipitation from surface sta-
tions from Canadian networks and networks in the contigu-
ous United States (CONUS), some of which are operational
only during the warm season. A total of 33 and 31 C-band
radar quantitative precipitation estimates (QPEs), covering
the US and Canada (mostly located along the USA border),
respectively, are also assimilated. Since 2017, new Canadian
dual-polarization Doppler radars have been progressively re-
placing their C-band counterparts. They contribute to retriev-
ing information on a broader range of meteorological events
than standard C-band radars (Kollias et al., 2020) and would
ultimately enable better analysis. Both types of observation
follow an extensive quality control, as described in Sect. 3.2.

2.3 Stage IV precipitation

In addition to verification at station locations (see Sect. 6.1),
the 6 h analyses were also compared to 6 h Stage IV (ST4)
analysis from the National Centers for Environmental Pre-
diction (NCEP; Lin and Mitchell, 2005). The objective is to
allow verification against spatially continuous precipitation
fields. ST4 is a mosaic of regional multi-sensor (gauges and
WSR-88D radars) analysis that is designed differently from
CaPA and ensures a certain degree of independence during
the verification. The ST4 domain covers the CONUS; how-
ever, due to known limitations in the western domain (see
Nelson et al., 2016, for more details), only the CONUS east
of 105° W was used for verification purposes. The ST4 na-
tive horizontal spacing of ~ 4.7 km was interpolated to the
coarser RDPS grid using circular filtering (see Fig. 3a in
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Jacques et al., 2018) to allow for verification on a common
grid. ST4 will not provide a picture of performance over the
entire RDPS domain, as Canada and the southern part of the
RDPS are not covered. However, ST4 is a valuable dataset
that could help compare the results obtained with the differ-
ent configurations of the hybrid approach.

3 Methodology

3.1 Hybrid assimilation approach for the precipitation
analysis

Similarly to what was proposed by Hamill and Snyder
(2000), the background field error covariance matrix using
the hybrid approach (P?) is a weighted sum of the Ol-based
(P°or) and dynamically based (PP4) matrices:

P’ = (1 — 8)P°o; + AP, €]

where the parameter § is comprised between 0 and 1, ensur-
ing that the total background error covariances are conserved
(Wang et al., 2008a). Thus, when 8 = 0, the analysis is solely
based on the OI, whereas the background errors are ruled by
the REPS when 8 = 1. The 8 selection methodology is fur-
ther detailed in Sect. 4.

It is worth mentioning that the precipitation from both the
observation and background model (y) are primarily Box—
Cox transformed such that

:{ )\_l[y}‘—l] if A >0,

log () ifA=0, )

where A = 1/3 in the CaPA configuration. This preprocess-
ing strategy has been used because it provided more skillful
analyses (Fortin et al., 2015; Lespinas et al., 2015). The fi-
nal analyses are obtained from the back-transformation, fol-
lowed by corrections of the biases induced by this transfor-
mation (Evans, 2013).

An exponential and isotropic model is assumed for the
spatial correlation function of the background field errors
(Fortin et al., 2015). The ith row and jth column of PbOI
writes as follows:

POy, ) = odrexp (=8 (i, j) /lon) 3)

where 6(%], 8(i, j), and log are the variance of the background
errors, the Euclidean distance between locations i and j, and
the correlation length, respectively. In the CaPA algorithm,
parameters (7(2)1, lo1, and 002 (where the latter is the variance
errors of the observation), which are needed to build the ob-
servation error covariance matrix (explained further below),
are estimated before the analysis as such using a variographic
analysis of the innovations. The innovations are classically
defined as Z=d — Hx s, where d, x s, and H correspond
to the measurements, the forecasts, and the observation op-
erator (which is here the nearest-neighbor interpolation), re-
spectively (Fortin et al., 2015).
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The degree of spatial dependence of the innovations is de-
scribed through a theoretical exponential function fitted on
the empirical semivariogram (Cressie, 2015) and is defined
as

1
Vi,j = §<|Z5 _Zj|2>

_ { 02 + 08, (1 —exp(=8 (i, j) /lon if 8(i.j) >0, @
0 otherwise.
Here, z; and z; correspond to the innovations at locations i
and j, respectively, and 002 corresponds to the variance er-
rors of the observation. As opposed to other DA approaches
where the error matrix is static, the variographic analysis is
computed for each analysis time step and, therefore, allows
for time varying elements in P°qy.
The covariance matrix PPy depicts the flow-dependent er-
rors estimated from the REPS and is defined as

1

=—AAT 5
) &)

P%
where A’ € R™*" denotes the anomalies estimated from the
N-member ensemble at m grid points. The superscript T cor-
responds to a matrix transpose. To avoid underestimation of
the variance of the background errors due to the limited size
of the dynamic ensemble (Houtekamer and Mitchell, 1998),
the anomaly computation follows the suggestions of Hamill
and Snyder (2000) and writes as follows:

. -
A[:,j]—Xf[:,fJ X7 (6)

where the subscript [ Jj ] refers to the jth column of a given
matrix, and X ¢ is the (m x N) precipitation ensemble forecast
matrix. The m length vector X_f[[l, NIV corresponds to the
average across the N members without the jth member.

The analysis is performed sequentially for each grid cell,
for which the error matrices are estimated using up to
16 neighbors per observation type to speed up the computa-
tion (Fortin et al., 2015). Therefore, wgen assimilating both
surface observations and radar QPEs, PP is a matrix of size
up to 32 x 32. In cases where no observation is encountered
within a radius of 500 km, the analysis process is accelerated
by setting the grid-cell value equal to the background field.

The equations for the analysis estimates are solved as fol-
lows:

xg=xy+W-(d—Hxp),
~ ~ —1
w=P°HT. (HPb °g +R) . %)

Here, R and W are the observation error covariance matrix
(see details in Fortin et al., 2015) and the weight vector, re-
spectively.

The variances of the error made by estimating the precipi-
tation analysis are obtained from the covariance structure and
the weights as follows (Fortin et al., 2015):

ol =0o2—WT.PH". ®)
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For the hybrid approach, the variance of background errors
is defined as

o =(1 —,3)0(2)14‘,30132, REPS* ©)
where 0(2)1 is estimated with the variogram modeling pre-
sented in Eq. (4). In contrast, ob2 reps has the advantage of
being directly estimated from the REPS and is defined for a
given grid-cell location, s,, as follows:

1
2 _ (REPS) _ — (REPS)
Ob, REPS (80) = N—2 Z (xso,i xSO[[l,N]]\i) (xSo,i

i=1
_ T
_x“"’[[l,/v]]\i) ’

(10)
where xﬁlePS) is the N-length vector of REPS precipitation
at location s,, and )?SO[[LNH\I_ is the ensemble mean at the same
location, as defined in Eq. (5).

In addition to the estimate of the analysis error already
provided by the OI, CaPA provides a spatially and temporally
varying index that describes the confidence granted to the
precipitation analysis. This index is based on the assumption
that the most reliable data is observation. For a given grid cell
and valid time, the confidence index of the analysis (CFIA)
has been defined as 1 minus the ratio of the error variances
of the analysis (032) to the background (obz):

2

O,
CFIA=1——32. (11

%
The CFIA ranges from 0 to 1. CFIA values close to 1 (0)
depict high contributions of the observation (background) to
the analysis estimates. CFIA values close to 0 occur when
no observations are assimilated in the vicinity of a given grid
cell. Thus, this index is convenient for users desiring to select
only grid cells influenced by observations. Using the hybrid
approach in CaPA enables one to account for flow-dependent
errors. It would, therefore, have impacts on CFIA estimates,
as discussed further in Sect. 7.4.

3.2 Quality control of the observations during the
assimilation

Observed surface precipitation and radar QPEs undergo an
extensive quality control (QC) process to remove untrustwor-
thy data. The QC is automatically done for each assimilation
valid time, leading to a time-varying number of assimilated
observations, as described in Lespinas et al. (2015) for sur-
face observations and in Fortin et al. (2015) for radar QPEs.
A temporal QC is performed to identify persistent problems
that occur over a given period, such as a station that reports
no or too much precipitation over a long time period. Re-
jecting or keeping a surface station is based on the statis-
tical distribution of the differences between the observation
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and the analysis obtained over the most recent cases (see de-
tails in Sect. 2b in Lespinas et al., 2015). A different quality
control, hereafter referred to as spatial QC, is carried out to
identify surface stations that have very different precipitation
than those in their immediate vicinity. For this purpose, an
analysis is estimated at a site s (xs(f)) using neighboring sta-
tions in a leave-one-out (LOO) approach. The observation at
the same site (xs(f)) is rejected or is deemed invalid if the fol-
lowing is not fulfilled:

<t01~,/(c702—i—aaz), (12)

where tol is a tolerance factor set equal to 4 for the op-
erational CaPA. Both the observed precipitation and analy-
sis estimates of Eq. (12) underwent a Box—Cox transforma-
tion beforehand (see Eq. 2). The size of the neighborhood
depends on the background field correlation length, which
varies for each analysis and, therefore, adapts with seasons
(Lespinas et al., 2015). This approach helps avoid the rejec-
tion of very localized summer precipitation events. An ad-
ditional QC is also applied during the cold season, with the
rejection of radar QPEs and surface observations associated
with windy condition (Rasmussen et al., 2012). Several other
QC measures are applied to precipitation input datasets, but
their extensive description is beyond the scope of this paper
(see Fortin et al., 2015, and Lespinas et al., 2015, for further
information). Figure 1 illustrates the stations and radars that
passed the QC for summer.

In CaPA, hybrid DA approaches can impact the QC of ob-
servations. Indeed, changing the past analysis values (used
in the temporal QC) and the standard deviation of the anal-
ysis error (used in the spatial QC) can induce differences in
the number of assimilated stations. The results showed slight
changes in the number of observations assimilated when us-
ing hybrid approaches and are, therefore, not detailed in this
study.

xb(;)) — xff)

4 Selection of the weighting factor: 8

Analysis experiments using 8 € [0, 1] with a 0.1 step are con-
ducted for each valid time to identify the 8 value that pro-
vides the most accurate precipitation analysis. At least two
different options are possible to select the most suitable .
First, the analyses are conducted for a given season, and the
B that minimizes an objective function is selected and stored
for future use. The second option consists of choosing the
most suitable B for each valid time, implying a dynamic se-
lection of 8. While the first option is computationally inex-
pensive, as B values are estimated once for each season, it
suggests that this parameter remains constant over years. The
second option is more flexible but requires data independent
of those used during the precipitation verification step, which
is required to evaluate the CaPA system (Sect. 6).

To understand the choice that has been made for either op-
tion, the CaPA configuration must be presented first. CaPA
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generates two types of precipitation analysis. The first is con-
ducted only at surface station locations in a leave-one-out
framework (hereafter, CaPA-LOQ). This computationally in-
expensive analysis is both a QC step to reject suspicious pre-
cipitation observations (see Sect. 2b in Lespinas et al., 2015,
and Sect. 2.2 below) and a valuable dataset for verification
purposes in a cross-validation manner. The second type of
analysis is performed for each grid cell of the domain.

A dynamic selection of B for each analysis valid time
would have been the preferred option, as it would not have
required manual updates during, for example, major oper-
ational upgrades of the different systems (CaPA, REPS, or
RDPS). For this purpose, preliminary tests using random
samplings of the CaPA-LOO datasets have been done. For
each valid time, a training sample was employed for the g
selection, while the testing sample was kept for objective ver-
ification. The training and the testing sample sizes had to be
large enough to capture the optimal 8 value over the domain
and to realize consistent precipitation verification, respec-
tively. Different sample sizes were tested with up to 40 %
of the initial CaPA-LOO dataset to estimate the optimal .
However, the results were too noisy due to sampling effects,
especially during winter when the station density is relatively
low. For this reason, the first option to select the § value was
preferred. The normalized root-mean-square error (NRMSE)
averaged over a selected period and based on the CaPA-LOO
datasets was chosen to identify the optimal . The normal-
ization was realized to lessen the influence of the total precip-
itation amount during a given analysis time step (Bachmann
et al., 2019). For more reliability, the NRMSE is computed
only at surface synoptic observation (hereafter SYNOP) sta-
tions and manual SYNOP stations during the summer and the
winter, respectively, and is defined as follows:

I (@00 — o)
i (ag®° +0k)2

where M, aLOO, and o correspond to the number of cases
during a given valid time, the LOO analysis, and the observa-
tions, respectively. The NRMSE values of zero (0) illustrate
perfect analyses.

NRMSE = (13)

5 Experimental setup

Two sets of 2-month experiments were conducted: (i) one
over July to August 2019 (hereafter summer) and (ii) one
over January to February 2020 (hereafter winter). For each
6h valid time, 11 sets of analyses were produced with the
different B values presented in Sect. 4.

Summer and winter experiments are expected to differ
due to both the background model’s distinct seasonal perfor-
mance with respect to representing precipitation and the sig-
nificantly smaller assimilated datasets in winter. The useful-
ness of a hybrid configuration has been demonstrated when
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low-density observation networks are assimilated (Hamill
and Snyder, 2000; Wang et al., 2008a, b). Thus, to verify this
point without being strongly influenced by seasonal effects,
an additional experiment was conducted without the assimi-
lation of radar QPEs. The experiment without radar was only
conducted during the summer as no impact is expected dur-
ing the cold season, during which radar QPEs are not assim-
ilated.

6 Verification strategy

6.1 Comparisons against observations from surface
stations

Based on the 2 x 2 contingency table for binary events (Ta-
ble 1), four different metrics, commonly used for precipita-
tion objective evaluation, are computed for the different con-
figurations of the LOO analysis. The first is the frequency
bias index (FBI), which compares the frequency of events in
the analyses to those in the observations. The second is the
equitable threat score (ETS), which assess the agreement be-
tween the analysis and the observations. Following the anno-
tations in Table 1, the FBI and ETS are expressed as follows:

FBI=(a+b)-(at+c) !,

ETs—_ “=M (14)
at+b+c—h,

where h, = (a + b) (a + ¢) illustrates the hits expected by

chance and makes the ETS less sensitive to the climatologi-

cal frequency of precipitation events. The probability of de-

tection (POD) and the false alarm ratio (FAR) are the other

two metrics and are defined as follows:

POD=a-(a4c)"",
FAR=b-(a+b)"\. 15)

The FBI-1 — which is equivalent to the normalized difference
between false alarms and missed events — is preferred in the
following, as positive (negative) values imply positive (neg-
ative) bias (Lespinas et al., 2015). FBI-1 and FAR values of
zero (0) are optimal, while ideal POD and ETS values are
one (1). For the four metrics, binary events are defined as
6 h accumulations meeting or exceeding selected thresholds,
here 0.2, 1.0, 5.0, and 10.0 mm. Higher thresholds are not
shown because the samples were too small, leading to overly
noisy scores.

Nonlin. Processes Geophys., 29, 329-344, 2022

Table 1. The 2 x 2 contingency table for binary events, where a, b,
¢, and d correspond to the frequency of hits, false alarm, misses,
and correct negatives, respectively.

Observed event  Observed event Total
Yes No
Analysis event a b a+b
Yes (hit) (false alarm)
Analysis event ¢ d c+d
No (miss) (correct negative)
Total a+c b+d 1

Statistical differences between the scores using 8 = 0.0
(hereafter the reference experiment) and S > 0.0 were as-
sessed using stationary block bootstrapping with a 95 % con-
fidence level (Brown et al., 2012). The bootstrapping im-
plementation specific to CaPA is detailed in Lespinas et al.
(2015).

6.2 Comparisons against Stage IV

Two different types of comparison against ST4 were con-
ducted. First, aggregated areal coverages of 6 h accumulated
precipitation meeting or exceeding selected accumulation
thresholds were assessed to evaluate how precipitation is dis-
tributed in ST4 and CaPA.

Second, the fraction skill score (FSS) was computed to as-
sess the analysis skill in spatially placing precipitation events
(Roberts and Lean, 2008; Schwartz et al., 2009). A selected
threshold is first applied to each grid cell of CaPA and ST4
to define the occurrences of precipitation events for a given
valid time and for each grid cell. Then, the fractional val-
ues at the ith grid cells (probability of precipitation above
a selected threshold) in a preselected neighborhood (e.g., a
30km square) are estimated in CaPA ( fu(;)) and ST4 (fo(i)),
respectively. The FSS compares the differences of fractions
to the largest possible fractional difference and is expressed
as follows:

1 Ny 2
w21 (fai) = fowy)
1 Ny Ny 2 7’
- I:Ziz}lfa(i) + Zi:lfo(i)]

y

FSS=1-— (16)

where Ny is the number of grid cells on the verification do-
main. The FSS is averaged over the period and was calculated
for squares of 20, 30, and 50 km. FSS values close to 1 are
optimal, whereas 0 indicates no skill. By construction, as the
size of the neighborhood increases, FSS values also increase
because overlaps of precipitation events in the observed and
analysis datasets are more likely.
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Figure 2. The NRMSE averaged over the summer period without (a) and with (b) the assimilation of radar QPEs and over the winter (c¢) for

the different 8 values.

7 Results and discussion
7.1 Selection of the optimal 8 value

Figure 2 shows the NRMSE estimated at the SYNOP sta-
tions for the different 8 values and in the LOO framework.
The presence of a minimum at 8 > 0.0 for the three experi-
ments, in summer with and without radar QPEs and in winter,
demonstrates the usefulness of the hybrid approach.

Comparing the two summer experiments (Figs. 2a, b), it
can be first noticed that, as expected, the addition of radar
QPEs generally reduces the NRMSE and, thus, improves the
performance of the analysis. It also decreases the added value
of the hybrid approach. NRMSE values for 8 ranging from
0.0 to 0.4 were very similar for the summer experiment as-
similating radar QPEs (Fig. 2b), where the optimal 8 equal
to 0.4 corresponds to an NRMSE reduction of 2.2 % com-
pared with 8 = 0.0. On the other hand, the experiment with-
out radar QPEs showed more significant variability in the
NRMSE for the different 8 values. The optimal value of 0.5
reduces the NRMSE by 3.6 % when compared with the ex-
periment using 8 = 0.0. These results suggest that, when the
density of assimilated observations is lower, the hybrid ap-
proach brings more added value and is, thus, consistent with
the literature (Hamill and Snyder, 2000; Wang et al., 2008a).
During the summer, the use of 8 > 0.6 (0.9) with (without)
radar assimilation reduced the NRMSE values and, therefore,
deteriorated the analyses compared with the reference analy-
sis (8 = 0.0).

Interestingly, the winter experiments illustrated a different
pattern. According to the NRMSE values (Fig. 2¢), the anal-
ysis improved when B values increased and reached a mini-
mum at 8 = 0.7, leading to a 7.5 % reduction in the NRMSE
values. The analysis deteriorated for even higher § values but
was not worse than the reference experiment, meaning that,
in that case, the dynamic approach was more suited than the
static one. The low density of assimilated observations dur-
ing the winter solid-phase precipitation compared with the
liquid-phase precipitation season may partly explain this re-
sult and is consistent with the experiment with and without
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radars. Another point that could explain this performance is
the higher winter forecast skill of both the RDPS and the
REPS, which allow more _accurate background fields and a
better specification of the P® matrix.

Both the seasons and the quantity of assimilated obser-
vations seem to have an influence on the optimal value of
B. Summer 2019, with and without radar QPEs, and winter
2020 have an optimal g that is equal to 0.5, 0.4, and 0.7,
respectively. For all three experiments, the hybrid approach
showed its relevance, as it overcame both the static (8 = 0.0)
and the dynamic (8 = 1.0) configuration. Further evaluation
metrics to verify that these optimal values contribute to im-
proving different aspects of the 6 h precipitation distribution
are presented in the following section.

7.2 Contingency table verification

Metrics based on the contingency table — the FBI-1, ETS,
POD, and FAR (Sect. 6.1) — were calculated for the three ex-
periments and for all 8 values. Attention was paid to the ex-
periments with the optimal 8 according to the NRMSE pre-
sented in the previous section (see Fig. 2). However, experi-
ments with different 8 values were also investigated because
they seemed to provide a good compromise, improving some
metrics while deteriorating the others very little. Results with
B values that degraded the reference analysis too much are
not presented.

Figure 3a illustrates the metrics for the summer without
the radar QPEs for the optimal 8 =0.5 and g = 1.0, both
compared with 8 = 0.0. Filled markers indicate no signifi-
cant differences (at the 95 % confidence level) between the
two experiments for a given threshold. The 6h precipita-
tion analysis with 8 = 0.5 displayed a significant increase
in skill (at the 95 % confidence level) as shown by the ETS
and a decrease in the FAR for all the selected thresholds.
The POD was slightly deteriorated, especially for small pre-
cipitation events. As illustrated by the FBI-1, the selection
of B = 0.5 led to generally lower precipitation amounts than
with 8 = 0.0. The impact was positive for small precipitation
events (thresholds of 0.2 and 1.0 mm), but it tended to smooth
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out higher-intensity events. Interestingly, using a completely
dynamic configuration (8 = 1.0) showed improved perfor-
mance compared with § =0.0 and B = 0.5, although only
for precipitation events above 0.2 and 1.0 mm and except for
the POD, which degraded for all thresholds. However, look-
ing at precipitation events of higher intensity with g = 1.0
(e.g., 5 and 10mm) did not necessarily degrade the FBI-1
nor the ETS scores compared with 8 = 0.0, but they were
not as well represented as when using 8 = 0.5. Looking at
other 8 values, 8 = 0.3 (Fig. 3b) seemed to be a good com-
promise between skill and bias of the precipitation analysis.
Indeed, the ETS and FAR remained improved compared with
the reference experiment, and the deterioration of the POD
was less important than with g = 0.5, while the degradation
of the FBI-1 for heavy precipitation was acceptable.

The results for the analysis during the same season but
with the assimilation of the radar QPEs are showed in Fig. 3¢
and d. Similarly to what was observed for the NRMSE val-
ues, all metrics were generally improved when assimilating
the radar QPEs, but the differences between the reference and
the optimal 8 = 0.4 were less pronounced. The analysis with
B = 0.4 showed significantly reduced FARs for all thresh-
olds. However, the improvement in the ETS when compared
to the B = 0.0 was significant only for small thresholds (0.2
and 1.0 mm). For higher thresholds, the skill was slightly im-
proved, but this improvement was not significant at the 95 %
confidence level. Similarly to the experiment without radar
QPE:s (Fig. 3a, b), the POD slightly deteriorated, and the FBI-
1 decreased for small precipitation events but increased for
events of medium to high intensity. The dynamic approach,
B = 1.0, showed a different pattern when assimilating radar
datasets. Almost all scores and thresholds were significantly
degraded compared with 8 = 0.0 and § = 0.4. The only im-
provement was seen for precipitation events above 0.2 mm,
but the degradation for other thresholds was too substan-
tial. The use of B = 0.3 seemed again to be a good compro-
mise regarding the bias, as it reduced the analysis smoothness
when compared with 8 = 0.4 while also preventing POD de-
terioration.

Finally, Fig. 4a illustrates the same metrics during the win-
ter and compares § = 0.7 and 8 = 1.0 to the reference exper-
iment. With 8 =0.7, the ETS was significantly improved,
and the false alarms at the 95 % confidence level were re-
duced. Fewer precipitation events were generated for all se-
lected thresholds with the analysis using 8 = 0.7 compared
with 8 = 0.0. Again, this improves the performance for 6 h
precipitation greater than 0.2 and 1.0mm but not for ac-
cumulations greater than 2.0 mm. However, the degrada-
tion of the FBI-1 for high-intensity precipitation was much
less pronounced than in summer, especially for such a high
B value. The probability of detecting events (POD score)
greater than 0.2 mm was significantly reduced, but it was in-
creased for heavy precipitation events (> 10 mm). Moderate
performance was obtained for the experiment with 8 = 1.0;
this experiment did no better than when using 8 = 0.7, but
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the two experiments were not that different for several thresh-
olds and scores (e.g., FBI-1 for precipitation above 0.2 mm in
Fig. 3a).

For the sake of comparison with the summer season, con-
tingency table metrics using 8 = 0.3 are also displayed in
Fig. 4b. It appeared that this value also provides improved
metrics even though it was not identified as optimal. Indeed,
the FBI-1 was still, although to a lesser extent, reduced for
precipitation above 0.2 mm compared with the reference ex-
periment. It is interesting to note that the degradation of the
FBI-1 was less pronounced for other thresholds and was not
significant in most cases. Similarly, the POD degradation for
the 0.2 mm threshold was less pronounced. The ETS and
FAR were still significantly improved for all thresholds rel-
ative to the reference experiment, although to a lesser extent
than with 8 = 0.7.

In light of these results, the optimal S value identified
through the use of the NRMSE showed improved perfor-
mance compared with the static (8 = 0.0) and dynamic (8 =
1.0) configurations. Improved skill and reduced FARs were
indeed obtained when using the optimal B for both the
summer and winter experiments. However, the frequency of
moderate- to high-intensity 6 h precipitation was reduced, es-
pecially in summer. The latter can be detrimental to very lo-
calized high-intensity precipitation events. The examination
of the same scores for other values of 8 highlighted that g =
0.3 offered a good compromise between skill gain and not
overly damaging the frequency bias for high-intensity pre-
cipitation events for both seasons. For these reasons, 8 = 0.3
was maintained as optimal in the sense of the abovemen-
tioned compromise and is used for the additional checks pre-
sented below.

7.3 Verification against ST4

The impact of radar QPE assimilation in the hybrid approach
has been demonstrated in the previous sections. Therefore,
to simplify the discussion, the comparison of CaPA analyses
with ST4 is only performed for the experiments that assim-
ilated the ground-based radars (i.e., excluding the summer
experiment without radar QPE). This point is also justified
by the fact that the operational CaPA is integrated with the
radar QPEs and that the final objective is a comparison with
this system. Thus, in the following, the summer experiments
refer to the one that assimilates the radar QPEs.

Figure 5 shows the accumulated precipitation for ST4 and
CaPA using f = 0.3 and the differences between these two
datasets. More spatial patterns and higher summer precipita-
tion amounts were observed in ST4 than in the CaPA using
B = 0.3 (Fig. 5a). The higher native resolution of ST4 and
the limited ability of the CaPA background model to predict
convective precipitation, especially at the 10km grid spac-
ing, may explain such results.
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Figure 3. Panels (a) and (b) show the FBI-1, ETS, POD, and FAR across the whole domain for the summer experiment without radar QPEs
for precipitation analysis with 8 = 0.0 (dark blue line), 8 = 1.0 (gray line), 8 = 0.5 (yellow lines in a), and B = 0.3 (yellow lines in b).
Panels (c) and (d) are the same figures but for the summer experiment with the assimilation of radar QPEs with g = 1.0 (gray lines), 8 = 0.4
(yellow lines in ¢), and 8 = 0.3 (yellow lines in d), with all three compared to the reference experiment when 8 = 0.0 (blue lines). Filled
markers indicate no significant differences (at the 95 % confidence level) between the reference experiment § = 0.0 and the 8 = 1.0, 8 = 0.5,
B =0.4,or g =0.3 experiments.
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Figure 4. Same as Fig. 3 but for the winter experiment with 8 = 0.7 (a), 8 = 0.3 (b), and 8 = 1.0 (a, b), with all three compared to the

reference experiment (8 = 0.0).

The winter (Fig. 5b), generally characterized by spatially
larger precipitation events, showed a better agreement be-
tween CaPA and ST4. Indeed, ST4 and CaPA with 8 =0.3
had similar spatial patterns with both over- and underesti-
mated accumulations depending on the location, although to
a lesser extent than in summer. These results can be inter-
preted both by the greater forecasting capacity of the back-
ground model in winter and by the expected lower impact
of the horizontal resolution during this season. Accumulated
precipitation, using either 8 = 0.0 or 8 = 0.3, was compared
to ST4 at the grid-point scale to identify the best parameter
(not shown for conciseness). It was found that, without spa-
tial consistency, some locations (grid cells) were better rep-
resented with 8 = 0.3, while 8 = 0.0 was more suitable for
other locations. Therefore, moving from 8 =0.0 to 8 =0.3
has a minimal impact on seasonal precipitation accumula-
tions.

Figures 6a and b depict the fraction of grid cells above
selected 6h thresholds averaged for the summer and win-
ter, respectively. During summer, the differences between
the configurations with 8 = 0.0 and 8 = 0.3 were very small
(< 2 %), as shown by the very close yellow and blue curves.
Consistent with results on the FBI-1 (Fig. 3), the fraction of
precipitation events above 0.2 mm generated in the analysis
using 8 =0.0 or B =0.3 were slightly higher than in ST4
for both season. During summer, the fraction of grid points
greater than 1, 2, and 5mm per 6 h period were systemati-
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cally underestimated by 2 % to 3 % in CaPA compared with
ST4, and these fractions appear to contribute importantly to
the underestimation of the ST4 precipitation totals (Fig. 6).
Winter was similar (Fig. 6b), as fractions of grid cells for the
6 h precipitation analysis were generally overestimated in the
analysis. However, this overestimation was relatively smaller
(< 1 %) than summer and became almost negligible for the 5
and 10 mm per 6 h thresholds.

The FSSs for the 11 analyses differing by 8 values and us-
ing ST4 as a reference were calculated for the 0.2 and 1.0 mm
per 6 h thresholds with neighborhood length scales of 20, 30,
and 50km (Fig. 7). For a given neighborhood length scale
and for the 0.2 mm threshold during the summer (Fig. 7a),
the FSS increased when 8 went from 0.0 to 0.5 and then
decreased for higher B values, consistent with the results ob-
tained for the NRMSE values. Similarly, during the winter
and for the same threshold, FSS values increased when S
went from 0.0 to 0.7 and decreased thereafter (Fig. 7¢c). The
gain associated with the use of 8 > 0.0 was less marked for
the 1.0 mm threshold, especially for the summer (Fig. 7b).
These results are consistent with those obtained with scores
based on the contingency tables for the summer experiment.
For both seasons (Fig. 7b, d), the use of 8 = 0.3 did not, how-
ever, deteriorate the FSS values compared to those of the ref-
erence experiment, and they even showed a slight improve-
ment during the winter.
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Figure 5. Panel (a) displays the 6 h precipitation accumulated over the summer for ST4 (left), for CaPA with 8 = 0.3 (middle), and the
difference between the two (right). Panel (b) is the same as panel (a) but for the winter experiment.

7.4 Confidence index

In the Ol-based CaPA, CFIA fields are characterized by cir-
cular structures, as shown for two winter cases in Fig. 8b.
Small dots of high values are centered around the surface
stations, and large disks represent radar footprints. These par-
ticular structures are a direct consequence of the assumptions
on the error isotropy.

Using the hybrid approach in CaPA enables one to ac-
count for flow-dependent errors, allowing CFIA spatial dis-
tributions to be linked to meteorological situations and, thus,
lessening the influence of the aforementioned assumptions.
However, in this configuration, the variances of the back-
ground field errors are also spatially variable, in contrast
to the spatially constant value used for operational CaPA
(Egs. 4, 9). Therefore, this makes the interpretability of
CFIA, in its current definition (Eq. 11), less straightforward.
To illustrate this point, two different meteorological situa-
tions were selected and are illustrated in Fig. 8a and d. The
6 h precipitation fields for 5 January 2020 (Fig. 8a) and 18
January 2020 (Fig. 8d) valid at 12:00 UTC were both char-
acterized by large synoptic events but at different locations.
Increasing the contribution of the REPS in the analysis com-
putation, 8 = 0.7 in Fig. 8c and f, leads to CFIA values fol-
lowing meteorological spatial distributions. Generally, CFIA
values tended to be higher at places with precipitation than
when using = 0.0, as shown in the eastern part of the do-
main for the 18 January case (Fig. 8f). Inversely, locations
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with no precipitation in the background field tended to show
small CFIA values. This last result is consistent with the cal-
culation of Pbd (Eq. 5), which, when the ensemble members
have no or very little precipitation, will tend to a zero matrix.
Nonetheless, CFIA remained close to zero above the Atlantic
Ocean for the case of 5 January (Fig. 8c) despite the synoptic
event that occurred in that location. This is explained by the
current CaPA computation framework. No matter the value
of B, analysis precipitation at a given grid cell is equal to
the background when no observations are available to be as-
similated in the vicinity. This leads to error variances of the
analysis (oaz) being close to those of the background (obz);
thus, by construction, CFIA will tend towards small values
(Eq. 11). As aresult, the current CFIA (Eq. 11) revealed two
limitations for the hybrid assimilation approach: (i) users in-
terested in grid cells with high CFIA values may indirectly
favor locations with precipitation, which, in turn, can lead to
biased interpretation, and (ii) low CFIA values may have two
different interpretations. To overcome the first limitation, a
field representing the density of assimilated observations for
each grid cell will come along with the CaPA precipitation
fields. In addition, to ease CFIA interpretation, the reference,
which is currently abz in Eq. (11), will be exchanged with a
temporal climatology of the background field errors. To do
this, the denominator in Eq. (11) will be replaced by the time
average of crbz, calculated for each grid cell using an expo-
nential filter that gives more weight to the most recent cases.
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Figure 8. The precipitation field (a, d) from CaPA and the associated CFIA values (b, e) for 5 and 18 January 2020, both valid at 12:00 UTC.
Panels (c) and (f) show the CFIA for the same date but using the hybrid approach with a high contribution of the REPS — here with 8 =0.7.

Different tests made on CFIA estimates are beyond the scope
of this paper and will be discussed in a different study.

8 Conclusions

Based on optimal interpolation, the Canadian Precipitation
Analysis (CaPA), currently operational at CCMEP, is used
for different applications (see Fortin et al., 2018, for further
details). The recently available operational 20-member REPS
with a ~ 10 km grid spacing naturally led to an examination
of whether it was possible to improve the estimation of back-
ground error covariances used by the current CaPA OI. From
this perspective, the selected approach is a so-called hybrid
approach (Hamill and Snyder, 2000; Counillon et al., 2009),
and it consists of a weighting of two covariance matrices: one
obtained by OI and the other by an ensemble Kalman filter
based on the REPS. The primary motivation is to overcome
some simplifying assumptions about the structure of back-
ground errors when using OI. Indeed, the operational CaPA
uses a spatial covariance structure of background errors as-
sumed to be isotropic and is modeled as an exponential func-
tion. The second motivation is the documented positive im-
pact of this approach for domains with low observation den-
sity, which is the case for some regions of the CaPA domain
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(e.g., northern Canada) and during the winter season when
few stations are assimilated.

In practice, this consists of choosing an optimal weighting
between two covariance matrices of background field errors,
one from OI and the other from REPS, through a parameter
— B — which varies between zero and one. The experiments
were conducted for 6 h precipitation accumulations and over
two seasons, summer 2019 and winter 2020. To verify the
impact of the amount of assimilated observations, an addi-
tional experiment without radar QPE assimilation was con-
ducted for summer 2019. This additional experiment was not
performed for winter, as the assimilated radar QPEs during
the solid precipitation season are anyway negligible in CaPA
(Fortin et al., 2015).

First, results have shown that the analysis with the assim-
ilation of the radar QPEs limits the positive impacts of the
increase of the weighting towards the REPS (i.e., high 8 val-
ues). Indeed, with and without radar QPE assimilation and
according to NRMSE estimates, summer had optimal g val-
ues of 0.4 and 0.5, respectively. Winter precipitation showed
higher optimal values of 8, around 0.7, meaning that a higher
weighting in favor of the REPS is preferable during that sea-
son. This result confirmed the known positive impact of the
hybrid method in a low-station-density configuration. The
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second reason is the higher forecasting skill of the back-
ground model (RDPS) and the REPS during the winter sea-
son, leading to a better error specification. Interestingly, these
optimal values obtained when comparing precipitation from
surface stations to the analysis (in a leave-one-out frame-
work) were consistent with those obtained with the FSSs,
using a relatively independent observation dataset and on a
smaller domain — the Stage IV analysis (Lin and Mitchell,
2005).

The use of the hybrid approach with optimal 8 values for
each experiment increased the analysis skill of both the op-
erational CaPA (8 =0.0) and a purely dynamic approach
(B = 1.0). This result is especially true for low-intensity pre-
cipitation events, for which the FAR has been significantly
reduced. In summer, the frequency bias score was improved
for small precipitation events (up to 1 mm) but degraded for
higher thresholds. High-intensity precipitation events were
indeed smoothed when using the optimal 8 value. This result
was also observed for the winter, although to a lesser extent.
Using a trade-off value of 8 =0.3 for the summer experi-
ments reduced the impact of smoothing high-intensity events
while allowing for significant skill improvement. According
to the winter 2020 experiment results, a higher 8 would have
been more suitable. However, in practice, this means choos-
ing a date in the CaPA configuration for which g must be
modified. A more extended test period and further experi-
ments would be needed to distinguish whether the parameter
changes should be made during the regular North American
domain seasons or during precipitation phase changes (ap-
proximately in May and October). In the meantime, other
tests, using 8 = 0.3 during the winter, have provided accept-
able skill and bias results while being conservative.

Different flavors of the hybrid approach have also been
tested but have not been developed in this article as they did
not contribute positively or significantly to the selected met-
rics. As suggested in Counillon et al. (2009), an inflation fac-
tor ranging from 1.0 to 2.0 was applied to alleviate the possi-
ble lack of spread in the REPS, but the experiments showed
no or negative impacts on the verification metrics. Another
hybrid configuration was also conducted to mitigate the im-
pact of the smoothing of high-intensity events during sum-
mer precipitation. For that test, the hybrid approach was ac-
tivated only if at least half of the REPS members had strictly
positive precipitation; otherwise, B was set to zero. The re-
sulting scores showed higher biases for low-intensity precip-
itation events than the current approach and no bias reduction
for high-intensity events.

In addition to the work planned for a better specification
of the CFIA (Sect. 7.4), future developments should focus
on improving the current hybrid approach by accounting for
the observation density when selecting the optimal 8 values
(i-e., allow for spatial variability of ). Therefore, the hy-
brid system could benefit places without observations while
not degrading the analysis at locations with a high density
of observations. This task will be facilitated by the avail-
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ability of a new field providing information on the amount
of data assimilated (Sect. 7.4). Other works should explore
the possibility of extending the current approach to create
an ensemble version of the precipitation analysis. The REPS
members, with prior bias corrections, could be used to cre-
ate the analysis background field members. The hybrid ap-
proach could also help create a global version of CaPA us-
ing the Global Deterministic Prediction System (GDPS) and
the GEPS (Houtekamer et al., 2014) as a background model
and an ensemble system, respectively. A global version of
CaPA has already been identified as useful for land surface
data assimilation at CCMEP. In that context, the hybrid ap-
proach would be especially relevant for the many regions of
the world that do not benefit from high-density precipitation
observations.

Appendix A: List of acronyms

CaPA Canadian Precipitation Analysis

CFIA Confidence index of the analysis

DA Data assimilation

ECCC Environment and Climate Change Canada
EnKF Ensemble Kalman filter

EPS Ensemble prediction system

GDPS Global Deterministic Prediction System
GEPS Global Ensemble Forecast System

ETS Equitable threat score

FAR False alarm rate

FBI Frequency bias index

FSS Fraction skill score

LOO Leave one out

NRMSE Normalized root-mean-square error
NWP Numerical weather prediction

Ol Optimal interpolation

POD Probability of detection

QC Quality control

QPE Quantitative precipitation estimates
RDPS Regional Deterministic Prediction System
REPS Regional Ensemble Prediction System

ST4 Stage IV
SYNOP  Synoptic observation

Data availability. REPS and CaPA (regional configuration) are
both available as ECCC operational systems from the following
respective locations: https://dd.meteo.gc.ca/ensemble/reps/10km/
grib2 (ECCC, 2022a) and https://dd.meteo.gc.ca/analysis/precip/
rdpa/grib2/polar_stereographic (ECCC, 2022b). The output data
from this study (CaPA using hybrid methodology for the assimi-
lation) have been archived and are available upon request from the
corresponding author.

Author contributions. The main contributions from each co-author
are as follows: under the supervision of SB and VF, DK proposed

https://doi.org/10.5194/npg-29-329-2022


https://dd.meteo.gc.ca/ensemble/reps/10km/grib2
https://dd.meteo.gc.ca/ensemble/reps/10km/grib2
https://dd.meteo.gc.ca/analysis/precip/rdpa/grib2/polar_stereographic
https://dd.meteo.gc.ca/analysis/precip/rdpa/grib2/polar_stereographic

D. Khedhaouiria et al.: Using a hybrid optimal interpolation—ensemble Kalman filter for the CaPA 343

the methodology, the experimental design, and the preparation of
the paper; GR contributed to the adaptation of the CaPA data assim-
ilation code to integrate the hybrid modeling; and VF, SB, and FL
contributed to interpreting results and paper preparation.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Review statement. This paper was edited by Pierre Tandeo and re-
viewed by two anonymous referees.

References

Bachmann, K., Keil, C., and Weissmann, M.: Impact of
radar data assimilation and orography on predictability of
deep convection, Q. J. Roy. Meteor. Soc., 145, 117-130,
https://doi.org/10.1002/qj.3412, 2019.

Bonavita, M., Hamrud, M., and Isaksen, L.: EnKF and Hy-
brid Gain Ensemble Data Assimilation. Part II: EnKF and
Hybrid Gain Results, Mon. Weather Rev., 143, 48654882,
https://doi.org/10.1175/MWR-D-15-0071.1, 2015.

Brown, J. D., Seo, D.-J., and Du, J.: Verification of Precipitation
Forecasts from NCEP’s Short-Range Ensemble Forecast (SREF)
System with Reference to Ensemble Streamflow Prediction Us-
ing Lumped Hydrologic Models, J. Hydrometeorol., 13, 808—
836, https://doi.org/10.1175/JHM-D-11-036.1, 2012.

Buizza, R.: Ensemble forecasting and the need for calibration, in:
Statistical Postprocessing of Ensemble Forecasts, edited by: Van-
nitsem, S., Messner, J. W., and Wilks, D. S., Elsevier, 1548,
ISBN: 978-0-12-812372-0, 2019.

Caron, J.-E., Milewski, T., Buehner, M., Fillion, L., Reszka, M.,
Macpherson, S., and St-James, J.: Implementation of Determinis-
tic Weather Forecasting Systems Based on Ensemble—Variational
Data Assimilation at Environment Canada. Part II: The Regional
System, Mon. Weather Rev., 143, 2560-2580, 2015.

Charron, M., Pellerin, G., Spacek, L., Houtekamer, P., Gagnon, N.,
Mitchell, H. L., and Michelin, L.: Toward random sampling of
model error in the Canadian ensemble prediction system, Mon.
Weather Rev., 138, 1877-1901, 2010.

Counillon, F., Sakov, P., and Bertino, L.: Application of a hy-
brid EnKF-OI to ocean forecasting, Ocean Sci., 5, 389-401,
https://doi.org/10.5194/0s-5-389-2009, 2009.

Cressie, N.: Statistics for Spatial Data, Revised Edition, Wiley
Classics Library, John Wiley & Sons, ISBN:978-1-119-11461-
1,2015.

Ebert, E.: Ability of a poor man’s ensemble to predict the proba-
bility and distribution of precipitation, Mon. Weather Rev., 129,
2461-2480, 2001.

ECCC: Regional Ensemble Prediction System (REPS) Ver-
sion 3.0.0 Summary of changes with respect to version
24.0 and validation, Dorval, Qc, Canada, Tech. rep.,

https://doi.org/10.5194/npg-29-329-2022

https://collaboration.cmc.ec.gc.ca/cmc/cmoi/product_guide/
docs/lib/technote_reps-300_20190703_e.pdf (last access: 28
September 2022), 2019.

ECCC: Index of /ensemble/reps/10km/grib2, Government of
Canada [data set], https://dd.meteo.gc.ca/ensemble/reps/10km/
grib2, last access: 28 September 2022a.

ECCC: Index of /analysis/precip/rdpa/grib2/polar_stereographic,
Government of Canada [data set], https://dd.meteo.gc.ca/
analysis/precip/rdpa/grib2/polar_stereographic, last access: 28
September 2022b.

Evans, A. M.: Investigation of enhancements to two fundamental
components of the statistical interpolation method used by the
Canadian Precipitation Analysis (CaPA), MS thesis, University
of Manitoba,Winnipeg, Manitoba, https://mspace.lib.umanitoba.
ca/xmlui/handle/1993/22276 (last access: 28 September 2022),
2013.

Evensen, G.: The ensemble Kalman filter: Theoretical formula-
tion and practical implementation, Ocean Dynam., 53, 343-367,
https://doi.org/10.1007/s10236-003-0036-9, 2003.

Fortin, V., Roy, G., Donaldson, N., and Mahidjiba, A.: Assimila-
tion of radar quantitative precipitation estimations in the Cana-
dian Precipitation Analysis (CaPA), J. Hydrol., 531, 296-307,
https://doi.org/10.1016/j.jhydrol.2015.08.003, 2015.

Fortin, V., Roy, G., Stadnyk, T., Koenig, K., Gasset, N., and
Mabhidjiba, A.: Ten Years of Science Based on the Cana-
dian Precipitation Analysis: A CaPA System Overview
and Literature Review, Atmos. Ocean, 56, 178-196,
https://doi.org/10.1080/07055900.2018.1474728, 2018.

Hamill, T. M. and Snyder, C.: A hybrid ensemble Kalman
filler-3D  variational analysis scheme, Mon. Weather
Rev., 128, 2905-2919, https://doi.org/10.1175/1520-
0493(2000)128<2905:AHEKFV>2.0.CO:;2, 2000.

Houtekamer, P. and Zhang, F.: Review of the Ensemble Kalman
Filter for atmospheric data assimilation, Mon. Weather Rev., 144,
4489-4532, https://doi.org/10.1175/MWR-D-15-0440.1, 2016.

Houtekamer, P. L. and Mitchell, H. L.: Data assimila-
tion using an Ensemble Kalman Filter technique, Mon.
Weather Rev., 126, 796-811, https://doi.org/10.1175/1520-
0493(1998)126<0796: DAUAEK>2.0.CO;2, 1998.

Houtekamer, P. L., Deng, X., Mitchell, H. L., Baek, S.-J,
and Gagnon, N.: Higher Resolution in an Operational En-
semble Kalman Filter, Mon. Weather Rev., 142, 1143-1162,
https://doi.org/10.1175/MWR-D-13-00138.1, 2014.

Houtekamer, P. L., Buehner, M., and De La Chevroti¢re, M.:
Using the hybrid gain algorithm to sample data assimila-
tion uncertainty, Q. J. Roy. Meteorol. Soc., 145, 35-56,
https://doi.org/10.1002/qj.3426, 2019.

Jacques, D., Michelson, D., Caron, J. F, , and Fillion, L.
Latent heat nudging in the Canadian Regional Determinis-
tic Prediction System, Mon. Weather Rev., 146, 3995-4014,
https://doi.org/10.1175/MWR-D-18-0118.1, 2018.

Kalnay, E., Li, H., Miyoshi, T., Yang, S.-C., and Ballabrera-Poy,
J.: 4D-Var or ensemble Kalman filter?, Tellus A, 59, 758-773,
https://doi.org/10.1111/j.1600-0870.2007.00261.x, 2007.

Kleist, D. T. and Ide, K.: An OSSE-Based Evaluation of Hy-
brid Variational-Ensemble Data Assimilation for the NCEP
GFS. Part I: System Description and 3D-Hybrid Results, Mon.
Weather Rev., 143, 433-451, https://doi.org/10.1175/MWR-D-
13-00351.1, 2015.

Nonlin. Processes Geophys., 29, 329-344, 2022


https://doi.org/10.1002/qj.3412
https://doi.org/10.1175/MWR-D-15-0071.1
https://doi.org/10.1175/JHM-D-11-036.1
https://doi.org/10.5194/os-5-389-2009
https://collaboration.cmc.ec.gc.ca/cmc/cmoi/product_guide/docs/lib/technote_reps-300_20190703_e.pdf
https://collaboration.cmc.ec.gc.ca/cmc/cmoi/product_guide/docs/lib/technote_reps-300_20190703_e.pdf
https://dd.meteo.gc.ca/ensemble/reps/10km/grib2
https://dd.meteo.gc.ca/ensemble/reps/10km/grib2
https://dd.meteo.gc.ca/analysis/precip/rdpa/grib2/polar_stereographic
https://dd.meteo.gc.ca/analysis/precip/rdpa/grib2/polar_stereographic
https://mspace.lib.umanitoba.ca/xmlui/handle/1993/22276
https://mspace.lib.umanitoba.ca/xmlui/handle/1993/22276
https://doi.org/10.1007/s10236-003-0036-9
https://doi.org/10.1016/j.jhydrol.2015.08.003
https://doi.org/10.1080/07055900.2018.1474728
https://doi.org/10.1175/1520-0493(2000)128<2905:AHEKFV>2.0.CO;2
https://doi.org/10.1175/1520-0493(2000)128<2905:AHEKFV>2.0.CO;2
https://doi.org/10.1175/MWR-D-15-0440.1
https://doi.org/10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2
https://doi.org/10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2
https://doi.org/10.1175/MWR-D-13-00138.1
https://doi.org/10.1002/qj.3426
https://doi.org/10.1175/MWR-D-18-0118.1
https://doi.org/10.1111/j.1600-0870.2007.00261.x
https://doi.org/10.1175/MWR-D-13-00351.1
https://doi.org/10.1175/MWR-D-13-00351.1

344 D. Khedhaouiria et al.: Using a hybrid optimal interpolation—-ensemble Kalman filter for the CaPA

Kollias, P., Bharadwaj, N., Clothiaux, E. E., Lamer, K., Oue, M.,
Hardin, J., Isom, B., Lindenmaier, I., Matthews, A., Luke, E.
P., Giangrande, S. E., Johnson, K., Collis, S., Comstock, J.,
and Mather, J. H.: The ARM Radar Network: At the Leading-
edge of Cloud and Precipitation Observations, B. Am. Mete-
orol. Soc., 101, E5S88-E607, https://doi.org/10.1175/BAMS-D-
18-0288.1, 2020.

Lespinas, F.,, Fortin, V., Roy, G., Rasmussen, P., and Stad-
nyk, T.: Performance Evaluation of the Canadian Precipi-
tation Analysis (CaPA), J. Hydrometeorol., 16, 2045-2064,
https://doi.org/10.1175/JHM-D-14-0191.1, 2015.

Lin, Y. and Mitchell, K.: The NCEP Stage II/IV hourly precip-
itation analyses: development and applications, in: Preprints
of the 19th Conference on Hydrology, American Meteoro-
logical Society, San Diego, CA, 9-13 January 2005, 1-3,
https://www.google.com/url2ahUKEwjXvYQ (last access: 28
September 2022), 2005.

Lorenz, E. N.: Deterministic nonperiodic flow, J. Atmos. Sci., 20,
130-141, 1963.

Mahfouf, J., Brasnett, B., and Gagnon, S.: A Canadian Precipitation
Analysis (CaPA) project: Description and preliminary results,
Atmos. Ocean, 45, 1-17, https://doi.org/10.3137/a0.v450101,
2007.

Nelson, B. R., Prat, O. P., Seo, D. J., and Habib, E.: Assessment and
implications of NCEP stage IV quantitative precipitation esti-
mates for product intercomparisons, Weather Forecast., 31, 371—
394, https://doi.org/10.1175/WAF-D-14-00112.1, 2016.

Penny, S. G., Behringer, D. W., Carton, J. A., and Kalnay, E.: A
Hybrid Global Ocean Data Assimilation System at NCEP, Mon.
Weather Rev., 143, 4660—4677, https://doi.org/10.1175/MWR-
D-14-00376.1, 2015.

Nonlin. Processes Geophys., 29, 329-344, 2022

Rasmussen, R., Baker, B., Kochendorfer, J., Meyers, T., Landolt,
S., Fischer, A. P., Black, J., Thériault, J. M., Kucera, P., Gochis,
D., Smith, C., Nitu, R., Hall, M., Ikeda, K., and Gutmann, E.:
How well are we measuring snow: The NOAA/FAA/NCAR win-
ter precipitation test bed, B. Am. Meteorol. Soc., 93, 811-829,
2012.

Roberts, N. M. and Lean, H. W.: Scale-Selective Verifica-
tion of Rainfall Accumulations from High-Resolution Fore-
casts of Convective Events, Mon. Weather Rev., 136, 78-97,
https://doi.org/10.1175/2007MWR2123.1, 2008.

Schwartz, C. S., Kain, J. S., Weiss, S. J., Xue, M., Bright, D. R.,
Kong, F., Thomas, K. W., Levit, J. J., and Coniglio, M. C.: Next-
Day Convection-Allowing WRF Model Guidance: A Second
Look at 2-km versus 4-km Grid Spacing, Mon. Weather Rev.,
137, 3351-3372, https://doi.org/10.1175/2009MWR2924.1,
20009.

Wang, X., Hamill, T. M., Whitaker, J. S., and Bishop, C. H.:
A Comparison of Hybrid Ensemble Transform Kalman Fil-
ter — Optimum Interpolation and Ensemble Square Root Fil-
ter Analysis Schemes, Mon. Weather Rev., 135, 1055-1076,
https://doi.org/10.1175/MWR3307.1, 2007.

Wang, X., Barker, D. M., Snyder, C., and Hamill, T. M.:
A hybrid ETKF-3DVAR data assimilation scheme for
the WRF model. Part I: Observing system simula-
tion experiment, Mon. Weather Rev.,, 136, 5116-5131,
https://doi.org/10.1175/2008MWR2444.1, 2008a.

Wang, X., Barker, D. M., Snyder, C., and Hamill, T. M.: A Hybrid
ETKF-3DVAR Data Assimilation Scheme for the WRF Model.
Part II: Real Observation Experiments, Mon. Weather Rev., 136,
5132-5147, https://doi.org/10.1175/2008MWR2445.1, 2008b.

https://doi.org/10.5194/npg-29-329-2022


https://doi.org/10.1175/BAMS-D-18-0288.1
https://doi.org/10.1175/BAMS-D-18-0288.1
https://doi.org/10.1175/JHM-D-14-0191.1
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjXvYWLrbj6AhWRkYkEHQFCDWkQFnoECAkQAQ&url=https%3A%2F%2Fams.confex.com%2Fams%2Fpdfpapers%2F83847.pdf&usg=AOvVaw0bfy5dSoDu4QX_x3BrqbbY
https://doi.org/10.3137/ao.v450101
https://doi.org/10.1175/WAF-D-14-00112.1
https://doi.org/10.1175/MWR-D-14-00376.1
https://doi.org/10.1175/MWR-D-14-00376.1
https://doi.org/10.1175/2007MWR2123.1
https://doi.org/10.1175/2009MWR2924.1
https://doi.org/10.1175/MWR3307.1
https://doi.org/10.1175/2008MWR2444.1
https://doi.org/10.1175/2008MWR2445.1

	Abstract
	Introduction
	Datasets
	Model description
	Observations
	Stage IV precipitation

	Methodology
	Hybrid assimilation approach for the precipitation analysis
	Quality control of the observations during the assimilation

	Selection of the weighting factor: 
	Experimental setup
	Verification strategy
	Comparisons against observations from surface stations
	Comparisons against Stage IV

	Results and discussion
	Selection of the optimal  value
	Contingency table verification
	Verification against ST4
	Confidence index

	Conclusions
	Appendix A: List of acronyms
	Data availability
	Author contributions
	Competing interests
	Disclaimer
	Review statement
	References

