Articles | Volume 28, issue 1
https://doi.org/10.5194/npg-28-23-2021
https://doi.org/10.5194/npg-28-23-2021
Research article
 | 
15 Jan 2021
Research article |  | 15 Jan 2021

Fast hybrid tempered ensemble transform filter formulation for Bayesian elliptical problems via Sinkhorn approximation

Sangeetika Ruchi, Svetlana Dubinkina, and Jana de Wiljes

Related authors

Application of ensemble transform data assimilation methods for parameter estimation in reservoir modeling
Sangeetika Ruchi and Svetlana Dubinkina
Nonlin. Processes Geophys., 25, 731–746, https://doi.org/10.5194/npg-25-731-2018,https://doi.org/10.5194/npg-25-731-2018, 2018
Short summary
Investigating the consistency between proxy-based reconstructions and climate models using data assimilation: a mid-Holocene case study
A. Mairesse, H. Goosse, P. Mathiot, H. Wanner, and S. Dubinkina
Clim. Past, 9, 2741–2757, https://doi.org/10.5194/cp-9-2741-2013,https://doi.org/10.5194/cp-9-2741-2013, 2013
An assessment of particle filtering methods and nudging for climate state reconstructions
S. Dubinkina and H. Goosse
Clim. Past, 9, 1141–1152, https://doi.org/10.5194/cp-9-1141-2013,https://doi.org/10.5194/cp-9-1141-2013, 2013
Using data assimilation to investigate the causes of Southern Hemisphere high latitude cooling from 10 to 8 ka BP
P. Mathiot, H. Goosse, X. Crosta, B. Stenni, M. Braida, H. Renssen, C. J. Van Meerbeeck, V. Masson-Delmotte, A. Mairesse, and S. Dubinkina
Clim. Past, 9, 887–901, https://doi.org/10.5194/cp-9-887-2013,https://doi.org/10.5194/cp-9-887-2013, 2013

Related subject area

Subject: Predictability, probabilistic forecasts, data assimilation, inverse problems | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere | Techniques: Simulation
Leading the Lorenz 63 system toward the prescribed regime by model predictive control coupled with data assimilation
Fumitoshi Kawasaki and Shunji Kotsuki
Nonlin. Processes Geophys., 31, 319–333, https://doi.org/10.5194/npg-31-319-2024,https://doi.org/10.5194/npg-31-319-2024, 2024
Short summary
Quantum data assimilation: a new approach to solving data assimilation on quantum annealers
Shunji Kotsuki, Fumitoshi Kawasaki, and Masanao Ohashi
Nonlin. Processes Geophys., 31, 237–245, https://doi.org/10.5194/npg-31-237-2024,https://doi.org/10.5194/npg-31-237-2024, 2024
Short summary
A Comparison of Two Nonlinear Data Assimilation Methods
Vivian A. Montiforte, Hans E. Ngodock, and Innocent Souopgui
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2024-3,https://doi.org/10.5194/npg-2024-3, 2024
Revised manuscript accepted for NPG
Short summary
Comparative study of strongly and weakly coupled data assimilation with a global land–atmosphere coupled model
Kenta Kurosawa, Shunji Kotsuki, and Takemasa Miyoshi
Nonlin. Processes Geophys., 30, 457–479, https://doi.org/10.5194/npg-30-457-2023,https://doi.org/10.5194/npg-30-457-2023, 2023
Short summary
Reducing manipulations in a control simulation experiment based on instability vectors with the Lorenz-63 model
Mao Ouyang, Keita Tokuda, and Shunji Kotsuki
Nonlin. Processes Geophys., 30, 183–193, https://doi.org/10.5194/npg-30-183-2023,https://doi.org/10.5194/npg-30-183-2023, 2023
Short summary

Cited articles

Acevedo, W., de Wiljes, J., and Reich, S.: Second-order Accurate Ensemble Transform Particle Filters, SIAM J. Sci. Comput., 39, A1834–A1850, 2017. a, b
Agapiou, S., Papaspiliopoulos, O., Sanz-Alonso, D., and Stuart, A. M.: Importance sampling: computational complexity and intrinsic dimension, Stat. Sci., 32, 405–431, https://doi.org/10.1214/17-STS611, 2017. a
Bardsley, J., Solonen, A., Haario, H., and Laine, M.: Randomize-then-optimize: A method for sampling from posterior distributions in nonlinear inverse problems, SIAM J. Sci. Comput., 36, A1895–A1910, 2014. a, b
Beskos, A., Crisan, D., and Jasra, A.: On the stability of sequential Monte Carlo methods in high dimensions, Ann. Appl. Probab., 24, 1396–1445, https://doi.org/10.1214/13-AAP951, 2014. a
Beskos, A., Jasra, A., Muzaffer, E. A., and Stuart, A. M.: Sequential Monte Carlo methods for Bayesian elliptic inverse problems, Stat. Comput., 25, 727–737, https://doi.org/10.1007/s11222-015-9556-7, 2015. a
Download
Short summary
To infer information of an unknown quantity that helps to understand an associated system better and to predict future outcomes, observations and a physical model that connects the data points to the unknown parameter are typically used as information sources. Yet this problem is often very challenging due to the fact that the unknown is generally high dimensional, the data are sparse and the model can be non-linear. We propose a novel approach to address these challenges.