Articles | Volume 29, issue 2
https://doi.org/10.5194/npg-29-161-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.Special issue:
Estimate of energy loss from internal solitary waves breaking on slopes
Related authors
Related subject area
Subject: Bifurcation, dynamical systems, chaos, phase transition, nonlinear waves, pattern formation | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere | Techniques: Simulation
The role of time-varying external factors in the intensification of tropical cyclones
Transformation of internal solitary waves at the edge of ice cover
A new approach to understanding fluid mixing in process-study models of stratified fluids
Aggregation of slightly buoyant microplastics in 3D vortex flows
Nonlin. Processes Geophys., 31, 381–394,
2024Nonlin. Processes Geophys., 31, 207–217,
2024Nonlin. Processes Geophys., 31, 61–74,
2024Nonlin. Processes Geophys., 31, 25–44,
2024Cited articles
Aghsaee, P., Boegman, L., and Lamb, K. G.: Breaking of shoaling internal solitary waves, J. Fluid Mech., 659, 289–317, https://doi.org/10.1017/S002211201000248X, 2010. a, b
Alford, M. N., Peacok, T., Mackinnon, J. A., and Tang, D.: The formation and fate of internal waves in the South China Sea, Nature, 521, 65–69, 2015. a
Apel, J. R., Ostrovsky, L. A., and Stepanyants, Y. A.: Internal solitons in the ocean, J. Acoust. Soc. Am., 98, 2863, https://doi.org/10.1121/1.414338, 1995. a
Bai, X., Lamb, K., Xu, J., and Liu, Z.: On Tidal Modulation of the Evolution of Internal Solitary-Like Waves Passing Through a Critical Point, J. Phys. Oceanogr., 51, 2533–2552, https://doi.org/10.1175/JPO-D-20-0167.1, 2021. a
Boegman, L. and Stastna, M.: Sediment Resuspension and Transport by Internal Solitary Waves, Annu. Rev. Fluid Mech., 51, 129–154, https://doi.org/10.1146/annurev-fluid-122316-045049, 2019. a