Articles | Volume 32, issue 4
https://doi.org/10.5194/npg-32-367-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/npg-32-367-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The stochastic skeleton model for the Madden–Julian Oscillation with time-dependent observation-based forcing
Noémie Ehstand
Instituto de Física Interdisciplinar y Sistemas Complejos (IFISC), CSIC-UIB, Campus Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain
present address: Institut Terre et Environnement de Strasbourg (ITES), Université de Strasbourg, 5 rue René Descartes, Strasbourg 67084, France
Reik V. Donner
Department of Water, Environment, Construction and Safety, Magdeburg-Stendal University of Applied Sciences, Breitscheidstraße 2, 39114 Magdeburg, Germany
Research Department IV-Complexity Science, Potsdam Institute for Climate Impact Research (PIK) – Member of the Leibniz Association, Telegrafenberg A31, 14473 Potsdam, Germany
Cristóbal López
Instituto de Física Interdisciplinar y Sistemas Complejos (IFISC), CSIC-UIB, Campus Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain
Marcelo Barreiro
Departamento de Ciencias de la Atmósfera y Física de los Oceanos, Instituto de Física, Facultad de Ciencias, Universidad de la República, Igua 4225, 11400 Montevideo, Uruguay
Emilio Hernández-García
CORRESPONDING AUTHOR
Instituto de Física Interdisciplinar y Sistemas Complejos (IFISC), CSIC-UIB, Campus Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain
Related authors
No articles found.
Alfredo Crespo-Otero, Damián Insua-Costa, Emilio Hernández-García, Cristóbal López, and Gonzalo Míguez-Macho
Earth Syst. Dynam., 16, 1483–1501, https://doi.org/10.5194/esd-16-1483-2025, https://doi.org/10.5194/esd-16-1483-2025, 2025
Short summary
Short summary
We evaluated two Lagrangian moisture tracking tools for computing moisture sources in precipitation events related to atmospheric rivers (ARs) and compared them against the Weather Research and Forecasting (WRF) model with water vapor tracers. Our results show that both tools (the Sodemann et al., 2008, and Dirmeyer and Brubaker, 1999, methodologies) present a systematic underestimation of remote sources. Implementing simple physics-based changes substantially improved both methods, narrowing the disparities among all approaches.
Ricarda Winkelmann, Donovan P. Dennis, Jonathan F. Donges, Sina Loriani, Ann Kristin Klose, Jesse F. Abrams, Jorge Alvarez-Solas, Torsten Albrecht, David Armstrong McKay, Sebastian Bathiany, Javier Blasco Navarro, Victor Brovkin, Eleanor Burke, Gokhan Danabasoglu, Reik V. Donner, Markus Drüke, Goran Georgievski, Heiko Goelzer, Anna B. Harper, Gabriele Hegerl, Marina Hirota, Aixue Hu, Laura C. Jackson, Colin Jones, Hyungjun Kim, Torben Koenigk, Peter Lawrence, Timothy M. Lenton, Hannah Liddy, José Licón-Saláiz, Maxence Menthon, Marisa Montoya, Jan Nitzbon, Sophie Nowicki, Bette Otto-Bliesner, Francesco Pausata, Stefan Rahmstorf, Karoline Ramin, Alexander Robinson, Johan Rockström, Anastasia Romanou, Boris Sakschewski, Christina Schädel, Steven Sherwood, Robin S. Smith, Norman J. Steinert, Didier Swingedouw, Matteo Willeit, Wilbert Weijer, Richard Wood, Klaus Wyser, and Shuting Yang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1899, https://doi.org/10.5194/egusphere-2025-1899, 2025
Short summary
Short summary
The Tipping Points Modelling Intercomparison Project (TIPMIP) is an international collaborative effort to systematically assess tipping point risks in the Earth system using state-of-the-art coupled and stand-alone domain models. TIPMIP will provide a first global atlas of potential tipping dynamics, respective critical thresholds and key uncertainties, generating an important building block towards a comprehensive scientific basis for policy- and decision-making.
Julianna Carvalho-Oliveira, Giorgia Di Capua, Leonard F. Borchert, Reik V. Donner, and Johanna Baehr
Weather Clim. Dynam., 5, 1561–1578, https://doi.org/10.5194/wcd-5-1561-2024, https://doi.org/10.5194/wcd-5-1561-2024, 2024
Short summary
Short summary
We demonstrate with a causal analysis that an important recurrent summer atmospheric pattern, the so-called East Atlantic teleconnection, was influenced by the extratropical North Atlantic in spring during the second half of the 20th century. This causal link is, however, not well represented by our evaluated seasonal climate prediction system. We show that simulations able to reproduce this link show improved surface climate prediction credibility over those that do not.
David Docquier, Giorgia Di Capua, Reik V. Donner, Carlos A. L. Pires, Amélie Simon, and Stéphane Vannitsem
Nonlin. Processes Geophys., 31, 115–136, https://doi.org/10.5194/npg-31-115-2024, https://doi.org/10.5194/npg-31-115-2024, 2024
Short summary
Short summary
Identifying causes of specific processes is crucial in order to better understand our climate system. Traditionally, correlation analyses have been used to identify cause–effect relationships in climate studies. However, correlation does not imply causation, which justifies the need to use causal methods. We compare two independent causal methods and show that these are superior to classical correlation analyses. We also find some interesting differences between the two methods.
Giorgia Di Capua, Dim Coumou, Bart van den Hurk, Antje Weisheimer, Andrew G. Turner, and Reik V. Donner
Weather Clim. Dynam., 4, 701–723, https://doi.org/10.5194/wcd-4-701-2023, https://doi.org/10.5194/wcd-4-701-2023, 2023
Short summary
Short summary
Heavy rainfall in tropical regions interacts with mid-latitude circulation patterns, and this interaction can explain weather patterns in the Northern Hemisphere during summer. In this analysis we detect these tropical–extratropical interaction pattern both in observational datasets and data obtained by atmospheric models and assess how well atmospheric models can reproduce the observed patterns. We find a good agreement although these relationships are weaker in model data.
Riccardo Silini, Sebastian Lerch, Nikolaos Mastrantonas, Holger Kantz, Marcelo Barreiro, and Cristina Masoller
Earth Syst. Dynam., 13, 1157–1165, https://doi.org/10.5194/esd-13-1157-2022, https://doi.org/10.5194/esd-13-1157-2022, 2022
Short summary
Short summary
The Madden–Julian Oscillation (MJO) has important socioeconomic impacts due to its influence on both tropical and extratropical weather extremes. In this study, we use machine learning (ML) to correct the predictions of the weather model holding the best performance, developed by the European Centre for Medium-Range Weather Forecasts (ECMWF). We show that the ML post-processing leads to an improved prediction of the MJO geographical location and intensity.
Tommaso Alberti, Reik V. Donner, and Stéphane Vannitsem
Earth Syst. Dynam., 12, 837–855, https://doi.org/10.5194/esd-12-837-2021, https://doi.org/10.5194/esd-12-837-2021, 2021
Short summary
Short summary
We provide a novel approach to diagnose the strength of the ocean–atmosphere coupling by using both a reduced order model and reanalysis data. Our findings suggest the ocean–atmosphere dynamics presents a rich variety of features, moving from a chaotic to a coherent coupled dynamics, mainly attributed to the atmosphere and only marginally to the ocean. Our observations suggest further investigations in characterizing the occurrence and spatial dependency of the ocean–atmosphere coupling.
Frederik Wolf, Aiko Voigt, and Reik V. Donner
Earth Syst. Dynam., 12, 353–366, https://doi.org/10.5194/esd-12-353-2021, https://doi.org/10.5194/esd-12-353-2021, 2021
Short summary
Short summary
In our work, we employ complex networks to study the relation between the time mean position of the intertropical convergence zone (ITCZ) and sea surface temperature (SST) variability. We show that the information hidden in different spatial SST correlation patterns, which we access utilizing complex networks, is strongly correlated with the time mean position of the ITCZ. This research contributes to the ongoing discussion on drivers of the annual migration of the ITCZ.
Rebeca de la Fuente, Gábor Drótos, Emilio Hernández-García, Cristóbal López, and Erik van Sebille
Ocean Sci., 17, 431–453, https://doi.org/10.5194/os-17-431-2021, https://doi.org/10.5194/os-17-431-2021, 2021
Short summary
Short summary
Plastic pollution is a major environmental issue affecting the oceans. The number of floating and sedimented pieces has been quantified by several studies. But their abundance in the water column remains mostly unknown. To fill this gap we model the dynamics of a particular type of particle, rigid microplastics sinking rapidly in open sea in the Mediterranean. We find they represent a small but appreciable fraction of the total sea plastic and discuss characteristics of their sinking motion.
Frederik Wolf, Ugur Ozturk, Kevin Cheung, and Reik V. Donner
Earth Syst. Dynam., 12, 295–312, https://doi.org/10.5194/esd-12-295-2021, https://doi.org/10.5194/esd-12-295-2021, 2021
Short summary
Short summary
Motivated by a lacking onset prediction scheme, we examine the temporal evolution of synchronous heavy rainfall associated with the East Asian Monsoon System employing a network approach. We find, that the evolution of the Baiu front is associated with the formation of a spatially separated double band of synchronous rainfall. Furthermore, we identify the South Asian Anticyclone and the North Pacific Subtropical High as the main drivers, which have been assumed to be independent previously.
Giorgia Di Capua, Jakob Runge, Reik V. Donner, Bart van den Hurk, Andrew G. Turner, Ramesh Vellore, Raghavan Krishnan, and Dim Coumou
Weather Clim. Dynam., 1, 519–539, https://doi.org/10.5194/wcd-1-519-2020, https://doi.org/10.5194/wcd-1-519-2020, 2020
Short summary
Short summary
We study the interactions between the tropical convective activity and the mid-latitude circulation in the Northern Hemisphere during boreal summer. We identify two circumglobal wave patterns with phase shifts corresponding to the South Asian and the western North Pacific monsoon systems at an intra-seasonal timescale. These patterns show two-way interactions in a causal framework at a weekly timescale and assess how El Niño affects these interactions.
Cited articles
Adler, R., Wang, J.-J., Sapiano, M., Huffman, G., Chiu, L., Xie, P. P., Ferraro, R., Schneider, U., Becker, A., Bolvin, D., Nelkin, E., Gu, G., and NOAA CDR Program: Global Precipitation Climatology Project (GPCP) Climate Data Record (CDR), Version 2.3 (Monthly), National Centers for Environmental Information [data set], https://doi.org/10.7289/V56971M6 (last access: 18 April 2023), 2016. a, b
Chen, G. and Wang, B.: Circulation Factors Determining the Propagation Speed of the Madden–Julian Oscillation, J. Climate, 33, 3367–3380, https://doi.org/10.1175/JCLI-D-19-0661.1, 2020. a
Chen, S. and Stechmann, S. N.: Nonlinear traveling waves for the skeleton of the Madden–Julian oscillation, Commun. Math. Sci., 14, 571–592, https://doi.org/10.4310/cms.2016.v14.n2.a11, 2016. a, b
Corral, A., Minjares, M., and Barreiro, M.: Increased extinction probability of the Madden-Julian oscillation after about 27 days, Phys. Rev. E, 108, 054214, https://doi.org/10.1103/PhysRevE.108.054214, 2023. a
Díaz, N., Barreiro, M., and Rubido, N.: Data driven models of the Madden-Julian Oscillation: understanding its evolution and ENSO modulation, npj Climate and Atmospheric Science, 6, https://doi.org/10.1038/s41612-023-00527-8, 2023. a, b, c
Ehstand, N.: Code and data for the stochastic skeleton model of the Madden-Julian oscilation with time-dependent observation-based forcing, digital.csic [code], https://doi.org/10.20350/digitalCSIC/17017, 2025. a, b, c
Huffman, G. J., Adler, R. F., Morrissey, M. M., Bolvin, D. T., Curtis, S., Joyce, R., McGavock, B., and Susskind, J.: Global Precipitation at One-Degree Daily Resolution from Multisatellite Observations, J. Hydrometeorol., 2, 36–50, https://doi.org/10.1175/1525-7541(2001)002<0036:gpaodd>2.0.co;2, 2001. a, b
Jeong, J.-H., Ho, C.-H., Kim, B.-M., and Kwon, W.-T.: Influence of the Madden-Julian Oscillation on wintertime surface air temperature and cold surges in east Asia, J. Geophys. Res.-Atmos., 110, D11104, https://doi.org/10.1029/2004jd005408, 2005. a
Jiang, X., Adames, A. F., Kim, D., Maloney, E. D., Lin, H., Kim, H., Zhang, C., DeMott, C. A., and Klingaman, N. P.: Fifty Years of Research on the Madden-Julian Oscillation: Recent Progress, Challenges, and Perspectives, J. Geophys. Res.-Atmos., 125, e2019JD030911, https://doi.org/10.1029/2019JD030911, 2020. a
Jones, C., Waliser, D. E., Lau, K. M., and Stern, W.: Global Occurrences of Extreme Precipitation and the Madden–Julian Oscillation: Observations and Predictability, J. Climate, 17, 4575–4589, https://doi.org/10.1175/3238.1, 2004. a
Juliá, C., Rahn, D. A., and Rutllant, J. A.: Assessing the Influence of the MJO on Strong Precipitation Events in Subtropical, Semi-Arid North-Central Chile (30°S), J. Climate, 25, 7003–7013, https://doi.org/10.1175/jcli-d-11-00679.1, 2012. a
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A., Reynolds, R., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Jenne, R., and Joseph, D.: The NCEP/NCAR 40-Year Reanalysis Project, B. Am. Meteorol. Soc., 77, 437–472, https://doi.org/10.1175/1520-0477(1996)077<0437:tnyrp>2.0.co;2, 1996 (data available at: https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html, last access: 18 April 2023). a, b
Kessler, W. S.: EOF Representations of the Madden–Julian Oscillation and Its Connection with ENSO, J. Climate, 14, 3055–3061, https://doi.org/10.1175/1520-0442(2001)014<3055:erotmj>2.0.co;2, 2001. a, b, c
Khouider, B., Majda, A. J., and Stechmann, S. N.: Climate science in the tropics: waves, vortices and PDEs, Nonlinearity, 26, R1, https://doi.org/10.1088/0951-7715/26/1/r1, 2013. a
Kiladis, G. N., Wheeler, M. C., Haertel, P. T., Straub, K. H., and Roundy, P. E.: Convectively coupled equatorial waves, Rev. Geophys., 47, RG2003, https://doi.org/10.1029/2008rg000266, 2009. a
Kim, H., Janiga, M. A., and Pegion, K.: MJO Propagation Processes and Mean Biases in the SubX and S2S Reforecasts, J. Geophys. Res.-Atmos., 124, 9314–9331, https://doi.org/10.1029/2019JD031139, 2019. a
Lim, Y., Son, S.-W., and Kim, D.: MJO Prediction Skill of the Subseasonal-to-Seasonal Prediction Models, J. Climate, 31, 4075–4094, https://doi.org/10.1175/JCLI-D-17-0545.1, 2018. a
Liu, Y., Bao, Q., He, B., Wu, X., Yang, J., Liu, Y., Wu, G., Zhu, T., Zhou, S., Tang, Y., Qu, A., Fan, Y., Liu, A., Chen, D., Luo, Z., Hu, X., and Wu, T.: Dynamical Madden–Julian Oscillation forecasts using an ensemble subseasonal-to-seasonal forecast system of the IAP-CAS model, Geosci. Model Dev., 17, 6249–6275, https://doi.org/10.5194/gmd-17-6249-2024, 2024. a
Madden, R. A. and Julian, P. R.: Description of Global-Scale Circulation Cells in the Tropics with a 40–50 Day Period, J. Atmos. Sci., 29, 1109–1123, https://doi.org/10.1175/1520-0469(1972)029<1109:dogscc>2.0.co;2, 1972. a
Majda, A. J. and Stechmann, S. N.: A Simple Dynamical Model with Features of Convective Momentum Transport, J. Atmos. Sci., 66, 373–392, https://doi.org/10.1175/2008JAS2805.1, 2009a. a
Majda, A. J. and Tong, X. T.: Geometric Ergodicity for Piecewise Contracting Processes with Applications for Tropical Stochastic Lattice Models, Commun. Pure Appl. Math., 69, 1110–1153, https://doi.org/10.1002/cpa.21584, 2016. a
Majda, A. J., Stechmann, S. N., Chen, S., Ogrosky, H. R., and Thual, S.: Tropical Intraseasonal Variability and the Stochastic Skeleton Method, Springer International Publishing, ISBN 9783030222475, https://doi.org/10.1007/978-3-030-22247-5, 2019. a
Moser, C., Chen, N., and Zhang, Y.: A Stochastic Conceptual Model for the Coupled ENSO and MJO, arXiv [preprint], https://doi.org/10.48550/arXiv.2411.05264, 2024. a
Ogrosky, H. R., Stechmann, S. N., and Majda, A. J.: Boreal summer intraseasonal oscillations in the MJO skeleton model with observation-based forcing, Dynam. Atmos. Oceans, 78, 38–56, https://doi.org/10.1016/j.dynatmoce.2017.01.001, 2017. a
Pohl, B. and Camberlin, P.: Influence of the Madden–Julian Oscillation on East African rainfall: II. March–May season extremes and interannual variability, Q. J. Roy. Meteor. Soc., 132, 2541–2558, https://doi.org/10.1256/qj.05.223, 2006. a
Silini, R., Barreiro, M., and Masoller, C.: Machine learning prediction of the Madden-Julian oscillation, npj Climate and Atmospheric Science, 4, https://doi.org/10.1038/s41612-021-00214-6, 2021. a
Stechmann, S. N. and Majda, A. J.: Identifying the Skeleton of the Madden–Julian Oscillation in Observational Data, Mon. Weather Rev., 143, 395–416, https://doi.org/10.1175/MWR-D-14-00169.1, 2015. a
Suematsu, T. and Miura, H.: Changes in the Eastward Movement Speed of the Madden–Julian Oscillation with Fluctuation in the Walker Circulation, J. Climate, 35, 211–225, https://doi.org/10.1175/jcli-d-21-0269.1, 2022. a
Tam, C.-Y. and Lau, N.-C.: Modulation of the Madden-Julian Oscillation by ENSO: Inferences from Observations and GCM Simulations, J. Meteorol. Soc. Jpn. Ser. II, 83, 727–743, https://doi.org/10.2151/jmsj.83.727, 2005. a, b, c
Thompson, D. B. and Roundy, P. E.: The Relationship between the Madden–Julian Oscillation and U. S. Violent Tornado Outbreaks in the Spring, Mon. Weather Rev., 141, 2087–2095, https://doi.org/10.1175/mwr-d-12-00173.1, 2013. a
Thual, S. and Majda, A. J.: A Suite of Skeleton Models for the MJO with Refined Vertical Structure, Mathematics of Climate and Weather Forecasting, 1, https://doi.org/10.1515/mcwf-2015-0004, 2015. a
Thual, S. and Majda, A. J.: A skeleton model for the MJO with refined vertical structure, Clim. Dynam., 46, 2773–2786, https://doi.org/10.1007/s00382-015-2731-x, 2016. a, b, c
Thual, S., Majda, A. J., and Stechmann, S. N.: Asymmetric intraseasonal events in the stochastic skeleton MJO model with seasonal cycle, Clim. Dynam., 45, 603–618, https://doi.org/10.1007/s00382-014-2256-8, 2015. a
Vallis, G. K.: Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation, Cambridge University Press, ISBN 9781107588417, https://doi.org/10.1017/9781107588417, 2017. a
Vitart, F., Cunningham, C., DeFlorio, M., Dutra, E., Ferranti, L., Golding, B., Hudson, D., Jones, C., Lavaysse, C., Robbins, J., and Tippett, M. K.: Sub-seasonal to Seasonal Prediction of Weather Extremes, chap. 17, in: Sub-Seasonal to Seasonal Prediction, edited by: Robertson, A. W. and Vitart, F., Elsevier, ISBN 978-0-12-811714-9, https://doi.org/10.1016/B978-0-12-811714-9.00017-6, pp. 365–386, 2019. a
Wei, Y. and Ren, H.-L.: Modulation of ENSO on Fast and Slow MJO Modes during Boreal Winter, J. Climate, 32, 7483–7506, https://doi.org/10.1175/jcli-d-19-0013.1, 2019. a, b
Wheeler, M. C. and Hendon, H. H.: An All-Season Real-Time Multivariate MJO Index: Development of an Index for Monitoring and Prediction, Mon. Weather Rev., 132, 1917–1932, https://doi.org/10.1175/1520-0493(2004)132<1917:aarmmi>2.0.co;2, 2004. a, b, c, d
White, A.: DYNAMIC METEOROLOGY | Primitive Equations, in: Encyclopedia of Atmospheric Sciences, edited by: Holton, J. R., Academic Press, Oxford, ISBN 978-0-12-227090-1, https://doi.org/10.1016/B0-12-227090-8/00139-1, pp. 694–702, 2003. a
Woolnough, S. J.: The Madden-Julian Oscillation, chap. 5, in: Sub-Seasonal to Seasonal Prediction, edited by: Robertson, A. W. and Vitart, F., Elsevier, ISBN 978-0-12-811714-9, https://doi.org/10.1016/B978-0-12-811714-9.00005-X, pp. 93–117, 2019. a, b
Zhang, C.: Madden–Julian Oscillation: Bridging Weather and Climate, B. Am. Meteorol. Soc., 94, 1849–1870, https://doi.org/10.1175/bams-d-12-00026.1, 2013. a, b, c
Zhang, C., Adames, A. F., Khouider, B., Wang, B., and Yang, D.: Four Theories of the Madden-Julian Oscillation, Rev. Geophys., 58, e2019RG000685, https://doi.org/10.1029/2019rg000685, 2020. a
Zhou, X., Wang, L., Hsu, P.-c., Li, T., and Xiang, B.: Understanding the Factors Controlling MJO Prediction Skill across Events, J. Climate, 37, 5323–5336, https://doi.org/10.1175/JCLI-D-23-0635.1, 2024. a
Short summary
The Madden–Julian Oscillation (MJO) is a large-scale tropical wave of enhanced and suppressed rainfall, slowly moving eastward along the equator and influencing the weather and climate globally. We study the MJO using a simplified model designed to capture its large-scale features. We introduce new, more realistic model inputs, show that this enhanced model successfully replicates key characteristics of the MJO, and identify some of its limitations.
The Madden–Julian Oscillation (MJO) is a large-scale tropical wave of enhanced and suppressed...