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Abstract. Identification of unknown parameters on the basis
of partial and noisy data is a challenging task, in particular in
high dimensional and non-linear settings. Gaussian approxi-
mations to the problem, such as ensemble Kalman inversion,
tend to be robust and computationally cheap and often pro-
duce astonishingly accurate estimations despite the simplify-
ing underlying assumptions. Yet there is a lot of room for im-
provement, specifically regarding a correct approximation of
a non-Gaussian posterior distribution. The tempered ensem-
ble transform particle filter is an adaptive Sequential Monte
Carlo (SMC) method, whereby resampling is based on opti-
mal transport mapping. Unlike ensemble Kalman inversion,
it does not require any assumptions regarding the posterior
distribution and hence has shown to provide promising re-
sults for non-linear non-Gaussian inverse problems. How-
ever, the improved accuracy comes with the price of much
higher computational complexity, and the method is not as
robust as ensemble Kalman inversion in high dimensional
problems. In this work, we add an entropy-inspired regu-
larisation factor to the underlying optimal transport problem
that allows the high computational cost to be considerably
reduced via Sinkhorn iterations. Further, the robustness of
the method is increased via an ensemble Kalman inversion
proposal step before each update of the samples, which is
also referred to as a hybrid approach. The promising perfor-
mance of the introduced method is numerically verified by
testing it on a steady-state single-phase Darcy flow model
with two different permeability configurations. The results
are compared to the output of ensemble Kalman inversion,
and Markov chain Monte Carlo methods results are com-
puted as a benchmark.

1 Introduction

If a solution of a considered partial differential equation
(PDE) is highly sensitive to its parameters, accurate estima-
tion of the parameters and their uncertainties is essential to
obtain a correct approximation of the solution. Partial obser-
vations of the solution are then used to infer uncertain pa-
rameters by solving a PDE-constrained inverse problem. For
instance, one can approach such problems via methods in-
duced by Bayes’ formula (Stuart, 2010). More specifically,
the posterior probability density of the parameters given the
data is then computed on the basis of a prior probability
density and a likelihood, which is the conditional probabil-
ity density associated with the given noisy observations. The
well-posedness of an inverse problem and convergence to
the true posterior in the limit of observational noise going to
zero were proven for different priors and under assumptions
on the parameter-to-observation map by Dashti and Stuart
(2017), for example.

When aiming at practical applications as in oil reser-
voir management (Lorentzen et al., 2020) and meteorol-
ogy (Houtekamer and Zhang, 2016), for example, the pos-
terior is approximated by means of a finite set of sam-
ples. Markov chain Monte Carlo (MCMC) methods approx-
imate the posterior with a chain of samples – a sequential
update of samples according to the posterior (Robert and
Casella, 2004; Rosenthal, 2009; Hoang et al., 2013). Typ-
ically, MCMC methods provide highly correlated samples.
Therefore, in order to sample the posterior correctly, MCMC
requires a long chain, especially in the case of a multi-modal
or a peaked distribution. A peaked posterior is associated
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with very accurate observations. Therefore, unless a speed-
up is introduced in a MCMC chain (e.g. Cotter et al., 2013),
MCMC is impractical for computationally expensive PDE
models.

Adaptive Sequential Monte Carlo (SMC) methods are dif-
ferent approaches to approximate the posterior with an en-
semble of samples by computing their probability (e.g, Vergé
et al., 2015). Adaptive intermediate probability measures are
introduced between the prior measure and the posterior mea-
sure to improve upon method divergence due to the curse of
dimensionality following Del Moral et al. (2006) and Neal
(2001). Moreover, sampling from an invariant Markov kernel
with the target intermediate measure and the reference prior
measure improves upon ensemble diversity due to parame-
ters’ stationarity, as shown by Beskos et al. (2015). However,
when parameter space is high dimensional, adaptive SMC re-
quires computationally prohibitive ensemble sizes unless we
approximate only the first two moments (e.g. Iglesias et al.,
2018) or we sample highly correlated samples (Ruchi et al.,
2019).

Ensemble Kalman inversion (EKI) approximates primarily
the first two moments of the posterior, which makes it com-
putationally attractive for estimating high dimensional pa-
rameters (Iglesias et al., 2014). For linear problems, Blömker
et al. (2019) showed well-posedness and convergence of the
EKI for a fixed ensemble size and without any assumptions
of Gaussianity. However for non-linear problems, it has been
shown by Oliver et al. (1996), Bardsley et al. (2014), Ernst
et al. (2015), Liu et al. (2017) and Le Gland et al. (2009) that
the EKI approximation is not consistent with the Bayesian
approximation.

We note that the EKI is an iterative ensemble smoother
(Evensen, 2018). Iterative ensemble smoothers for inverse
problems introduce a trivial artificial dynamics to the un-
known static parameter and iteratively update an estimation
of the parameter. Then the parameter-dependent model vari-
ables are recomputed using a forward model with a param-
eter estimation. Examples of iterative ensemble smoothers
are ensemble randomised maximum likelihood (Chen and
Oliver, 2012), multiple data assimilation (Emerick and
Reynolds, 2013) and randomise-then-optimise (Bardsley
et al., 2014).

As an alternative ansatz one can employ optimal trans-
port resampling that lies at the heart of the ensemble trans-
form particle filter (ETPF) proposed by Reich (2013). An
optimal transport map between two consecutive probability
measures provides a direct sample-to-sample map with max-
imised sample correlation. Along the lines of an adaptive
SMC approach, a probability measure is described via the
importance weights, and the deterministic mapping replaces
the traditional resampling step. A so-called tempered ensem-
ble transform particle filter (TETPF) was proposed by Ruchi
et al. (2019). Note that this ansatz does not require any dis-
tributional assumption for the posterior, and it was shown
by Ruchi et al. (2019) that the TETPF provides encouraging

results for non-linear high dimensional PDE-constrained in-
verse problems. However, the computational cost of solving
an optimal transport problem in each iteration is considerably
high.

In this work we address two issues that have arisen in the
context of the TETPF: (i) the immense computational costs
of solving the associated optimal transport problem and (ii)
the lack of robustness of the TETPF with respect to high di-
mensional problems. More specifically, the performance of
ETPF has been found to be highly dependent on the initial
guess. Although tempering restrains any sharp fail in the im-
portance sampling step due to a poor initial ensemble selec-
tion, the number of required intermediate steps and the ef-
ficiency of ETPF still depend on the initialisation. The lack
of robustness in high dimensions can be addressed via a hy-
brid approach that combines a Gaussian approximation with
a particle filter approximation (e.g. Santitissadeekorn and
Jones, 2015). Different algorithms are created by Frei and
Künsch (2013) and Stordal et al. (2011), for example. In this
paper, we adapt a hybrid approach of Chustagulprom et al.
(2016) that uses the EKI as a proposal step for the ETPF with
a tuning parameter. Furthermore, it is well established that
the computational complexity of solving an optimal transport
problem can be significantly reduced via a Sinkhorn approx-
imation by Cuturi (2013). This ansatz has been implemented
for the ETPF by Acevedo et al. (2017).

Along the lines of Chustagulprom et al. (2016) and
de Wiljes et al. (2020), we propose a tempered ensem-
ble transform particle filter with Sinkhorn approximation
(TESPF) and a tempered hybrid approach.

The remainder of the paper is organised as follows: in
Sect. 2, the inverse problem setting is presented. There
we describe the tempered ensemble transform particle fil-
ter (TETPF) proposed by Ruchi et al. (2019). Furthermore,
we introduce the tempered ensemble transform particle fil-
ter with Sinkhorn approximation (TESPF), a tempered hy-
brid approach that combines the EKI and the TETPF (hybrid
EKI–TETPF), and a tempered hybrid approach that com-
bines the EKI and the TESPF (hybrid EKI–TESPF). We
provide pseudocodes of all the presented techniques in Ap-
pendix A and corresponding computational complexities in
Appendix B. In Sect. 3, we apply the adaptive SMC meth-
ods to an inverse problem of inferring high dimensional per-
meability parameters for a steady-state single-phase Darcy
flow model. Permeability is parameterised following Ruchi
et al. (2019), whereby one configuration of parameterisation
leads to Gaussian posteriors, while another one leads to non-
Gaussian posteriors. Finally, we draw conclusions in Sect. 4.

2 Bayesian inverse problem

We assume u ∈ Ũ ⊂ Rn is a random variable that is related
to partially observable quantities y ∈ Y ⊂ Rκ by a non-linear
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forward operator G : Ũ→ Y , namely

y =G(u).

Further, yobs ∈ Y denotes a noisy observation of y, i.e.

yobs = y+ η,

where η ∼N (0,R) and N (0,R) is a Gaussian distribution
with zero mean and R covariance matrix. The aim is to deter-
mine or approximate the posterior measure µ(u) conditioned
on observations yobs and given a prior measure µ0(u), which
is referred to as a Bayesian inverse problem. The posterior
measure is absolutely continuous with respect to the prior,
i.e.

dµ
dµ0

(u)∝ g(u;yobs), (1)

where∝ is up to a constant of normalisation, and g is referred
to as the likelihood and depends on the forward operator G.
The Gaussian observation noise of the observation yobs im-
plies

g(u;yobs)= exp
[
−

1
2
(G(u)− yobs)

′R−1(G(u)− yobs)

]
, (2)

where ′ denotes the transpose. In the following we will in-
troduce a range of methods that can be employed to estimate
solutions to the presented inverse problem under the over-
arching mantel of tempered Sequential Monte Carlo filters.
Alongside these methods we will also propose several impor-
tant add-on tools required to achieve feasibility and higher
accuracy in high dimensional non-linear settings.

2.1 Tempered Sequential Monte Carlo

We consider Sequential Monte Carlo (SMC) methods that
approximate the posterior measure µ(u) via an empirical
measure

µM(u)=

M∑
i=1

wiδui (u).

Here, δ is the Dirac function, and the importance weights for
the approximation of µ are

wi =
g(ui;yobs)∑M
j=1g(uj ;yobs)

.

An ensemble U = {u1, . . .,uM} ⊂ Ũ consists of M realisa-
tions ui ∈ Rn of a random variable u that are independent
and identically distributed according to ui ∼ µ0.

When an easy-to-sample ensemble from the prior µ0 does
not approximate the complex posterior µ well, only a few
weights wi have significant value, resulting in a degenera-
tive approximation of the posterior measure. Potential rea-
sons for this effect are high dimensionality of the uncertain

parameter, a large number of observations, or lack of accu-
racy of the observations. An existing solution to a degenera-
tive approximation is an iterative approach based on temper-
ing by Del Moral et al. (2006) or annealing by Neal (2001).
The underlying idea is to introduce T intermediate artificial
measures {µt }Tt=0 between µ0 and µt = µ. These measures
are bridged by introducing T tempering parameters {φt }Tt=1
that satisfy 0= φ0<φ1<.. .<φT = 1. An intermediate mea-
sure µt is defined as a probability measure that has density
proportional to g(u) with respect to the previous measure
µt−1:

dµt
dµt−1

(u)∝ g(u;yobs)
(φt−φt−1).

Along the lines of Iglesias (2016) the tempering parameter
φt is chosen such that the effective sample size (ESS),

ESSt (φ)=

(∑M
i=1wt,i

)2

∑M
i=1w

2
t,i

,

with

wt,i =
g(ut−1,i;yobs)

(φt−φt−1)∑M
j=1g(ut−1,j ;yobs)

(φt−φt−1)
, (3)

does not drop below a certain threshold 1<Mthresh<M . Then,
an approximation of the posterior measure µt is

µMt (u)=

M∑
i=1

wt,iδut−1,i (u). (4)

A bisection algorithm on the interval (φt−1,1] is employed
to find φt . If ESSt>Mthresh, we set φT = 1, which implies
that no further tempering is required.

The choice of ESS to define a tempering parameter is sup-
ported by results of Beskos et al. (2014) on the stability of
a tempered SMC method in terms of the ESS. Moreover,
for a Gaussian probability density approximated by impor-
tance sampling, Agapiou et al. (2017) showed that ESS is
related to the second moment of the Radon–Nikodym deriva-
tive (Eq. 1).

The SMC method with importance sampling (Eq. 4) does
not change the sample {ut−1,i}

M
i=1, which leads to the method

collapse due to a finite ensemble size. Therefore each temper-
ing iteration t needs to be supplied with resampling. Resam-
pling provides a new ensemble {ũt,i}Mi=1 that approximates
the measure µt . We will discuss different resampling tech-
niques in Sect. 2.3.

2.2 Mutation

Due to the stationarity of the parameters, SMC methods
require ensemble perturbation. In the framework of parti-
cle filtering for dynamical systems, ensemble perturbation is
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achieved by rejuvenation, when ensemble members of the
posterior measure are perturbed with a random noise sam-
pled from a Gaussian distribution with zero mean and a co-
variance matrix of the prior measure. The covariance matrix
of the ensemble is inflated, and no acceptance step is per-
formed due to the associated high computational costs for a
dynamical system.

Since we consider a static inverse problem, for ensemble
perturbation we employ a Metropolis–Hastings method (thus
we mutate samples) but with a proposal that speeds up the
MCMC method for estimating a high dimensional parameter.
Namely, we use the ensemble mutation of Cotter et al. (2013)
with the target measureµt and the reference measureµ0. The
mutation phase is initialised at v0,i = ũt,i , and at the final
inner iteration τmax, we assign ut,i = vτmax,i for i = 1, . . .,M .

For a Gaussian prior we use the preconditioned Crank–
Nicolson MCMC (pcn-MCMC) method:

v
prop
i =

√
1− θ2vτ,i + (1−

√
1− θ2)m

+ θξ τ,i for i = 1, . . .,M. (5)

Here, m is the mean of the Gaussian prior measure µ0, and
{ξ τ,i}

M
i=1 are from a Gaussian distribution with zero mean

and a covariance matrix of the Gaussian prior measure µ0.
For a uniform prior U [a,b] we use the following random

walk:

v
prop
i = vτ,i + ξ τ,i for i = 1, . . .,M. (6)

Here {ξ τ,i}
M
i=1 ∼ U [a−b,b−a] and {vprop

i }
M
i=1 are projected

onto the [a,b] interval if necessary. Then the ensemble at the
inner iteration τ + 1 is

vτ+1,i = v
prop
i with the probability

ρ(v
prop
i ,ut−1,i) for i = 1, . . .,M; (7)

vτ+1,i = vτ,i with the probability

1− ρ(vprop
i ,ut−1,i) for i = 1, . . .,M. (8)

Here vprop
i is from Eq. (5) for the Gaussian measure and from

Eq. (6) for the uniform measure, and

ρ(v
prop
i ,ut−1,i)=min

{
1,
g(v

prop
i ;yobs)

φt

g(ut−1,i;yobs)
φt

}
.

The scalar θ ∈ (0,1] in Eq. (5) controls the performance of
the Markov chain. Small values of θ lead to high acceptance
rates but poor mixing. Roberts and Rosenthal (2001) showed
that for high dimensional problems it is optimal to choose θ
such that the acceptance rate is in between 20 % and 30 % by
the last tempering iteration T . Cotter et al. (2013) proved that
under some assumptions this mutation produces a Markov
kernel with an invariant measure µt .

Computational complexity. In each tempering iteration t
the computational complexity of the pcn-MCMC mutation is

O(τmaxMC), where C is the computational cost of the for-
ward model G. For the pseudocode of the pcn-MCMC mu-
tation, please refer to Algorithm 1 in Appendix A. Note that
the computational complexity is not affected by the length of
u, which is a very desirable property in high dimensions as
shown by Cotter et al. (2013) and Hairer et al. (2014).

2.3 Resampling phase

As we have already mentioned in Sect. 2.1, an adaptive SMC
method with importance sampling needs to be supplied with
resampling at each tempering iteration t . We consider a re-
sampling method based on optimal transport mapping pro-
posed by Reich (2013).

2.3.1 Optimal transformation

The origin of the optimal transport theory lies in finding an
optimal way of redistributing mass which was first formu-
lated by Monge (1781). Given a distribution of matter, e.g.
a pile of sand, the underlying question is how to reshape the
matter into another form such that the work done is minimal.
A century and a half later the original problem was rewritten
by Kantorovich (1942) in a statistical framework that allowed
it to be tackled. Due to these contributions it was later named
the Monge–Kantorovich minimisation problem. The reader
is also referred to Peyré and Cuturi (2019) for a comprehen-
sible overview.

Let us consider a scenario whereby the initial distribution
of matter is represented by a probability measure µ on the
measurable space U , that has to be moved and rearranged
according to a given new distribution ν, defined on the mea-
surable space Ũ . In order to describe the link between the two
probability measures µ and ν and to minimise a predefined
cost associated with the transportation, one aims to find a
joint measure on U × Ũ that is a solution to

inf


∫

U×Ũ

c(u, ũ)dω(u, ũ) : ω ∈
∏
(µ,ν)

 , (9)

where the minimum is computed over all joint probability
measures ω on U × Ũ , denoted

∏
(µ,ν), with marginals µ

and ν, and c(u, ũ) is a transport cost function on (u, ũ) ∈
U × Ũ . The joint measures achieving the infinum are called
optimal transport plans.

Let µ and ν be two measures on a measurable space
(�,F) such that µ is the law of random variable U :�→ U
and ν is the law of random variable Ũ :�→ Ũ . Then a
coupling of (µ,ν) consists of a pair (U,Ũ). Note that cou-
plings always exist; an example is the trivial coupling in
which the random variables U and Ũ are independent. A
coupling is called deterministic if there is a measurable func-
tion 9M : U→ Ũ such that Ũ =9M(U), and 9M is called a
transport map. Unlike general couplings, deterministic cou-
plings do not always exist. On the other hand there may be
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infinitely many deterministic couplings. One famous variant
of Eq. (9), whereby the optimal coupling is known to be a
deterministic coupling, is given by

ω∗ = arg inf


∫

U×Ũ

‖u− ũ‖2dω(u, ũ) : ω ∈
∏
(µ,ν)

 . (10)

The aim of the resampling step is to obtain equally probable
samples. Therefore, in resampling based on optimal trans-
port of Reich (2013), the Monge–Kantorovich minimisation
problem (Eq. 10) is considered for the current posterior mea-
sure µMt (u) given by its samples approximation (Eq. 4) and
a uniform measure (here the weights in the sample approxi-
mation are set to 1/M). The discretised objective functional
of the associate optimal transport problem is given by

J (S) :=
M∑

i,j=1
sij‖ut−1,i −ut−1,j‖

2,

subject to sij>0 and constraints

M∑
i=1

sij =
1
M
,j = 1, . . .M;

M∑
j=1

sij = wt,i, i = 1, . . .M,

where matrix S describes a joint probability measure under
the assumption that the state space is finite. Then samples
{ũt,i}

M
i=1 are obtained by a deterministic linear transform, i.e.

ũt,j :=M

M∑
i=1

ut−1,isij for j = 1, . . .,M. (11)

Reich (2013) showed weak convergence of the deterministic
optimal transformation (Eq. 11) to a solution of the Monge–
Kantorovich problem (Eq. 9) as M→∞.

Computational complexity. The computational complex-
ity of solving the optimal transport problem with an ef-
ficient earth mover’s distance algorithm such as FastEMD
of Pele and Werman (2009) is of order O(M3 logM). Con-
sequently the computational complexity of the adaptive tem-
pering SMC with optimal transport resampling (TETPF) is
O[T (MC+M3 logM + τmaxMC)], where T is the number
of tempering iterations, τmax is the number of pcn-MCMC
inner iterations and C is the computational cost of a forward
model G. For the pseudocode of the TETPF, please refer to
Algorithm 2 in Appendix A.

2.3.2 Sinkhorn approximation

As discussed above, solving the optimal transport problem
has a computational complexity of O =M3 log(M) in ev-
ery iteration of the tempering procedure. Thus the TETPF
becomes very expensive for large M . On the other hand an
increase in the number of samples directly correlates with an
improved accuracy of the estimation. In order to allow for

as many samples as possible, one needs to reduce the asso-
ciated computational cost of the optimal transport problem.
This can be achieved by replacing the optimal transport dis-
tance with a Sinkhorn distance and subsequently exploiting
the new structure to elude the immense computational time
of the EMD (Earth mover’s distance) solver, as shown by Cu-
turi (2013). More precisely the ansatz is built on the fact that
the original transport problem has a natural entropic bound
that is obtained for S= [ 1

M
IMw

>
], wherew = [w1, . . .,wM ]

and IM = [1, . . .,1] ∈ RM , which constitutes an independent
joint probability. Therefore, one can consider the problem of
finding a matrix S ∈ RM×M that is constrained by an addi-
tional lower entropic bound (Sinkhorn distance). This addi-
tional constraint can be incorporated via a Lagrange multi-
plier, which leads to the above regularised form, i.e.

JSH(S)=
M∑

i,j=1

{
sij‖ut−1,i −ut−1,j‖

2
+

1
α
sij logsij

}
, (12)

where α>0. Due to additional smoothness the minimum of
Eq. (12) can be unique and has the form

Sα = diag(b)exp
(
−αZ

)
diag(a),

where Z is a matrix with entries zij = ‖ut−1,i −ut−1,j‖
2

and b and a non-negative vectors determined by employ-
ing Sinkhorn’s fixed point iteration described by Sinkhorn
(1967). We will refer to this approach as the tempered en-
semble Sinkhorn particle filter (TESPF).

Computational complexity. Solving this regularised opti-
mal transport problem rather than the original transport prob-
lem given in Eq. (9) reduces the complexity to O(M2C(α)),
where C(α) denotes a computational scaling factor that de-
pends on the choice of the regularisation factor α. In partic-
ular C(α) grows with α. Therefore, one needs to balance be-
tween reducing computational time and finding a reasonable
approximate solution of the original transport problem when
choosing a value for α. For the pseudocode of the Sinkhorn
adaptation of solving the optimal transport problem, please
refer to Algorithm 3 in Appendix A. For the pseudocode of
the TESPF, please refer to Algorithm 4 in Appendix A.

2.4 Ensemble Kalman inversion

For Bayesian inverse problems with Gaussian measures, en-
semble Kalman inversion (EKI) is one of the widely used
algorithms. The EKI is an adaptive SMC method that ap-
proximates primarily the first two statistical moments of a
posterior distribution. For a linear forward model, the EKI is
optimal in the sense that it minimises the error in the mean
(Blömker et al., 2019). For a non-linear forward model, the
EKI still provides a good estimation of the posterior (e.g.
Iglesias et al., 2018). Here we consider the EKI method
of Iglesias et al. (2018), since it is based on the tempering
approach.
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The intermediate measures {µt }Tt=0 are approximated by
Gaussian distributed variables with empirical mean mt and
empirical variance Ct . Empirical mean mt−1 and empirical
covariance Ct−1 are defined in terms of {ut−1,i}

M
i=1 as fol-

lows:

mt−1 =
1
M

M∑
i=1

ut−1,i,

Ct−1 =
1

M − 1

M∑
i=1
(ut−1,i −mt−1)⊗ (ut−1,i −mt−1),

where ⊗ denotes the Kronecker product. Then the mean and
the covariance are updated as

mt =mt−1+CuG
t−1(C

GG
t−1+1tR)

−1(yobs−Gt−1) and

Ct = Ct−1−CuG
t−1(C

GG
t−1+1tR)

−1(CuG
t−1)

′,

respectively. Here ′ denotes the transpose,

CuG
t−1 =

1
M − 1

M∑
i=1
(ut−1,i −mt−1)⊗ (G(ut−1,i)−Gt−1),

CGG
t−1 =

1
M − 1

M∑
i=1
[G(ut−1,i)−Gt−1]⊗ [G(ut−1,i)−Gt−1],

Gt−1 =
1
M

M∑
i=1

G(ut−1,i), and 1t =
1

φt −φt−1
.

We recall that the non-linear forward problem is y =G(u),
the observation yobs has a Gaussian observation noise with
zero mean and the covariance matrix R and φt is a tempera-
ture associated with the measure µt .

Since we are interested in an ensemble approximation of
the posterior distribution, we update the ensemble members
by

ũt,i = ut−1,i +CuG
t−1(C

GG
t−1+1tR)

−1
[yt,i −G(ut−1,i)]

for i = 1, . . .,M.
(13)

Here yt,i = yobs+ ηt,i and ηt,i ∼N (0,1tR) for i =

1, . . .,M .
Computational complexity. The computational complex-

ity of solving Eq. (13) is O(κ2n), where n is the param-
eter space dimension, and κ is the observation space di-
mension. Then the computational complexity of the EKI is
O[T (MC+κ2n+τmaxMC)], where T is the number of tem-
pering iterations, τmax is the number of pcn-MCMC inner
iterations and C is the computational cost of a forward model
G. For the pseudocode of the EKI method, please refer to
Algorithm 5 in Appendix A.

2.5 Hybrid

Despite the underlying Gaussian assumption, the EKI is re-
markably robust in non-linear high dimensional settings as

opposed to consistent SMC methods such as the TET(S)PF.
For many non-linear problems it is desirable to have better
uncertainty estimates while maintaining a level of robustness.
This can be achieved by factorising the likelihood given by
Eq. (2), e.g,

g(u;yobs)= g1(u;yobs) · g2(u;yobs),

where

g1(u;yobs)= g(u;yobs)
β

= exp
[
−

1
2
(G(u)− yobs)

′βR−1(G(u)− yobs)

]
(14)

and

g2(u;yobs)= g(u;yobs)
(1−β)

= exp
[
−

1
2
(G(u)− yobs)

′(1−β)R−1

(G(u)− yobs)

]
. (15)

Then it is possible to alternate between methods with com-
plementing properties such as the EKI and the TET(S)PF up-
dates; e.g. likelihood,

exp
[
−
β

2
(G(u)− yobs)

′R−1(G(u)− yobs)

](φt−φt−1)

,

is used for an EKI update followed by an update with a
TET(S)PF on the basis of

exp
[
−
(1−β)

2
(G(u)− yobs)

′R−1(G(u)− yobs)

](φt−φt−1)

.

Note that β ∈ [0,1] and should be tuned according to the un-
derlying forward operator. This combination of an approxi-
mative Gaussian method and a consistent SMC method has
been referred to as hybrid filters in the data assimilation lit-
erature1(Stordal et al., 2011; Frei and Künsch, 2013; Chus-
tagulprom et al., 2016). This ansatz can also be understood
as using the EKI as a more elaborate proposal density for
the importance sampling step within SMC (e.g. Oliver et al.,
1996).

Computational complexity. The computational complex-
ity of combining the two algorithms is O[T (MC+ κ2n+

MC+M3 logM+τmaxMC)] for the hybrid EKI–TETPF and
O[T (MC+κ2n+MC+M2C(α)+τmaxMC)] for the hybrid
EKI–TESPF. For the pseudocode of the hybrid methods,
please refer to Algorithm 6 in Appendix A.

3 Numerical experiments

We consider a steady-state single-phase Darcy flow model
defined over an aquifer of a two-dimensional physical do-

1Note that the terminology is also used in the context of data as-
similation filters combining variational and sequential approaches.
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Figure 1. Geometrical configuration of channel flow: amplitude d1,
frequency d2, angle d3, initial point d4 and width d5.

main D = [0,6]× [0,6], which is given by

−∇ ·
[
k(x,y)∇P(x,y)

]
= f (x,y),(x,y) ∈D, (16)

where∇ = (∂/∂x ∂/∂y)′, · the dot product, P(x,y) the pres-
sure, k(x,y) the permeability, f (x,y) the source term which
accounts for groundwater recharge and (x,y) the horizontal
dimensions. The boundary conditions are

P(x,0)= 100,
∂P

∂x
(6,y)= 0,

− k(0,y)
∂P

∂x
(0,y)= 500,

∂P

∂y
(x,6)= 0, (17)

where ∂D is the boundary of domain D. The source term is

f (x,y)=


0 if 0<y ≤ 4,

137 if 4<y<5,
274 if 5<y ≤ 6.

We implement a cell-centred finite-difference method and a
linear algebra solver (backslash operator in MATLAB) to
solve the forward model (Eqs. 16–17) on an N ×N grid.

We note that a single-phase Darcy flow model, though not
a steady-state model, is widely used to model the flow in a
subsurface aquifer and to infer uncertain permeability using
data assimilation. For example, Zovi et al. (2017) used an
EKI to infer permeability of an existing aquifer located in
north-east Italy. The area of this aquifer is 2.7 km2 and ex-
hibits several channels, such as the one depicted in Fig. 1.
There, a size of a computational cell ranged from 2 m (near
wells) to 20 m away from the wells.

3.1 Parameterisation of permeability

We consider the following two parameterisations of the per-
meability function k(x,y):

F1: log permeability over the entire domain D, u(x,y)=
logk(x,y);
F2: permeability over domainD that has a channel, k(x,y)=
k1(x,y)δDc (x,y)+ k

2(x,y)δDrDc(x,y) as by Iglesias et al.
(2014).

Here Dc denotes a channel, δ is the Dirac function and
k1
= exp(u1(x,y)) and k2

= exp(u2(x,y)) denote perme-
abilities inside and outside the channel. The geometry of the
channel is parameterised by five parameters {di}5i=1: ampli-
tude, frequency, angle, initial point and width, correspond-
ingly. The lower boundary of the channel is given by y =
d1 sin(d2x/6)+ tan(d3)x+ d4. The upper boundary of the
channel is given by y+ d5. These parameters are depicted
in Fig. 1.

We assume that the log permeability for both F1 and F2
is drawn from a Gaussian distribution µ0 =N (m,C) with
mean m and covariance C. We define C via a correlation
function given by the Whittle–Matern correlation function
defined by Matérn (1986):

c(x,y)=
1
γ (1)
‖x− y‖

υ
ϒ1

(
‖x− y‖

υ

)
,

where γ is the gamma function, υ = 0.5 is the characteristic
length scale and ϒ1 is the modified Bessel function of the
second kind of order 1.

With λ and V we denote eigenvalues and eigenfunctions of
the corresponding covariance matrix C, respectively. Then,
following a Karhunen–Loève (KL) expansion, log perme-
ability is

log(kl)= log(m)+
N2∑
`=1

√
λ`V `lu` for l = 1, . . .,N2,

where u` is i.i.d. from N (0,1) for `= 1, . . .,N2.
For F1, the prior for log permeability is a Gaussian distri-

bution with mean 5. The grid dimension is N = 70, and thus
the uncertain parameter u= {u`}N

2

`=1 has dimension 4900.
For F2, we assume geometrical parameters d = {di}5i=1

are drawn from uniform priors, namely d1
∼ U [0.3, 2.1],

d2
∼ U [π/2,6π ], d3

∼ U [−π/2,π/2], d4
∼ U [0,6], d5

∼

U [0.12, 4.2]. Furthermore, we assume independence be-
tween geometric parameters and log permeability. The prior
for log permeability is a Gaussian distribution with mean
15 outside the channel and with mean 100 inside the chan-
nel. The grid dimension is N = 50. Log permeability in-
side channel u1

= {u1,`
}
N2

`=1 and log permeability outside
channel u2

= {u2,`
}
N2

`=1 are defined over the entire domain
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50× 50. Therefore, for F2 inference the uncertain param-
eter u= {d,u1,u2

} has dimension 5005. Moreover, for F2
we use the Metropolis-within-Gibbs methodology follow-
ing Iglesias et al. (2014) to separate geometrical parameters
and log permeability parameters within the mutation step,
since it allows the structure of the prior to be better exploited.

3.2 Observations

Both the true permeability and an initial ensemble are drawn
from the same prior distribution as the prior includes knowl-
edge about geological properties. However, an initial guess is
computed on a coarse grid, and the true solution is computed
on a fine grid that has twice the resolution of the coarse grid.
The synthetic observations of pressure are obtained by

yobs = L(P
true)+ η.

An element of L(P true) is a linear functional of pressure,
namely

Lj (P true)=
1

2πσ 2

Nf∑
i=1

exp

(
−
‖Xi −hj‖2

2σ 2

)
(P true)j1x2

for j = 1, . . .,κ.

Here σ = 0.01, 1x2 is the size of a grid cell Xi = (Xi,Y i),
Nf is the resolution of a fine grid, hj is the location of the ob-
servation and κ is the number of observations. This form of
the observation functional and the parameterisation F1 and
F2 guarantee the continuity of the forward map from the
uncertain parameters to the observations and thus the exis-
tence of the posterior distribution, as shown by Iglesias et al.
(2014). The observation noise η is drawn from a normal dis-
tribution with zero mean and known covariance matrix R.
We choose the observation noise to be 2 % of L2-norm of
the true pressure. With such a small noise the likelihood is a
peaked distribution. Therefore, a non-iterative data assimila-
tion approach requires a computationally unfeasible number
of ensemble members to sample the posterior.

To save computational costs, we choose an ESS threshold
Mthresh =M/3 for tempering and the length of the Markov
chain τmax = 20 for mutation.

3.3 Metrics

We conduct numerical experiments with ensemble sizesM =
100 and M = 500 and 20 simulations with different initial
ensemble realisations to check the robustness of results. We
analyse the method’s performance with respect to a pcn-
MCMC solution, from here on referred to as the reference.
An MCMC solution was obtained by combining 50 indepen-
dent chains each of length 106, 105 burn-in period and 103

thinning. For log permeability, we compute the root mean
square error (RMSE) of the mean

RMSE=
√
(ū− ūref)′(ū− ūref), where ū=

1
M

M∑
i=1

ui, (18)

and uref is the reference solution.
For geometrical parameters d , we compute the Kullback–

Leibler divergence

DiKL(p
ref
‖ p)=

Mb∑
j=1

pref(dij ) log
pref(dij )

p(dij )
, (19)

where pref(di) is the reference posterior, p(di) is approxi-
mated by the weights andMb =M/10 is a chosen number of
bins.

3.4 Application to F1 inference

For F1, we perform numerical experiments using 36 uni-
formly distributed observations, which are displayed in cir-
cles in Fig. 3a. We plot a box plot of the RMSE given
by Eq. (18) over 20 independent simulations in Fig. 2a us-
ing Sinkhorn approximation and in Fig. 2b using optimal
transport. The horizontal axis is for the hybrid parameter β,
whose value 0 corresponds to the EKI and 1 to an adaptive
SMC method with either a Sinkhorn approximation (TESPF)
or optimal transport (TETPF). Ensemble size M = 100 is
shown in red and M = 500 in green. First, we observe that
at a small ensemble size M = 100 and a large β (namely
β ≥ 0.6), TESPF outperforms the TETPF as the RMSE is
lower. Since Sinkhorn approximation is a regularisation of an
optimal transport solution, the TESPF provides a smoother
solution than the TETPF that can be seen in Fig. 3c and 3f,
respectively, where we plot mean log permeability. Next, we
see in Fig. 2 that the hybrid approach decreases the RMSE
compared to TET(S)PF: the smaller the β value, the smaller
the median of the RMSE. The EKI gives the smallest error
due to the Gaussian parameterisation of permeability. The
advantage of the hybrid approach is most pronounced at a
large ensemble size of M = 500 and optimal transport re-
sampling. Furthermore, we note a discrepancy between the
M = 100 and the M = 500 experiments at β = 0, i.e. for the
pure EKI. This is related to the curse of dimensionality. It ap-
pears that the ensemble sizeM = 100 is too small to estimate
an uncertain parameter of the dimension 103 using 36 accu-
rate observations. However, at the ensemble size M = 500
the EKI alone (β = 0) gives an excellent performance com-
pared to any combination (β>0).

We plot mean log permeability at ensemble size M = 100
and the smallest RMSE over 20 simulations in Fig. 3b–f and
of the reference in Fig. 3a. We see that the EKI and the
TETPF(0.2) estimate not only large-scale features but also
small-scale features (e.g. negative mean in the top right cor-
ner) unlike the TET(S)PF and TESPF(0.2) well.

3.5 Application to F2 inference

For F2, we perform numerical experiments using nine uni-
formly distributed observations. which are displayed in cir-
cles in Fig. 9a. First, we display results obtained using
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Figure 2. Application to F1 parameterisation: using Sinkhorn approximation (a) and optimal transport resampling (b). Box plot over 20
independent simulations of the RMSE of mean log permeability. The horizontal axis is for the hybrid parameter, where β = 0 corresponds
to the EKI and β = 1 to TET(S)PF. The ensemble size M = 100 is shown in red and M = 500 in green. The central mark is the median, the
edges of the box are the 25th and 75th percentiles, whiskers extend to the most extreme data points and crosses are outliers.

Figure 3. Mean log permeability for F1 inference for the lowest
error at ensemble size M = 100. Observation locations are shown
by circles. Reference (a), TESPF(0.2) (b), TESPF (c), EKI (d),
TETPF(0.2) (e) and TETPF (f).

Sinkhorn approximation. In Fig. 4, we plot a box plot over
20 independent runs of KL divergence given by Eq. (19)
for amplitude (a), frequency (b), angle (c), initial point (d)
and width (e) that define the channel. We see that the EKI
outperforms any TESPF(·) including the TESPF for ampli-
tude (a) and width (e). This is due to Gaussian-like posteri-
ors of these two geometrical parameters displayed in Fig. 6c
and 6o, respectively. Due to Gaussian-like posteriors the hy-
brid approach decreases the RMSE compared to the TESPF:
the smaller the β value, the smaller the median of the RMSE.

For frequency, angle and initial point, whose KL diver-
gence is displayed in Fig. 4b, c and d, respectively, the be-
haviour of adaptive SMC is non-linear in terms of β. This
is due to non Gaussian-like posteriors of these three geomet-
rical parameters shown in Fig. 6f, i and l, respectively. Due

to non Gaussian-like posteriors, the hybrid approach gives
an advantage over both the TESPF and the EKI – there is a
β 6= 0 for which the KL divergence is lowest, although it is
inconsistent between geometrical parameters.

When comparing the TESPF(·) to the TETPF(·), we ob-
serve the same type of behaviour in terms of β: linear for
amplitude and width, whose KL divergence is displayed in
Fig. 5a and e, respectively, and non-linear for frequency, an-
gle and initial point, whose KL divergence is displayed in
Fig. 5b, c and d, respectively. However, the KL divergence is
smaller when optimal transport resampling is used instead of
Sinkhorn approximation.

In Fig. 6, we plot the posteriors of geometrical parameters:
amplitude (a–c), frequency (d–f), angle (g–i), initial point (j–
l) and width (m–o); on the left the TESPF(0.2) is shown, in
the middle the TETPF(0.2) and on the right the EKI. In black
is the reference, in red 20 simulations of ensemble size M =
100 and in green 20 simulations of ensemble size M = 500.
The true parameters are shown by black crosses. We see that
as the ensemble size increases, posteriors approximated by
TET(S)PF converge to the reference posterior unlike the EKI.

Now we investigate adaptive SMC performance for per-
meability estimation. First, we display results obtained us-
ing Sinkhorn approximation. The box plot shows over 20
independent simulations of the RMSE given by Eq. (18)
for log permeability outside the channel in Fig. 7a and in-
side the channel in Fig. 7b. Even though log permeability
is Gaussian-distributed, for a small ensemble size M = 100,
there is a β 6= 0 that gives the lowest RMSE both outside and
inside the channel. As the ensemble size increases, the meth-
ods’ performance becomes equivalent.

Next, we compare the TESPF(·) to the TETPF(·) for
log permeability estimation outside and inside the channel,
whose RMSE is displayed in Fig. 8a and b, respectively.
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Figure 4. Application to F2 parameterisation using Sinkhorn approximation. Box plot over 20 independent simulations of KL divergence for
geometrical parameters: amplitude (a), frequency (b), angle (c), initial point (d) and width (e). The horizontal axis is for the hybrid parameter,
where β = 0 corresponds to the EKI and β = 1 to TET(S)PF. Ensemble size M = 100 is shown in red and M = 500 in green. The central
mark is the median, the edges of the box are the 25th and 75th percentiles, whiskers extend to the most extreme data points and crosses are
outliers.

Figure 5. The same as Fig. 4 but using optimal transport resampling.

We observe the same type of behaviour in terms of β: non-
linear for a small ensemble size M = 100 and equivalent for
a larger ensemble size M = 500. Furthermore, at a small en-
semble size M = 100, the TESPF outperforms the TETPF,
which was also the case for F1 parameterisation (Sect. 3.4).

In Fig. 9, we show the mean field of permeability over
the channelised domain for reference for the lowest error at

ensemble size M = 100 for the TESPF(0.2) (b), TESPF (c),
EKI (d), TETPF(0.2) (e) and TETPF (f). We plot mean
log permeability over the channelised domain at ensemble
size M = 100 and the smallest RMSE over 20 simulations
in Fig. 9b–f and for the reference in Fig. 9a. We see that
TESPF(0.2) does an excellent job at such a small ensemble
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Figure 6. Posteriors of geometrical parameters for F2 inference: amplitude (a–c), frequency (d–f), angle (g–i), initial point (j–l) and
width (m–o). On the left is the TESPF(0.2), in the middle the TETPF(0.2) and on the right the EKI. In black is the reference, in red 20
simulations of ensemble size M = 100 and in green 20 simulations of ensemble size M = 500. The true parameters are shown by black
crosses.
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Figure 7. Application to F2 parameterisation using Sinkhorn approximation. Box plot over 20 independent simulations of RMSE of mean
log permeability outside the channel (a) and inside the channel (b). The horizontal axis is for the hybrid parameter, where β = 0 corresponds
to the EKI and β = 1 to TET(S)PF. The ensemble size M = 100 is shown in red and M = 500 in green. The central mark is the median, the
edges of the box are the 25th and 75th percentiles, whiskers extend to the most extreme data points and crosses are outliers.

Figure 8. The same as Fig. 7 but using optimal transport resampling.

size by estimating log permeability outside and inside the
channel well, as well as parameters of the channel itself.

4 Conclusions

A Sinkhorn adaptation, namely the TESPF, of the previously
proposed TETPF has been introduced and numerically in-
vestigated for a parameter estimation problem. The TESPF
has similar accuracy results to the TETPF (see Figs. 6,
7 and 8), while it can have considerably smaller computa-
tional complexity. Specifically, the TESPF has a complexity
O[T (MC+M2C(α)+τmaxMC)] and the TETPF O[T (MC+
M3 logM + τmaxMC)] (for a complete overview, see Ta-
ble B1). In particular, the TESPF outperforms the EKI for
non-Gaussian distributed parameters (e.g. initial point and
angle in F2). This makes the proposed method a promis-
ing option for the high dimensional non-linear problems one

is typically faced with in reservoir engineering. Further, to
counterbalance potential robustness problems of the TETPF
and its Sinkhorn adaptation, a hybrid between the EKI and
the TET(S)PF is proposed and studied by means of the two
configurations of the steady-state single-phase Darcy flow
model. The combination of the two adaptive SMC meth-
ods with complementing properties, i.e. β ∈ (0,1), is supe-
rior to the individual adaptive SMC method, i.e. β = 0 or
1, for all non-Gaussian distributed parameters and performs
better than the pure TETPF and the TESPF for Gaussian dis-
tributed parameters in F1. This suggests a hybrid approach
has a great potential to obtain robust and highly accurate ap-
proximate solutions of non-linear high dimensional Bayesian
inference problems. Note that we have considered a synthetic
case, where the truth is available, and thus chose β in terms of
accuracy of an estimate. However, in a realistic application,
the truth is not provided. In the context of state estimation
with an underlying dynamical system, it has been suggested
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Figure 9. Mean log permeability for F2 inference for the lowest
error at ensemble size M = 100. Observation locations are shown
by circles. Reference (a), TESPF(0.2) (b), TESPF (c), EKI (d),
TETPF(0.2) (e) and TETPF (f).

to adaptively change the hybrid parameter with respect to the
effective sample size. As the tempering scheme is already
changed according to the effective sample size, this ansatz
would require the interplay between the two tuning variables
to be defined. An ad hoc choice for β could be 0.2 or 0.3.
This is motivated by the fact that the particle filter is too un-
stable in high dimensions, and it is therefore sensible to use
a tuning parameter prioritising the EKI. The ad hoc choice is
supported by the numerical results in Sect. 3 and in Acevedo
et al. (2017) and de Wiljes et al. (2020) in the context of state
estimation.
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Appendix A: Pseudocode
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Appendix B: Computational complexity

Table B1. The table provides an overview of the computational complexity of all the algorithms considered in the paper.

Algorithm Complexity

TETPF O[T (MC+M3 logM + τmaxMC)]
TESPF O[T (MC+M2C(α)+ τmaxMC)]
EKI O[T (MC+ κ2n+ τmaxMC)]
Hybrid EKI–TETPF O[T (MC+ κ2n+MC+M3 logM + τmaxMC)]
Hybrid EKI–TESPF O[T (MC+ κ2n+MC+M2C(α)+ τmaxMC)]
Forward model G O(MC)
pcn-MCMC mutation O(τmaxMC)
FastEMD O(M3 logM)
Sinkhorn approximation O(M2C(α))
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Code and data availability. Data and MATLAB codes for gener-
ating the plots are available at https://doi.org/10.4121/12987719
(Ruchi et al., 2021).
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