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Abstract. Prediction and mitigation of extreme weather events are important scientific and societal challenges.
Recently, Miyoshi and Sun (2022) proposed a control simulation experiment framework that assesses the con-
trollability of chaotic systems under observational uncertainty, and within this framework, Sun et al. (2023)
developed a method to prevent extreme events in the Lorenz 96 model. However, since their method is primarily
designed to apply control inputs to all grid variables, the success rate decreases to approximately 60 % when ap-
plied to a single site, at least in a specific setting. Herein, we propose an approach that mitigates extreme events
by updating local interventions based on multi-scenario ensemble forecasts. Our method achieves a high success
rate, reaching 94 % even when applying interventions at one site per step, albeit with a moderate increase in the
intervention cost. Furthermore, the success rate increases to 99.4 % for interventions at two sites. Unlike control-
theoretic approaches adopting a top–down strategy, which determine inputs by optimizing cost functions, our
bottom–up approach mitigates extreme events by effectively utilizing limited intervention options.

1 Introduction

Global warming has likely increased the frequency and inten-
sity of extreme weather events worldwide, such as heatwaves
and heavy rainfall (IPCC, 2023). These threats are expected
to escalate during the present century. Efforts to mitigate
the risks posed by extreme events include advancements in
weather forecasting and the development of disaster-resilient
infrastructures. More ambitious projects have focused on ac-
tive manipulation of weather systems. A prominent exam-
ple is Project STORMFURY conducted by the U.S. govern-
ment from 1962 to 1983, which aimed to weaken tropical
cyclones by seeding them with silver iodide, although the
initially promising results of this study were questioned in
later studies (Willoughby et al., 1985).

Artificial weather control faces several fundamental chal-
lenges. First, meso- or synoptic-scale weather systems, such

as stationary rainbands and tropical cyclones, are signifi-
cantly larger in scale than what we can feasibly influence
through interventions. Second, weather systems are inher-
ently chaotic and sensitive to the initial conditions, lim-
iting system predictability. Observational uncertainties and
discrepancies between models and reality further increase
the complexity (Palmer and Hagedorn, 2006). Consequently,
predicting the outcomes of interventions is inherently diffi-
cult. This paper proposes a mathematical approach to allevi-
ate these challenges.

Several mathematical algorithms have been proposed for
mitigating extreme weather events through interventions.
Henderson et al. (2005) proposed a method using the four-
dimensional variational data assimilation to identify the
smallest temperature increments required for minimizing
wind damage during a hurricane. Miyoshi and Sun (2022)
proposed a framework called the Control Simulation Exper-
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iment (CSE), which extends the concept of observing sys-
tem simulation experiments to investigate the controllability
of dynamical systems under observational uncertainty. Their
CSE successfully prevents regime transitions in the Lorenz
63 model, whereas the CSE application of Sun et al. (2023)
reduces extreme events in the Lorenz 96 model. More re-
cently, Kawasaki and Kotsuki (2024) introduced the model
predictive control (MPC) within the CSE and applied it to
controlling the Lorenz 63 model (see also a paper by Nagai
et al., 2024). However, control methods such as the MPC are
computationally expensive. The computational cost of de-
termining the optimal inputs can bottleneck practical appli-
cations of high-dimensional dynamical systems such as nu-
merical weather predictions models. To overcome this bot-
tleneck, Sawada (2024a, b) introduced an ensemble Kalman
filter–based control method, which efficiently finds local and
intermittent interventions, and applies it to controlling the
Lorenz 63 and 96 models.

Following these previous works, we explore a mathemati-
cal algorithm for mitigating extreme events, using the Lorenz
96 model as a testbed. Practical weather control applications
must be feasibly implementable. Given the large scales of
weather systems and the limited energy available for control,
interventions will be typically constrained to local sites and
specific timepoints (Sawada, 2024b). The Lorenz 96 model
is a minimal mathematical system for investigating feasi-
ble control strategies in spatially extended chaotic systems
(Lorenz, 1996; Sun et al., 2023; Sawada, 2024b). Sun et al.
(2023) proposed a method for mitigating extreme events in
the Lorenz 96 model. Their method is primarily designed to
apply control inputs across all grid variables. When control
is limited to a single site, the success rate of their method de-
clines to approximately 60 %, at least in a specific setting. To
improve the results of Sun et al. (2023), we propose a new
methodology that identifies effective local interventions.

Control-theoretic methods such as MPC are top–down ap-
proaches that compute optimal control inputs by minimizing
a cost function subject to given constraints (Kawasaki and
Kotsuki, 2024; Nagai et al., 2024; Ohtsuka et al., 2025). In
contrast, the present study pursues a bottom–up approach to
mitigate extreme events using a finite set of available inter-
vention options. We assume that available options for human
intervention in weather will remain limited for the foresee-
able future, given the time required for technological ad-
vancements. Hence, we generate ensemble forecasts for a
limited set of local intervention scenarios and implement the
most effective intervention based on these forecasts. To ac-
count for the chaotic uncertainty in predictions, the selection
of the “best” scenario is updated over time. The large num-
ber of potential intervention scenarios is reduced to a man-
ageable subset to ensure computational feasibility. Despite
this constraint, our method mitigates extreme events in the
Lorenz 96 model with high success rates.

The remainder of this article is organized as follows. The
Lorenz 96 model, the local ensemble transform Kalman fil-

ter (LETKF)-based data assimilation method, and our control
algorithm for extreme events are explained in Sect. 2.1–2.3,
respectively. Section 3 presents the results, and Sect. 4 dis-
cusses the limitations and potential extensions of our method.
We also highlight the similarity between our method and the
so-called rare event algorithms, which efficiently simulate
events with extremely low probabilities (Ragone et al., 2018;
Wouters et al., 2023; Cini et al., 2024; Sauer et al., 2024).

2 Methods

2.1 Lorenz 96 model and extreme events

The toy model of weather systems proposed by Lorenz
(1996) contains J variables, X1, . . . , XJ and is governed by

dXj
dt
= (Xj+1−Xj−2)Xj−1−Xj +F,

where F is a constant parameter. Periodic boundary con-
ditions XJ−1 =X−1, XJ =X0, XJ+1 =X1 are assumed.
The variables Xj can be interpreted as unspecified meteo-
rological quantities measured along a circle of constant lati-
tude of the Earth. For common parameter values J = 40 and
F = 8 (Lorenz and Emanuel, 1998), the dynamics are chaotic
(Fig. 1a). The time unit is commonly assumed as 5 days (d)
(Lorenz and Emanuel, 1998). The error doubling time of
the Lorenz 96 model is then comparable to those of mod-
ern General Circulation Models. The Lorenz 96 equation is
integrated using the forth-order Runge–Kutta method with a
time step of 1t = 0.01 corresponding to 1.2 hours (h).

The Lorenz 96 model exhibits sporadic “extreme events”
characterized by very high values. The method of Sun et al.
(2023) aims to prevent values of the variable Xj above a
threshold of 14.217. On average, the maximum values across
all the sites during each 6 h period (hereafter referred to as
the 6 h maxima) exceed the threshold twice per year (Fig. 1a
and b). Herein, we adopt the same threshold (14.217) to en-
able a straightforward comparison between our results and
theirs. The histogram of 6 h maxima is shown in Fig. 1c.

2.2 Data assimilation method

Data assimilation combines model simulations and noisy
observations to estimate the state of a dynamical system.
Data assimilation is essential in weather forecasting and was
thus employed in previous weather control studies. As in
Sun et al. (2023), we adopt the Local Ensemble Transform
Kalman Filter (LETKF) (Hunt et al., 2007), a variant of the
Ensemble Kalman Filter, for data assimilation due to its ef-
ficiency and scalability in high-dimensional settings such as
numerical weather prediction models (Lien et al., 2017).

Herein, we briefly outline the LETKF (Hunt et al., 2007;
Kotsuki and Bishop, 2022). Consider a dynamical systems
model providing ensemble forecasts {xb(i)

}
m
i=1, where m is

the number of ensemble members and the suffix b stands for
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Figure 1. Extreme events in the Lorenz 96 model: (a) spatiotemporal variations of Xj (t) over 365 d. The two arrows indicate extreme
events exceeding the threshold value 14.217. (b) Time series of the maximum value across 40 sites at each time step. The horizontal red line
represents the threshold 14.217. (c) Histogram of 6 h maxima, representing the maximumX-values across all the sites within each 6 h period.

background or forecast. The LETKF transforms the ensem-
ble forecasts {xb(i)

}
m
i=1 into an analysis ensemble {xa(i)

}
m
i=1,

whose mean xa minimizes the following cost function:

J (x)= (x−xb)T (Pb)−1(x−xb)+(y−H (x))TR−1(y−H (x)),

where xb is the forecast mean, Pb is the forecast-error covari-
ance matrix, y and H denote the observation vector and ob-
servation operator, respectively, and R is the observational-
error covariance matrix (here assumed as diagonal). The first
term in J (x) penalizes deviations of the analysis mean from
the forecast, weighted by the confidence in the forecast.
The second term penalizes deviations from the observations,
weighted by the confidence in the observations.

The LETKF minimizes the cost function J (x) through
an ensemble-based approach and localization principles.
The background error covariance is approximated as Pb

≈
1

m−1 Xb(Xb)T , where Xb is the matrix of background en-
semble perturbations with the ith column given by xb(i)

−

xb. Equivalently, this expression can be written as Pb
≈

Zb(Zb)T , where Zb
= Xb/

√
m− 1. Based on observations,

the analysis ensemble is updated in the reduced-dimensional
subspace spanned by Zb. In particular, the LETKF updates
the analysis on a grid by grid basis as

Xa
= xb · 1+ZbT,

T= P̃a(Yb)TR−1
loc(y−H (xb)) · 1+

√
m− 1(P̃a)1/2.

Here, 1 is a row vector of ones, and Yb
≈ (H (Xb)−H (Xb) ·

1)/
√
m− 1. The matrix P̃a is derived as P̃a

=3D−13T

from eigenvalue decomposition (P̃a)−1
= I+(Yb)TR−1

locYb
=

3D3T . Further, the square root of P̃a is given as (P̃a)1/2
=

3D−1/23T . The matrix Rloc is the localized observation-
error covariance, which is also diagonal. When updating at

each grid point j , the ith diagonal element of R−1
loc is de-

fined as (R−1)ii exp
(
−
|i−j |2

2σ 2

)
if |i− j |< 2

√
10
3 σ and zero

otherwise. Here, σ is the localization parameter. Localizing
updates to relevant regions reduces the impact of spurious
correlations in covariance estimates. At site j , only the j th
row of the analysis ensemble Xa is updated using the trans-
form matrix T calculated at site j , respectively, and this lo-
cal update is performed for all the sites. Error covariance
underestimation is handled by a multiplicative covariance
inflation as Xb

← ρXb, where ρ > 1 is the inflation coeffi-
cient (Kotsuki and Bishop, 2022). In sum, the LETKF per-
forms data assimilation locally and operates within a low-
dimensional ensemble space, thereby avoiding expensive
full-space computations and reducing the computational cost
in high-dimensional systems. Although we use the LETKF in
this study, comparable control performance may be achieved
with other data assimilation methods, such as the Serial En-
semble Square Root Filter, provided that state estimation is
performed as accurately as with the LETKF (Miyoshi, 2005).

Following Sun et al. (2023), we observe the system at 6 h
intervals (i.e., at every five time steps with 1t = 0.01). The
observation is modeled as yj (t)=H (Xj (t))+ εj (t), where
εj (t) is independent white Gaussian noise with zero mean
and unit variance. The linear observation operator H (Xj )=
Xj is assumed at all 40 sites unless otherwise stated (partial
observations are considered in Sect. 3.4). Every 6 h, having
obtained the observations y, we assimilate the data using the
LETKF to obtain the analysis ensemble {xa(i)

}
m
i=1, provid-

ing the initial condition of subsequent ensemble forecasts (cf.
Fig. 2b-i). Unless otherwise stated, we set m= 10, σ = 6.0,
ρ = 1.03, and R as the identity matrix. Applying LETKF
with these parameters, the root mean square error between
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Figure 2. Method for reducing extreme events. (a) Intervention-off scenario and intervention scenarios at 40 possible intervention sites. Each
cross mark (“×”) indicates the addition of a nonzero input at one of the 40 sites at each time step. In the intervention-off scenario (a-i), any
intervention is turned off after 6 h. In an intervention scenario (a-ii), a new intervention site is selected after 6 h. The lower panels in both (a-i)
and (a-2-ii) show the case where no intervention was selected in the previous 6 h cycle. (b) Key steps of the method: (b-i) data assimilation
using the LETKF, (b-ii) risk assessment of a T -d ensemble forecast under the intervention-off scenario, and (b-iii) multi-scenario ensemble
forecasts and interventions. Under the best scenario (blue), the worst member in the T -d ensemble forecast (thick arrow) is most effectively
mitigated. See text for details.

the analysis mean and the true state is 0.1973, comparable to
that of Sun et al. (2023) (0.1989).

2.3 Intervention method for reducing extreme events

To mitigate extreme events in the Lorenz 96 model, we intro-
duce an intervention input u(t)= (u1(t),u2(t), . . .,uJ (t))T

into the system as

dXj
dt
= (Xj+1−Xj−2)Xj−1−Xj +F − uj (t). (1)

The sign preceding uj (t) is negative by default. To identify
effective intervention inputs, we perform ensemble forecasts
assuming several sequences of intervention inputs u(t) called
intervention scenarios (Fig. 2a).

The intervention-off scenario planned during s ≤ t < s+
6 h is given by

ui(t)= ui(s) for s ≤ t < s+ 6h,

and ui(t)= 0 for t ≥ s+ 6h. (2)

Here ui(s) can be either zero or non-zero depending on the
preceding scenario chosen during s−6h≤ t < s, but any in-

tervention is switched off from t = s+ 6 h. The one-site in-
tervention scenario at site j planned during s ≤ t < s+6 h is
given by

ui(t)= ui(s) for s ≤ t < s+ 6h,

and ui(t)=

{
u if i = j,

0 if i 6= j
for t ≥ s+ 6h, (3)

where u is a constant parameter representing the actual in-
tervention size. The 6 h interval s ≤ t < s+ 6 h corresponds
to the period between successive observations, during which
the input remains constant at its value u(s) determined in the
previous 6 h interval. Within each 6 h interval, we evaluate
intervention scenarios implemented after 6 h. Variants of the
one-site intervention scenarios are introduced in Sect. 3.2 and
3.3.

We now outline our method for reducing extreme events
(Fig. 2). The implementation steps of the method are given
in Appendix A. At 6 h intervals, we observe the system and
update the analysis ensemble using the LETKF (Fig. 2b-i).
The updated analysis ensemble serves as the initial condi-
tions for both the risk assessment (Fig. 2b-ii) and the multi-
scenario ensemble forecasts (Fig. 2b-iii), which are described
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Figure 3. A snapshot of the CSE with input size u= 1 and prediction horizon T = 7 d: (a) 7 d forecast from day 123 under the intervention-
off scenario. The 10 lines represent the time evolution of the maximum values across the 40 sites, max1≤j≤40X̃j (t), for each of the 10
ensemble members. As one ensemble member crosses the threshold 14.217, ALERT is set to ON. (b) Same as (a) but for 40 different
intervention scenarios. The best scenario is the intervention at site 35 (blue). (c) Predicted 6 h maximum over the ensuing 7 d. Each point is
plotted at the time of forecasting. (d) Sites of predicted extremes (red circles) and interventions (crosses) during each 6 h cycle. Note that the
actual intervention is implemented 6 h after the forecast, and the optimal intervention site is updated at 24 h intervals. (e) Controlled nature
run, successfully maintained below the threshold of 14.217.

in detail below. From the start of the subsequent 6 h cycle, we
implement the new scenario in the operations.

2.3.1 Risk assessment

To avoid unnecessary interventions in the system, we pre-
assess the risk of extreme events using a T -d ensemble fore-
cast under the intervention-off scenario, based on the latest
analysis ensemble (Fig. 2b-ii). Focusing on a prediction hori-
zon of T = 7 d, we examine the dependence of the success
rate on T . A binary flag “ALERT” signals the need for con-
trol operations. If ALERT= OFF and an extreme event ex-
ceeding the upper threshold 14.217 is predicted within T d in

any ensemble member, we set ALERT= ON. If ALERT=
ON and the maximum value across all the ensemble mem-
bers within T d is below the lower threshold 13.5, we set
ALERT= OFF. Otherwise the flag is unchanged.

2.3.2 Multi-scenario ensemble forecasts and local
intervention

The action taken depends on the risk assessment result.
If ALERT= OFF, we operate the intervention-off scenario
given by Eqs. (1) and (2) in both the nature run and the en-
semble forecast in the data assimilation using the LETKF.
If ALERT= ON, we perform T -d ensemble forecasts un-
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Figure 4. CSE result of intervening at a single site among 40 sites.
Plotted are histograms of the 6 h maxima during the controlled
(blue) and uncontrolled (white) nature runs. The input size u is 1.6.
The vertical red line represents the 14.217 threshold below which
the state variables are intended to be maintained. The success rate
is 94.2 %.

der possible intervention scenarios (Fig. 2b-iii). These multi-
scenario ensemble forecasts are conducted less frequently (at
24 h intervals) than the 6 h data assimilation because multi-
scenario ensemble forecasts are computationally expensive
and the forecast results change relatively infrequently. When
planning a one-site intervention among the 40 sites, 400 fore-
casts with different combinations of 10 ensemble members
and 40 intervention scenarios (i.e., sites) are performed. In
each scenario, we obtain 10 outcomes corresponding to the
10 ensemble members. From the perspective of risk hedg-
ing, we assume that the best intervention scenario minimizes
the maximum value across all the sites and ensemble mem-
bers over the next T d. Other criteria, such as minimizing
the ensemble-mean of the maximum value across all sites,
are also possible. If any intervention scenario with nonzero u
cannot reduce the maximum from that of the intervention-off
scenario, the intervention-off scenario becomes the best sce-
nario. The selected best scenario is then operated from the
next 6 h cycle.

3 Results

This section presents the results of CSE using our method.
A single CSE spans 1010 years. Transients are eliminated
by excluding the first 10 years, and analysis is performed by
dividing the subsequent 1000 years (730 000 steps) into ten
100 year segments. The performance scores are assessed in
each segment, and the standard deviations of the scores are
represented as error bars in the corresponding figures (we
have verified that similar error bars are obtained using an

alternative sampling approach in which one hundred 100-
year samples are extracted from the 1000-year series using a
10-year sliding window). As the error doubling time is 0.42
units, i.e., 42 steps, the segments are effectively independent.
Following Sun et al. (2023), the simulation run controlled by
intervention inputs is called the controlled nature run.

Our control strategies are evaluated in terms of three met-
rics. The first metric is the success rate, defined as follows
(Sun et al., 2023):

success rate= 1−
(number of 6 h intervals in 100 years with extreme events)

200
.

Here, the denominator is set to 200 because two extreme
events per year are expected at a threshold of 14.217. Al-
ternatively, the success rate can be defined by the ratio of ex-
treme event frequencies with and without control, but both
definitions yield nearly identical results. The second met-
ric is the intervention energy defined by the sum of dis-
placement norms induced by intervention inputs (Sun et al.,
2023). It is mathematically written as

∑
t‖Xintervened(t +

1t)−Xunintervened(t +1t)‖, where Xintervened(t +1t) and
Xunintervened(t +1t) are one-step-ahead values for the cases
with and without intervention inputs, respectively, both com-
puted from the controlled nature run Xintervention(t). For one-
site intervention, this metric is roughly estimated as

intervention energy≈ u1t
× (number of steps with nonzero intervention).

The third metric is the number of scenario changes. It mea-
sures the frequency of changes in the control input vector,
u(t), per year in the controlled nature run, serving as a mea-
sure of operational cost. This metric is particularly relevant
when implementing interventions by obstacles requiring no
energy postplacement.

Obviously, other types of cost functions can be
considered–for example, changing the intervention site to a
more distant location may incur higher costs. However, in
this study, we focus on the three performance metrics men-
tioned above.

3.1 One-site intervention among 40 sites

First, we consider the simplest intervention case at a single
site among the 40 sites at each time step. Figure 3 presents
an example snapshot of the CSE with a prediction horizon of
T = 7 d. An extreme event exceeding the 14.217 threshold is
detected in the 7 d ensemble forecast conducted at t = 123,
triggering ALERT= ON (Fig. 3a). Next, 7 d ensemble fore-
casts are performed for 40 scenarios, each targeting a dif-
ferent site (Fig. 3b). At t = 123, the intervention at site 35
most effectively minimized the maximum across the sites
and ensemble members over the ensuing 7 d. Therefore, the
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Figure 5. Performance metrics versus input size u of the proposed control method at a single intervention site: (a) success rate, (b) interven-
tion energy, and (c) number of scenario changes. The prediction horizon T is 7 d. Points represent the average values, and error bars indicate
one standard deviation across 10 experimental results with different initial conditions. The horizontal dashed lines show the reference scores
obtained under a specific setting in the work by Sun et al. (2023).

Figure 6. Performance metrics versus prediction horizon T of the proposed control method at a single intervention site: (a) success rate,
(b) intervention energy, and (c) number of scenario changes. Results are shown for different input sizes u= 1, 1.6, and 2. The horizontal
dashed lines are the reference scores obtained under a specific setting in the work by Sun et al. (2023).

intervention at site 35 is implemented from the next 6 h cy-
cle (Fig. 3d). The optimal intervention site is updated at 24 h
intervals. The intervention is stopped once all 7 d ensemble
forecasts fall below the lower threshold of 13.5. As a re-
sult, the 6 h maxima of the controlled nature run (blue) were
successfully maintained below the upper threshold of 14.217
(Fig. 3e).

Figure 4 compares the histograms of 6 h maxima in the
controlled and uncontrolled nature run for an input size of
u= 1.6 and a prediction horizon of T = 7 d. The extreme
events are mitigated at a success rate of 94 %, largely exceed-
ing the ∼ 60 % success rate achieved by Sun et al. (2023) at
a specific setting of 4 d for the prediction horizon and 0.7
for the perturbation-size coefficient α. Maintaining T = 7 d,
the success rate initially increases with increasing input size
u and eventually saturates at around 94 % when u exceeds
∼ 1.6 (Fig. 5a). However, increasing the input size u in-
creases the required intervention energy because a larger
force induces a greater displacement of the state, highlight-

ing a success–cost trade-off. At u & 0.5, our method requires
higher intervention energy than Sun et al. (2023), though
it remains below three times the energy required by their
method (Fig. 5b). With the same intervention energy (in the
case u= 0.5), our success rate (∼ 45 %) is lower than 60 %
reported in Sun et al. (2023). Fortunately, the number of sce-
nario changes decreases with increasing input size u, reflect-
ing the corresponding magnitude increase of the interven-
tions (Fig. 5c). The frequency of scenario changes is reason-
ably small (20–27 yr−1).

The intervention size u= 1.6 that achieves successful con-
trol (Fig. 4) is not particularly small relative to the parame-
ter F = 8 or the typical state range −12 .Xi . 16 (Fig. 1a).
This corresponds to an intervention-induced displacement
at one step, with a size of u1t = 0.016, where 1t = 0.01.
In comparison, Sun et al. (2023) employed intervention-
induced displacements of size αD0, ranging from 0.01989
to 0.1989. Thus, the intervention magnitude in our study is
comparable to or smaller than that in Sun et al. (2023).
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Figure 7. Performance of the proposed control method versus number of intervention-eligible sites at a single intervention site: (a) Success
rate, (b) intervention energy, and (c) number of scenario changes. u= 2 and T = 7 d.

Figure 8. CSE result of intervening at two sites near a predicted
weather extreme. Plotted are histograms of 6 h maxima during the
controlled natural (blue) and uncontrolled (white) nature runs with
u= 2.0 and T = 7 d. The vertical red line represents the 14.217
threshold below which the state variables are intended to be main-
tained. The success rate is 99.4 %.

Next, the performance dependence on the prediction hori-
zon T was examined for a fixed input size u. Increasing
the prediction horizon T generally increases the success rate
(Fig. 6a) but disadvantageably increases both the interven-
tion energy and number of scenario changes (Fig. 6b and c),
again highlighting the success–cost trade-off.

3.2 One-site intervention near the predicted extreme

Assuming real-world applications, interventions across all
sites could be neither feasible nor necessary. Therefore, we
restrict interventions to the vicinity of the site of a pre-
dicted extreme event under the intervention-off scenario. Fig-
ure 7 plots the three control-performance measures for dif-

ferent numbers of neighboring sites where interventions are
allowed {1, 3, 7, 11, 21, 31, 40}. Interestingly, the success
rate is maximized when the neighborhood size is 21, approx-
imately half the total number of sites. From this result, we
inferred that restricting the number of intervention sites pre-
vents ineffective interventions at sites far from the extreme
event.

3.3 Two-site intervention in the vicinity of a predicted
extreme

The previous subsections were limited to single-site inter-
ventions. This subsection analyzes the outcomes of interven-
tion at two sites. Figure 8 shows the CSE results in a case
with at most two intervention sites among 11 self-inclusive
neighbors, where u= 2 and T = 7 d. The total number of
possible scenarios is 67, comprising

(
11
2

)
combinations of

two intervention sites, 11 single-site interventions, and the
no-intervention scenario. The success rate reaches 99.4 %.
Surprisingly, only a slight increase in the input dimensions
efficiently improves the control performance.

Next, we examine the sensitivity of the results to num-
ber of intervention-eligible sites (Fig. 9). The success rate
remains at 98 %–99 % when the number of intervention-
eligible sites is five or higher and remains high (92.7 %) even
when the eligible-site number declines to three. Meanwhile,
the interaction energy of multisite intervention increases by
only around 15 %–25 % from that of single-site interaction
(compare Fig. 9 with Fig. 7).

3.4 Partial observation

In real-world applications, complete observations of all state
variables are often lacking. Therefore, this section investi-
gates the performance of our method under partial observa-
tions. Following Sun et al. (2023) and Sawada (2024b), we
assume that the state of the system can be observed at 20 sites
with odd indices.
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Figure 9. Performance metrics of the proposed control method with two intervention sites versus number of intervention-eligible sites:
(a) success rate, (b) intervention energy, and (c) number of scenario changes. u= 2 and T = 7 d.

We first consider eligible intervention at a single site
among 40 sites. Figure 10 compares the performance results
of the partial and complete observations as functions of input
size u. Partial observations decrease the success rate by 26 %
at most over 0≤ u≤ 2, while increasing the intervention en-
ergy and number of scenario changes by 57 % and 68 % at
most, respectively.

Second, we compare the performance results of partial and
full observations when intervening at two sites among the 40
sites. Figure 11 plots the results as functions of number of
intervention-eligible sites at u= 2 and T = 7 d. Partial ob-
servations decrease the success rate by a small fraction (5 %–
10 %) from that of complete observations (Fig. 11a), but in-
crease the intervention energy and number of annual scenario
changes (Fig. 11b and c). Therefore, the present method han-
dles partial observations with a high success rate while it
incurs higher control costs. The success rate can be further
improved by slight re-tuning of the LETKF parameters. For
the localization length scale of σ = 5.9 and the number of
ensemble members m= 11, the reduction of the success rate
due to partial observation becomes minimal (only 0 %–4 %)
(Fig. 11a, triangle), while the re-tuning has little effect on
intervention energy and number of annual scenario changes
(Figs. 11b and c, triangle).

4 Summary and discussions

Herein, we proposed a bottom–up approach that reduces ex-
treme events in the Lorenz 96 model with limited inter-
vention options. Alongside data assimilation, we performed
T -d ensemble forecasts under the intervention-off scenario.
When the T -d ensemble forecasts included an extreme event,
we explored the best scenario that maximally mitigated the
highest extreme value produced by the ensemble members
through multi-scenario ensemble forecasts. We then imple-
mented the identified best scenario. The success rate of our
method was approximately 94 % when perturbing one site
per step, and 99.4 % when perturbing two sites per step. Un-

der the one-site intervention setting, our method improved
the success rate of Sun et al. (2023) (60 %) by approximately
34 %, although it required several times more intervention
energy. Several factors may account for this significant im-
provement. In Sun et al. (2023), the perturbation is scaled be-
tween the worst and best trajectories, implying that the con-
trol input is not optimized. In contrast, our method selects
the optimal intervention scenario from available options. It
should be mentioned that the reported success rate of ap-
proximately 60 % in Sun et al. (2023) may not be fully opti-
mized with respect to the chosen parameters. Moreover, with
the same intervention energy (e.g., for u= 0.5), our method
yields a lower success rate of approximately 45 %.

In addition to its high success rate, our method also ex-
hibited robustness to missing observations, achieving high
success rates even when half of the observations were un-
available (Fig. 11). Sensitivity analyses varying the method
parameters revealed the success–cost trade-off. In the actual
implementation, the parameters should be chosen to maxi-
mize the success rate while adhering to constraints on inter-
vention energy, the number of scenario changes per year, and
other relevant factors. Interestingly, both the maximization of
the success rate and the minimization of intervention energy
were achieved at an intermediate number of intervention-
eligible sites (Fig. 7a). Limiting these sites not only helps
avoid ineffective interventions but also reduces the computa-
tional cost of optimizing the intervention scenario.

The success rate of the method rather smoothly changes
with the intervention size u (Figs. 5 and 10). However, when
mitigating each extreme event, the success of mitigation can
strongly depend on the input size u. To demonstrate the sen-
sitivity to u, Fig. 12 plots the extreme value observed over a
certain time interval as a function of u in an extreme-event
instance. The maximum value drastically changes between
u= 1.21 and u= 1.22 because the best intervention sites dif-
fer between the two cases, and this difference leads to differ-
ent trajectory evolutions. Therefore, even if controlling an
extreme event is predicted to fail at a particular value of the
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Figure 10. Comparison of performance metrics versus input size u in cases of full and partial observations during single-site intervention
among 40 sites: (a) success rate, (b) intervention energy, and (c) number of scenario changes. T = 7 d.

Figure 11. Comparison of performance metrics versus the number of intervention-eligible sites under full and partial observations during
two-site interventions: (a) success rate, (b) intervention energy, and (c) number of scenario changes. Here, u= 2 and T = 7 d. For the partial
observation case, we show results using the default LETKF parameters with localization length scale σ = 6.0 and ensemble size m= 10
(diamonds, solid line), as well as results using re-tuned parameters σ = 5.9 and m= 11 (triangles, dashed line). In the latter case, the
parameters are re-tuned to maximize the success rate.

input size u, successful control may be achieved with a slight
additional increase of u. This complex behavior arises from
the interplay between algorithmic thresholds and nonlinear
trajectory evolutions.

Our bottom-up approach may be particularly well-suited
when intervention options can be limited or discretized.
In contrast, top-down methods such as MPC are generally
more effective when intervention options are continuous or
nearly unlimited. Moreover, our method is relatively simple
to implement and highly interpretable, whereas methods like
MPC, although typically more computationally demanding,
can provide mathematically optimal control solutions under
given constraints.

In this work, we identified the best scenario among mul-
tiple candidates through a brute-force grid search, which
limits the number of evaluable scenarios. To overcome this
limitation, optimization techniques such as Bayesian opti-
mization, genetic algorithms, and particle swarm optimiza-
tion, which can efficiently identify effective intervention sce-

narios, will be explored in future work. Moreover, recent
artificial-intelligence-based weather prediction models may
enlarge the number of potential intervention scenarios (Price
et al., 2025; Kotsuki et al., 2025).

Our control method is analogous to rare event simulation
(RES), which simulates rare events with probabilities too
small to be sampled through standard Monte Carlo simula-
tions (Ragone et al., 2018; Wouters et al., 2023; Cini et al.,
2024; Sauer et al., 2024). A type of RES called the genealogi-
cal particle analysis (Del Moral and Garnier, 2005) generates
multiple system trajectories with small, naturally occurring
perturbations (mutations) that preserve the statistical prop-
erties of the system. A subset of trajectories that approach
the target event is selected and replicated with appropriate
weights while all others are terminated (selection). By iterat-
ing the mutation and selection processes, this RES efficiently
simulates rare events and estimates their true probabilities
based on the number of simulated rare events adjusted by
the assigned weights. The mutation and selection processes
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Figure 12. Sensitivity of the present control method to size of the control input u. Plotted is the 6 h maximum of the controlled nature run
over a certain time horizon 218< t < 228 as a function of u. The extreme value largely depends on u, especially between u= 1.21 and
u= 1.22. The dashed line represents the 14.217 threshold.

in RES are similar to our multi-scenario ensemble forecasts
and the selection of intervention scenarios, respectively. In
fact, our method was inspired by the RES framework, which
obtains a rare event through a sequence of small perturba-
tions. Analogously, our bottom–up approach mitigates ex-
treme events through a sequence of limited intervention op-
tions.

At present, our work is a proof of concepts demonstrated
on a toy model of weather systems. The method should be
tested in higher-dimensional models such as realistic numer-
ical weather models and in situations with model uncertainty.

Appendix A: Step-by-step description of the control
simulation experiment

Denote by M(s)=max1≤j≤J, s≤t<s+T d, 1≤i≤mX̃
(i)
j (t) the

predicted maximum value across all the sites and ensemble
members over the next T d from time s. The following oper-
ations are performed at 6 h intervals.

1. At time s, we have the analysis ensemble {xa(i)(s)| i =
1, . . .,m} with m members (e.g., m= 10). Starting from
{xa(i)(s)| i = 1, . . .,m}with the input u(t) planned in the
previous 6 h interval, we integrate Eq. (1) to obtain the
background ensemble {xb(i)(s+ 6h)| i = 1, . . .,m}.

2. Starting from the true state x(s), compute the con-
trolled nature run under the same input u(t). We
obtain x(s+ 6 h) and the 6 h maximum defined by
max1≤j≤J, s≤t<s+6 hXj (t).

3. Generate noisy observations yj (s+6h)=Xj (s+6h)+
εj , where εj denotes independent white Gaussian noise
with zero mean and unit variance.

4. Assimilate the data using the LETKF described in
Sect. 2.2, obtaining the analysis ensemble {xa(i)(s+
6h)| i = 1, . . .,m} at s+ 6 h.

5. Perform a T -d ensemble forecast under the
intervention-off scenario (Sect. 2.3). Starting from
{xa(i)(s)| i = 1, . . .,m} with the input in Eq. (2),
integrate Eq. (1) to yield a T -d forecast X̃(t) over
s ≤ t < s+ T d.

6. If ALERT flag is OFF and one of the ensemble mem-
bers in the T -d forecast exceeds the upper threshold
14.217 (that is, M(s)> 14.217), set ALERT=ON and
ELAPSE=0 and go to step 9. Otherwise, proceed to step
7.

7. Else if ALERT flag is ON and all ensemble members
in the T -d forecast remain below the lower threshold
13.5 (that is, M(s)< 13.5), set ALERT=OFF, choose
the intervention-off scenario from the next 6 h cycle (t ≥
s+6 h), and return to step 1, advancing the time s by 6 h.
Otherwise, go to step 8.

8. Else if ALERT=ON, increment the elapsed time
counter (ELAPSE) by 1 and go to step 9.

9. If ALERT=ON and ELAPSE is zero or a multiple of
4 (that is, every 24 h), perform T -d ensemble forecasts
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of all intervention scenarios in Eq. (3). For each sce-
nario, obtain the maximum M(s). Choose the best sce-
nario on u(t) that minimizes M(s), including also the
intervention-off scenario, and return to step 1, advanc-
ing the time s by 6 h.

The algorithm starts from s = 0 with ALAERT=OFF,
ELAPSE=0, and u(0)= 0.
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