Articles | Volume 32, issue 4
https://doi.org/10.5194/npg-32-457-2025
https://doi.org/10.5194/npg-32-457-2025
Research article
 | 
04 Nov 2025
Research article |  | 04 Nov 2025

Bottom–up approach for mitigating extreme events with limited intervention options: a case study with Lorenz 96 model

Takahito Mitsui, Shunji Kotsuki, Naoya Fujiwara, Atsushi Okazaki, and Keita Tokuda

Related authors

100 kyr ice age cycles as a timescale-matching problem
Takahito Mitsui, Peter Ditlevsen, Niklas Boers, and Michel Crucifix
Earth Syst. Dynam., 16, 1569–1584, https://doi.org/10.5194/esd-16-1569-2025,https://doi.org/10.5194/esd-16-1569-2025, 2025
Short summary
Statistical precursor signals for Dansgaard–Oeschger cooling transitions
Takahito Mitsui and Niklas Boers
Clim. Past, 20, 683–699, https://doi.org/10.5194/cp-20-683-2024,https://doi.org/10.5194/cp-20-683-2024, 2024
Short summary
Synchronization phenomena observed in glacial–interglacial cycles simulated in an Earth system model of intermediate complexity
Takahito Mitsui, Matteo Willeit, and Niklas Boers
Earth Syst. Dynam., 14, 1277–1294, https://doi.org/10.5194/esd-14-1277-2023,https://doi.org/10.5194/esd-14-1277-2023, 2023
Short summary
Insolation evolution and ice volume legacies determine interglacial and glacial intensity
Takahito Mitsui, Polychronis C. Tzedakis, and Eric W. Wolff
Clim. Past, 18, 1983–1996, https://doi.org/10.5194/cp-18-1983-2022,https://doi.org/10.5194/cp-18-1983-2022, 2022
Short summary
Does a difference in ice sheets between Marine Isotope Stages 3 and 5a affect the duration of stadials? Implications from hosing experiments
Sam Sherriff-Tadano, Ayako Abe-Ouchi, Akira Oka, Takahito Mitsui, and Fuyuki Saito
Clim. Past, 17, 1919–1936, https://doi.org/10.5194/cp-17-1919-2021,https://doi.org/10.5194/cp-17-1919-2021, 2021
Short summary

Cited articles

Cini, M., Zappa, G., Ragone, F., and Corti, S.: Simulating AMOC tipping driven by internal climate variability with a rare event algorithm, npj Clim. Atmos. Sci., 7, 31, https://doi.org/10.1038/s41612-024-00568-7, 2024. a, b
Del Moral, P. and Garnier, J.: Genealogical particle analysis of rare events, Ann. Appl. Probab., 15, 2496–2534, https://doi.org/10.1214/105051605000000566, 2005. a
Henderson, J. M., Hoffman, R. N., Leidner, S. M., Nehrkorn, T., and Grassotti, C.: A 4D-Var study on the potential of weather control and exigent weather forecasting, Q. J. R. Meteorol. Soc., 131, 3037–3051, https://doi.org/10.1256/qj.05.72, 2005. a
Hunt, B. R., Kostelich, E. J., and Szunyogh, I.: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter, Phys. D: Nonlinear Phenom., 230, 112–126, https://doi.org/10.1016/j.physd.2006.11.008, 2007. a, b
IPCC: Framing, Context, and Methods. In Climate Change 2021 – The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, chapt. 1, Cambridge University Press, 147–286, https://doi.org/10.1017/9781009157896.003, 2023. a
Download
Short summary
Extreme weather poses serious risks, making prevention crucial. Using the Lorenz 96 model as a testbed, we propose a bottom-up approach to mitigate extreme events via local interventions guided by multi-scenario ensemble forecasts. Unlike control-theoretic methods, our approach selects the best control scenario from available options. It achieves a high success rate of 99.4% while maintaining reasonable costs, offering a practical strategy to reduce extremes under limited control.
Share