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Abstract. We analyze solutions to the stochastic skeleton model, a minimal non-linear oscillator model for the
Madden–Julian Oscillation (MJO). This model has been recognized for its ability to reproduce several large-scale
features of the MJO. In previous studies, the model’s forcings were predominantly chosen to be mathematically
simple and time-independent. Here, we present solutions to the model with time-dependent observation-based
forcing functions. Our results show that the model, with these more realistic forcing functions, successfully
replicates key characteristics of MJO events, such as their lifetime, extent, and amplitude, whose statistics agree
well with observations. However, we find that the seasonality of MJO events and the spatial variations in the MJO
properties are not well reproduced. Having implemented the model in the presence of time-dependent forcings,
we can analyze the impact of temporal variability at different timescales. In particular, we study the model’s
ability to reflect changes in MJO characteristics under the different phases of El Niño–Southern Oscillation
(ENSO). We find that it does not capture significant differences in the studied characteristics of MJO events in
response to differences in conditions during El Niño, La Niña, and neutral ENSO.

1 Introduction

The Madden–Julian Oscillation (MJO; Madden and Julian,
1972) is the dominant component of intraseasonal variabil-
ity in the tropics (Woolnough, 2019). It is a planetary-scale
wave envelope of smaller-scale convective processes, slowly
propagating eastward along the Equator, with a period of 40
to 50 d on average and a mean propagation speed of about
5 ms−1, with fluctuations ranging from 1 to 9 ms−1 (Chen

and Wang, 2020). As it propagates, the MJO causes distur-
bances in rainfall and winds, which impact weather and cli-
mate in both the tropics and the extratropics (Zhang, 2013).
In particular, the MJO plays a significant role in the occur-
rence of various weather extremes such as tropical cyclones,
tornadoes, extreme rainfall events and extreme surface tem-
peratures (Jones et al., 2004; Pohl and Camberlin, 2006; Juliá
et al., 2012; Thompson and Roundy, 2013; Zhang, 2013;
Jeong et al., 2005).
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With its slow eastward propagation on intraseasonal
timescales, the MJO is a key source of subseasonal pre-
dictability (Woolnough, 2019; Vitart et al., 2019) and is of
utmost importance for enhancing preparedness for such ex-
treme events. Accurately forecasting the MJO has thus be-
come a foremost goal in subseasonal-to-seasonal forecasting.
However, even with significant progress in recent years (Lim
et al., 2018; Kim et al., 2019; Silini et al., 2021), its repre-
sentation and predictability in numerical models continue to
be a challenging task (Liu et al., 2024). Moreover, a recent
study suggests that there is an increased probability of ex-
tinction of the MJO after 27 d, which seems to point to an
internal mechanism of exhaustion rather than the effect of an
external barrier (Corral et al., 2023).

The underlying physical mechanisms that govern the MJO
are not yet fully understood (Zhang, 2013). A deeper under-
standing of these mechanisms is however essential for im-
proving MJO predictions, as they form the foundation for the
development of more accurate models. This knowledge gap
has motivated the development of data-driven models (Díaz
et al., 2023) and simplified low-dimensional physics-based
models (Zhang et al., 2020) that aim to capture the key as-
pects of the MJO’s behavior. One such model, known as the
skeleton model, provides a framework for investigating some
essential dynamics of the MJO.

The skeleton model is a minimal non-linear oscillator
model for the MJO, introduced by Majda and Stechmann
(2009b). The model is derived from the well-known primi-
tive equations for the dry atmosphere in the tropics, comple-
mented by the modeling of moist convection. It is an ideal-
ized model with a minimal number of parameters and a sin-
gle quadratic non-linearity. Nonetheless, it provides insights
into atmospheric dynamics when coupled with moist convec-
tion in the tropics and is able to reproduce large-scale fea-
tures of the MJO, including its slow eastward propagation at
about 5 ms−1, its near-zero group velocity, and its horizontal
quadrupole vortex structure. Several versions of the model
have been developed based on the initial work by Majda and
Stechmann (Majda and Stechmann, 2011; Thual et al., 2014;
Thual and Majda, 2015, 2016). In particular, adding stochas-
ticity to the initial model, Thual et al. (2014) showed that
the skeleton theory also captures the intermittent generation
of MJO events and their organization into wave trains with
growth and decay.

The model includes two forcing functions, representing la-
tent heating and radiative cooling in the tropics. In the ma-
jority of previous studies, these functions were chosen to
be mathematically simple, time-independent, and identical
(Majda and Stechmann, 2009b, 2011; Thual et al., 2014;
Thual and Majda, 2016; Stachnik et al., 2015; Chen and
Stechmann, 2016). The aim of the present study is to assess
whether the model, forced with more dynamic and observa-
tionally grounded functions, can still accurately reproduce
key characteristics of MJO events. By using more realistic
forcings, our work offers a more robust test of the skele-

ton model’s applicability and relevance in understanding the
MJO dynamics as simplified, static forcings might limit the
realism of the model’s outputs. Our goal is not to predict indi-
vidual MJO events, which is a challenge for models of much
higher complexity (Jiang et al., 2020; Zhou et al., 2024), but
to check how well the skeleton model reproduces their statis-
tical properties.

Precisely, we consider the stochastic skeleton model as
presented in Thual et al. (2014) with forcing functions
computed from observational and reanalysis data follow-
ing a methodology presented in Ogrosky and Stechmann
(2015). Further, while Ogrosky and Stechmann (2015) forced
the model with long-term averages of the computed func-
tions, in this work, we keep their time dependence. Thus,
we present solutions to the model when the latent heating
and radiative cooling functions are observation-based, time-
dependent, non-identical functions. To our knowledge, this is
the first study of the MJO skeleton model with forcing func-
tions combining these three characteristics.

Further, several studies have suggested that the sea sur-
face temperature (SST) variability at interannual and longer
timescales influences the MJO’s characteristics. In particu-
lar the variability associated with the El Niño–Southern Os-
cillation (ENSO) modulates the extent of MJO’s eastward
propagation (Kessler, 2001; Tam and Lau, 2005; Pohl and
Matthews, 2007), its lifetime (Pohl and Matthews, 2007), and
its speed (Wei and Ren, 2019; Díaz et al., 2023). With our
implementation of the skeleton model using time-dependent
forcings, we can now explore the ability of the MJO skeleton
model to induce differences in selected MJO characteristics
under El Niño, La Niña, and neutral ENSO conditions.

This paper is organized as follows. In Sect. 2, we present
the model, and in Sect. 3, the computation of the forc-
ing functions from observational and reanalysis data is ex-
plained. The identification of MJO events in the model is
performed based on an objective index: the skeleton multi-
variate MJO (SMM) index. The computation of the SMM
index is described in Sect. 4. The numerical solutions to
the model are then presented in Sect. 5. The identification
of MJO events is briefly illustrated in Sect. 6. In Sect. 7,
we compare statistics of MJO characteristics between obser-
vations and simulations. Finally, in Sect. 8, we present the
statistics of selected characteristics of MJO events in obser-
vations and in the stochastic skeleton model simulations un-
der El Niño, La Niña, and neutral ENSO conditions.

2 The MJO skeleton model

2.1 Deterministic model

The MJO skeleton model (Majda and Stechmann,
2009b, 2011) combines the linear, longwave-scaled,
primitive equations (see White, 2003; Vallis, 2017) with a
conservation equation for moisture and a dynamic equation
describing the interactions between the lower tropospheric
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moisture anomaly and the planetary-scale envelope of
convective activity

ut− yv =−px,

yu=−py,

0=−pz+ θ,
ux + vy +wz = 0,

θt+w =Ha− s
θ ,

qt− Q̃w =−Ha+ s
q,

at = 0qa, (1)

where x, y, and z are the zonal, meridional and vertical
coordinates, and u, v, and w are the velocity anomalies
in these directions, respectively, p and θ are the pressure
and potential temperature anomalies, q is the lower tropo-
spheric moisture anomaly, and a is the envelope of con-
vective activity. Note that all variables are anomalies from
a radiative–convective equilibrium except for a. The vari-
ables sθ and sq represent external sinks/sources of temper-
ature and moisture, such as radiative cooling and latent heat-
ing, respectively. They act as forcing in the model and will
be described in more detail in Sect. 3. The model has only
three parameters: Q̃ is the mean background vertical mois-
ture gradient, 0 represents the sensitivity of convective ac-
tivity tendency to moisture anomalies, and H is a scaling
constant for the convective activity. The equations have been
non-dimensionalized using some standard equatorial length
scales and timescales (Majda and Stechmann, 2009a). The
first five equations of the model describe the dry dynamics
of the atmosphere (the conservation of horizontal momen-
tum in x and y, the hydrostatic balance, the conservation
of mass, and the conservation of potential temperature). The
sixth equation describes the conservation of low-level mois-
ture. The last equation is the non-linear interaction between
moisture and convection. It entails the idea that the mois-
ture anomalies influence the growth and decay rates of the
planetary-scale envelope of convective activity.

To obtain the model in its simplest version (Majda and
Stechmann, 2009b, 2011; Thual et al., 2014; Majda et al.,
2019, their Sect. 2.3.3), Eq. (1) is truncated in the vertical
and meridional directions. In the vertical, the variables are
expanded in terms of sines and cosines, keeping only the first
baroclinic mode, i.e., u(x,y,z, t)≈ u1(x,y, t)

√
2cos(z),

v(x,y,z, t)≈ v1(x,y, t)
√

2cos(z), p(x,y,z, t)≈
p1(x,y, t)

√
2cos(z), w(x,y,z, t)≈ w1(x,y, t)

√
2sin(z),

and θ (x,y,z, t)≈ θ1(x,y, t)
√

2sin(z) (see Khouider
et al., 2013). Here, z ∈ [0,π ] in non-dimensional units,
and z ∈ [0,Htop] in dimensional units, where Htop is
the height of the tropopause. Further, it is assumed
that q = q1(x,y, t)

√
2sin(z), a = a1(x,y, t)

√
2sin(z),

sθ = sθ1 (x,y, t)
√

2sin(z), and sq
= s

q
1 (x,y, t)

√
2sin(z) (see

Majda and Tong, 2016). Dropping the subscript 1 for
simplicity (i.e., u1→ u, v1→ v, etc.), System (1) becomes

ut− yv− θx = 0,

yu− θy = 0,

θt− ux − vy =Ha− s
θ ,

qt+ Q̃(ux + vy)=−Ha+ sq,

at = 0qa. (2)

In the meridional direction, the variables and forc-
ing functions are expanded using the parabolic cylinder
functions {φm(y)}, e.g. u(x,y, t)=

∑
mum(x, t)φm(y),

where the first three modes have the form φ0(y)=
π−1/4 exp(−y2/2), φ1(y)= π−1/4

√
2y exp(−y2/2), and

φ2(y)= π−1/4(1/
√

2)(2y2
− 1)exp(−y2/2). This expan-

sion facilitates a change of variable in the dry dynamics
(rows 1–4 of Eq. 2) allowing the introduction of new
variables representing equatorial waves. In the simplest
version of the model, only the amplitudes of the first mode
of equatorial Kelvin wave structure (K) and equatorial
Rossby wave structure (R) are kept, defined as K ≡ u0−θ0√

2
and R ≡ u2− θ2−

u0+θ0√
2

. In addition, it is assumed that
the envelope of convection/wave activity a takes the form
a(x,y, t)= A(x, t)φ0(y)= [As(x)+A∗(x, t)]φ0(y), with As
representing the background state andA∗ fluctuations around
this state, and that q(x,y, t), sθ (x,y, t), and sq(x,y, t) are
truncated at the first mode q(x,y, t)=Q(x, t)φ0(y),
sθ (x,y, t)= Sθ (x, t)φ0(y), and sq(x,y, t)= Sq(x, t)φ0(y).
The final truncated equations then read

Kt+Kx =−
1
√

2
(HA− Sθ ),

Rt−
1
3
Rx =−

2
√

2
3

(HA− Sθ ),

Qt+
1
√

2
Q̃Kx −

1

6
√

2
Q̃Rx =

Q̃

6
(HA− Sθ )− (HA− Sq),

At = γ0Q(As+A
∗), (3)

where all the functions depend now only on x and t , and
γ =

∫
(φ0)3dy ≈ 0.6 results from the meridional projection

of the non-linear equation.
The variables u, v, and θ can be approximately recovered

via

u(x,y, t)=
1
√

2

[
K(x, t)−

1
2
R(x, t)

]
φ0(y)+

1
4
R(x, t)φ2(y),

v(x,y, t)=
[

1
3
∂xR(x, t)−

1

3
√

2
(HA(x, t)− Sθ (x, t))

]
φ1(y),

θ (x,y, t)=−
1
√

2

[
K(x, t)+

1
2
R(x, t)

]
φ0(y)−

1
4
R(x, t)φ2(y). (4)

2.2 Stochastic model

In the skeleton model, the MJO is initiated and sustained
by the synoptic (sub-planetary)-scale convective activity pat-
terns, which are considered collectively via their planetary-
scale envelope a. These synoptic-scale processes include for
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instance deep convective clouds, which are highly irregular,
are intermittent, and have low predictability. To account for
such processes, Thual et al. (2014) proposed a modified ver-
sion of the skeleton model, where the last equation in Eq. (1)
is replaced by a stochastic process. The authors showed that
this stochastic skeleton model is able to generate intermittent
MJO wave trains with growth and decay as observed in re-
ality. Specifically, the variable a in System (1) is replaced at
each point by an independent random variable taking discrete
values separated by 1a, that is a = η1a, with η ∈ N. The
evolution of a is controlled by a birth–death process allow-
ing for intermittent transitions between states η. This process
is described by the following master equation for the proba-
bility of η, P (η, t):

∂tP (η)= [λ(η− 1)P (η− 1)− λ(η)P (η)]

+ [µ(η+ 1)P (η+ 1)−µ(η)P (η)], (5)

where λ is the upward rate of transition and µ is the down-
ward rate. The choice of λ and µ is made such that the dy-
namics of the non-stochastic skeleton model are recovered
on average (see Thual et al., 2014).

3 Observation-based time-dependent forcing
functions

As mentioned in the introduction, the majority of previous
studies on the MJO skeleton model used idealized, time-
independent, and equal forcing functions sθ (radiative cool-
ing) and sq (latent heating); i.e., sθ (x)= sq(x) (see Ma-
jda and Stechmann, 2009b, 2011; Thual et al., 2014; Thual
and Majda, 2016; Stachnik et al., 2015; Chen and Stech-
mann, 2016). Thual et al. (2015) first studied the solutions
of the skeleton model with periodic variations in the forcing.
The authors used an idealized warm pool state representa-
tion of sθ (x, t)= sq(x, t) migrating seasonally in the merid-
ional direction. In Ogrosky and Stechmann (2015) and later
in Ogrosky et al. (2017), the authors computed the forcing
functions based on long-term means of observational and
reanalysis data, leading to more realistic functions where
sθ (x) 6= sq(x).

Here, we consider the stochastic skeleton model, with
forcing functions computed from observational and reanal-
ysis data following the methodology presented in Ogrosky
and Stechmann (2015). However, unlike Ogrosky and Stech-
mann, we do not take long-term averages but consider
monthly varying data. We are hence concerned with so-
lutions of model (1) when sθ = sθ (x, t), sq

= sq(x, t), and
sθ 6= sq, that is, when the forcings are realistic (observation-
based), time-dependent, and non-identical. We stress that all
model parameters were chosen as in Ogrosky and Stechmann
(2015). No further parameter tuning has been performed to
show more clearly the effect of the new ingredient introduced

here: the time-dependent forcing. This section explains the
computation of the profiles.

3.1 Data sources

To estimate the forcing terms, we use NCEP/NCAR reanal-
ysis latent heat net flux (Kalnay et al., 1996) for the com-
putation of the latent heating sq and NCEP Global Precipi-
tation Climatology Project (GPCP) data (Adler et al., 2016;
Huffman et al., 2001) for the computation ofHa (which then
enters into the calculation of both sq and sθ as explained be-
low). The chosen data sub-sets cover the period 1979–2021
with a monthly resolution. Both fields have global spatial
coverage, with a resolution of 1.875°× 1.875° (degrees of
latitude and longitude) for the latent heat flux data set and
2.5°× 2.5° for the precipitation data set.

3.2 Estimation procedure

First, following Ogrosky and Stechmann (2015), the 2D field
Ha(x,y) is computed using the formula

Ha =

(
gρwLv

p0cp

)
M, (6)

where M [m] represents the monthly precipitation
data, g= 9.8 ms−2 is the gravitational acceleration
constant, ρw= 103 kgm−3 is the density of water,
Lv= 2.5× 106 Jkg−1 is the latent heat of vaporization,
cp = 1006 J (kgK)−1 is the specific heat of dry air at constant
pressure, and p0= 1.013× 105 kgm−1 s−2 is the mean
atmospheric pressure at mean sea level. The above formula
describes the rate at which the temperature of a column of
air increases from the energy released by precipitation at a
given location. To obtain the 1D equatorial profile needed
for the truncated model (see Sect. 2, Eq. 3), the 2D field is
projected onto the leading meridional mode φ0 as

HA(x, t)=

∞∫
−∞

Ha(x,y, t)φ0(y)dy. (7)

Second, still following Ogrosky and Stechmann (2015),
we compute the 1D equatorial forcing profile Sq(x, t). The
latent heat flux (LHF) is projected onto φ0,

LHF0(x, t)=

∞∫
−∞

LHF(x,y, t)φ0(y)dy, (8)

and Sq is computed according to Ogrosky and Stechmann
(2015) as

Sq
=HLHF ·LHF0, (9)

where

HLHF ≈
〈HA〉t,x

〈LHF0〉t,x
≈ 0.0067Kd−1 (Wm−2)−1,
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with 〈·〉t,x representing the time and zonal mean, implying
that 〈HA〉 balances 〈Sq

〉.
In fact, according to Ogrosky and Stechmann (2015) (Eq. 7

in that paper), for a steady-state solution to exist in the skele-
ton model, which has no damping, we must have

〈HAs〉x =
〈
S

q
s
〉
x
=
〈
Sθs
〉
x
, (10)

where 〈·〉x represents the zonal mean and the subscript s indi-
cates the background state of the quantities, defined as their
long-time average. From Eq. (9), we see that this is satisfied
for HA and Sq.

In addition, as explained in Ogrosky and Stechmann
(2015) (Eq. 8 in that paper), the model background convec-
tive activity must satisfy

HAs =
S

q
s − Q̃S

θ
s

1− Q̃
. (11)

To make sure that this is the case, we compute Sθ (x, t) as

Sθ =
1

Q̃
Sq
−

(1− Q̃)

Q̃
HA. (12)

Note that, computed in this way, Sθ also automatically sat-
isfies condition (10).

The computed functions As, Sq, and Sθ can be decom-
posed into spatial Fourier modes. In order to focus on
planetary-scale variations, only the first eight Fourier modes
are kept.

The aim of this work is to study the solutions to the
MJO skeleton model when the forcing functions are time-
dependent observation-based functions. Therefore, while
Ogrosky and Stechmann (2015) used long-term averages of
the computed Sq and Sθ , here we skip this step and keep
the time dependence of the profiles. As mentioned above, the
datasets have a monthly resolution. Nonetheless, it was ob-
served that using monthly varying profiles causes a drop in
the frequency of model-generated MJO events. Hence, as the
model seems to require a degree of persistence in duration
and amplitude of the forcing to adequately generate MJO
events, we smooth the forcing functions in time using a 3-
month running mean. Further clarifying the specific factors
that cause the studied conceptual model’s failure to exhibit
a reasonable frequency of MJO events when employing the
time-dependent forcing without smoothing, as well as the im-
pact of the smoothing timescale on the statistical properties
of the generated events, requires further numerical as well as
analytical study of the model. We suggest that those points
should be clarified in targeted follow-up studies.

The 3-month smoothed profiles are finally interpolated to
the time step of the model. We therefore obtain smooth time-
dependent observation-based forcing functions Sq and Sθ .
As an example, their evolution over the year 1979 is illus-
trated in Fig. 1.

Figure 1. Evolution of (a) the latent heating profile Sq estimated
from latent heat flux and (b) the radiative cooling profile Sθ com-
puted according to Eq. (12). The abscissa indicates months of the
year 1979.

4 Identification of MJO events: the skeleton
multivariate MJO index

In observations, the most commonly used index to monitor
the MJO is the real-time multivariate MJO (RMM) index de-
veloped by Wheeler and Hendon (2004). It is based on an
empirical orthogonal function (EOF) analysis of the daily ob-
served outgoing longwave radiation (OLR) as well as lower
tropospheric (850 hPa) and upper tropospheric (200 hPa)
zonal winds, averaged meridionally in the equatorial region
between 15° S and 15° N. The index is typically represented
in a two-dimensional phase space defined by the two domi-
nant principal components (RMM1 and RMM2). This space
is divided into eight sectors, each corresponding to a distinct
phase of the MJO cycle as its convective center travels from
the Indian Ocean across the Pacific and towards the Western
Hemisphere.

In order to objectively identify MJO structures in the
model output, we compute an index similar to the RMM in-
dex following the methodology presented in Stachnik et al.
(2015). The main difference is that while RMM uses three
variables (upper and lower tropospheric winds and OLR),
the model index is based on a bivariate analysis with the
(model) zonal wind u as a direct substitute for the lower tro-
pospheric wind and the negative convective heating −Ha as
a proxy for OLR. Since clouds affect the radiation emitted at
the top of the atmosphere, OLR is often chosen as an indica-
tor of cloudiness. Wheeler and Hendon (2004) used OLR as
a proxy for convective activity, justifying the choice of −Ha
herein.1 The steps for the computation of this skeleton mul-

1Stechmann and Majda (2015) showed that OLR variations are
proportional to the total diabatic cooling variations in the atmo-
sphere. This might be approximated in the model as the nega-
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tivariate MJO (SMM) index are briefly described below, and
full details can be found in Stachnik et al. (2015).

We first isolate the intraseasonal signal in the data. To do
so, daily anomalies of u and −Ha are filtered using a 20–
100 d Lanczos filter. Second, each field is normalized by its
global standard deviation so that it has an equal contribu-
tion in the computation of empirical orthogonal functions.
Lastly, as in Wheeler and Hendon (2004), the model prin-
cipal components SMM1 and SMM2 are computed by pro-
jecting the filtered data onto the two leading EOF modes and
standardizing the output such that a value of unity represents
an anomaly of 1 standard deviation from the mean.

Strong MJO activity is characterized by an index ampli-
tude greater than or equal to 1. Precisely, following Stachnik
et al. (2015), MJO events or episodes are defined from the
(SMM1,SMM2) time series as periods during which the fol-
lowing conditions are met:

– The amplitude of SMM is greater than 1:√
SMM12+SMM22 ≥ 1.

– The propagation of the event is almost continually coun-
terclockwise in the (SMM1, SMM2) space, correspond-
ing to an almost continually eastward propagation (a
westward propagation is limited to at most a single
phase of the MJO cycle).

– The event propagates through at least four phases of the
MJO cycle.

5 Numerical solution

In this section, we present the main features of the nu-
merical solution to the stochastic MJO skeleton model (3)
with (dimensionless) parameters Q̃= 0.9, 0 = 1.0, andH =
0.22, as in Ogrosky and Stechmann (2015), and observation-
based time-dependent sources of cooling and moistening Sθ

and Sq. The spatio-temporal resolution of the model is
chosen as in Thual et al. (2014), with the spatial step
1x ≈ 625 km (that is 40000/64, where 40 000 km approx-
imates the circumference of the Earth at the Equator) and
the temporal step 1t ≈ 1.7 h. Stochasticity is implemented
by applying an independent replica of the stochastic process
described in Sect. 2.2 to each spatial point x. Our Julia im-
plementation of the model is available from Ehstand (2025).
To make sure that the solutions are presented for a statisti-
cally equilibrated regime, we run simulations for 215 years
with forcing corresponding to the 43-year period 1979–2021
repeated 5 times (5× 43= 215). We then keep only the last
43 years which we consider representative of the 1979–2021
period.

tive of the sum of latent (convective) heating and radiative cooling
−(Ha− sθ ). Nonetheless, we choose to use −Ha alone as a proxy
for OLR, since the essential aim is to represent the equatorial con-
vective activity.

Figure 2. Hovmöller diagrams of the skeleton model lower tro-
pospheric wind u(x,y = 0, t) and envelope of convective activity
Ha(x,y = 0, t) at the equator. (a, b) Raw data, (c, d) daily anoma-
lies from the long-term mean, filtered in time and space as described
in the text. One westward-moving signal (likely of a moist Rossby
wave) and one eastward-moving signal (likely MJO activity) are
marked in white in panel (d).

5.1 Hovmöller diagrams of the model variables

The evolution of the skeleton model equatorial profiles for
the lower tropospheric wind u(x, t) and envelope of convec-
tive activityHa(x, t), computed from Eq. (4) with y = 0, are
shown in Fig. 2. The time axis represents 1 year of simu-
lation with forcing profiles representative of the year 2005.
Figure 2a and b represent the raw output data. Figure 2c and d
show the data after filtering in time and space as to isolate
planetary-scale intraseasonal variations. Precisely, the daily
anomalies from the long-term mean have been filtered in time
using a 20–100 d Lanczos filter and smoothed in space by re-
taining only modes with Fourier wave number k ≤ 4. While
the non-filtered plots (Fig. 2a and b) highlight the small-scale
propagating waves, the filtering (Fig. 2c and d) allows to cap-
ture larger-scale features.

Westward-propagating modes are well visible in Fig. 2a,
as well as in Fig. 2c and d, e.g., around days 260 to 300. With
periods ranging from around 25 to 90 d, these modes could
be related to equatorial Rossby waves (see also Sect. 5.2).
On the other hand, large-scale eastward propagating waves
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are visible in Fig. 2c and d, especially towards the beginning
of the period, from day 0 to 150. These intraseasonal large-
scale waves are likely associated with the MJO, as we will
see in Sect. 5.2. Two waves, one propagating eastward and
one propagating westward, have been marked in Fig. 2d with
their respective phase speeds. Finally, we observe that in the
convective activity plots (Fig. 2b and d), a higher activity can
be seen in the region from 60 to 200° E, which corresponds
to a region between the Indian Ocean and the western Pa-
cific, which is the region where the MJO signal is usually the
strongest.

5.2 Power spectrum of the envelope of convective
activity

Figure 3 shows the zonal wavenumber–frequency power
spectrum of the simulated (unfiltered) envelope of convective
activity Ha. The zonal wavenumbers are expressed as mul-
tiples of 2π/40000 km and frequencies are in cycles per day
(cpd). The dashed lines indicate the 90 and 30 d periods. The
MJO appears as a horizontally elongated high power struc-
ture in the zonal wavenumber spectrum with 1≤ k ≤ 5, that
is as a planetary-scale wave, with intraseasonal frequencies
1/90≤ ω ≤ 1/30cpd and eastward propagation (ω/k > 0).
This structure has a dispersion relation dω/dk ≈ 0 which
is a typical characteristic of the MJO and is known to be
reproduced well by the skeleton model (Majda and Stech-
mann, 2009b, 2011; Thual et al., 2014). The mean phase
speed of the waves associated with this structure (calculated
as the mean of ω/k for the points with ω ∈ [1/90,1/30] cpd,
k ∈ [1,5], and log power greater than −4.0) is ≈ 5 ms−1.
This MJO signal is visible in Fig. 2d between days 1 and
150. In addition to the MJO signal there is also a high power
structure at intraseasonal timescales with westward propa-
gation. Previous studies have shown that these modes share
some, although incomplete, features with convectively cou-
pled equatorial Rossby waves, and they have been referred to
as moist Rossby modes (Majda and Stechmann, 2011; Thual
et al., 2014). An example of such a westward wave is visible
in the filtered convective activity in Fig. 2d between days 260
and 300. At higher frequencies, ω > 0.06 cpd corresponding
to periods shorter than 16 d, the high power peaks might be
associated with dry Kelvin and dry Rossby modes (Majda
and Stechmann, 2011; Thual et al., 2014). Overall the spec-
trum of Ha agrees well with previous studies of the skeleton
model (Thual et al., 2014; Ogrosky and Stechmann, 2015).
While several equatorial modes, and especially the MJO, are
well represented, many modes are not reproduced by the
model due to its minimal design, for instance convectively
coupled Kelvin waves (Kiladis et al., 2009).

Figure 3. Zonal wavenumber–frequency power spectrum of the
simulated envelope of convective activity Ha (in base 10 – loga-
rithm). The dashed lines mark the 90- and 30- d periods.

5.3 Climatology and variance of the envelope of
convective activity

The long-term means of Ha estimated from daily obser-
vations and simulated in the skeleton model are shown in
Fig. 4a. Qualitatively, they agree well. However, the variance
ofHa is overestimated in the model as can be seen in Fig. 4b.
Nonetheless, if we consider only the first 14 spatial modes,
the variance is well reproduced by the model (Fig. 4c). This
might be explained by the fact that the equations of the skele-
ton model are longwave-scaled, as the model is only con-
cerned with planetary scales, and hence it might not be well
suited to represent modes with higher wavenumbers (which
are nevertheless continuously excited by the stochastic dy-
namics of the convective activity). The appropriate number
of long-wavelength modes to be retained in the model’s out-
put in order to achieve agreement with observations has been
determined empirically, and its justification would need a
more detailed modeling approach in which smaller scales
would be consistently included.

6 Identification of MJO events with the SMM index

The results presented above suggest the presence of inter-
mittent MJO wave structures propagating eastward. In order
to objectively identify these structures, we use the skeleton
multivariate MJO (SMM) index presented in Sect. 4.

An example of model SMM values over a 52- d period is
shown in the (SMM1, SMM2) phase space in Fig. 5. The
first and last points of the series are annotated. The dark blue
points satisfy the MJO event’s criteria given in Sect. 4. Over-
all, the MJO propagation is relatively smooth. As explained
in Stachnik et al. (2015), this is partly due to the filtering
of high frequencies in the model SMM index computation.
This filtering eliminates some of the day-to-day variability
and noise that are not removed in the computation of the
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Figure 4. (a) Long-term averages of observed and modeledHa (envelope of convective activity). (b) Variance of modeled and observedHa
when all spatial modes from the model output are kept. (c) Variance of modeled and observed Ha when only the first 14 spatial modes from
the model output are kept. Note the different scales in panels (b) and (c).

Figure 5. Phase-space diagram of the model SMM values for a 52-
d period from a simulation forced with observation-based functions.
The dots correspond to daily values of (SMM1, SMM2). The first
day of the series is labeled “d1,” and the last is labeled “d52”. The
circle in the center of the plot has unit radius, indicating the thresh-
old at which the amplitude of SMM exceeds 1. Points in dark blue
indicate an MJO event as defined by the criteria in Sect. 4.

observation-based RMM index from Wheeler and Hendon
(2004).

7 MJO characteristics in the skeleton model and in
observations

In the following, we study different characteristics of the
MJO events in simulations and observations. The aim is to
assess the ability of the MJO skeleton model to statistically
reproduce the characteristics of observed MJO events. Here
we list the chosen characteristics.

– The seasonal variation in the occurrence of MJO events
is obtained by recording the number of MJO events oc-
curring (that is, starting, continuing, or ending) during
each month of the year, where events are defined ac-
cording to the criteria listed in Sect. 4.

– The duration of an event is defined as the number of
days from the first to the last day of the event.

– We measure the total angle covered by an event tracked
in the (SMM1, SMM2) phase space, that is the angle
covered between the first and the last day of the event.
This can roughly be assimilated to the “distance” cov-
ered by that event as it propagates along the equator.

– The maximum value of SMM amplitude, where the am-
plitude is defined as

√
SMM12+SMM22, is recorded

for each event.

– Finally, the starting and ending phases of each event
(1–8) are recorded.

The model MJO events are identified using the SMM
index and the criteria described in Sect. 4. We perform
15 independent simulation runs (in a statistically equilibrated
regime) with forcing profiles representative of the period
1979–2021, leading to a total of 980 modeled events. The
observed events are computed according to the same cri-
teria using the RMM index values, which are freely avail-
able on the website of the Australian Bureau of Meteorol-
ogy (http://www.bom.gov.au/climate/mjo/). We find 153 ob-
served events over the period 1979–2021. For these observed
events, the computation of the characteristics listed above is
made from the (RMM1, RMM2) values.

7.1 MJO seasonal variations

We first look at the seasonal variation of MJO occurrences
in the model and in observations in Fig. 6. Observations
show that MJO events are more frequent during boreal winter
and spring, from December through May. In the simulations,
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Figure 6. Occurrence of MJO events as a function of the month of
the year.

however, no variation is detected. Recall that the forcing pro-
files have been averaged with a 3-month window. As a re-
sult, the seasonal variations in heating and moistening are
smoother and of reduced amplitude, so that the differences
between different seasons might be lost.

7.2 MJO lifetime, extent in SMM/RMM phase space,
and maximum SMM/RMM amplitude

We now compare the duration of MJO events, the total an-
gle covered in SMM/RMM phase space, and the maximum
SMM/RMM amplitude in the model outputs and in observa-
tions. The cumulative probability distributions of these three
characteristics are shown in Fig. 7. As above, the statistics
are based on 153 observed events over the period 1979–2021
and 980 modeled events from 15 independent simulations,
run with forcing profiles representative of the same period.
The duration of events in Fig. 7a, the total angle (distances)
covered by simulated events in Fig. 7b, and the maximum
amplitude of SMM/RMM in Fig. 7c compare well with ob-
servations. The average MJO event lifetime is 39.6± 0.8 d
for the simulation and 36.1 d for observations. This small dif-
ference is likely explained by the absence of certain sources
of MJO termination in the minimalistic skeleton model lead-
ing to slightly longer events (although the longest event over-
all, of 153 d, occurs in observational data). For comparison,
the average event lifetime when time-independent forcings
are used (i.e., when the model is forced with the long-term
averages of the computed Sq and Sθ ) is 40.9± 0.7 d, indicat-
ing a (small) improvement by using the more realistic time-
dependent forcings. The mean angle is (0.75± 0.01) · 2π for
simulations and 0.75 · 2π for observations. This is an im-
provement with respect to the time-independent-forcing re-
sult of (0.78± 0.01) · 2π . The mean of the maxima of SMM
amplitude is 2.53±0.02 for the simulations (both with time-
dependent and time-independent forcings), and the mean of
the maxima of RMM amplitude is 2.50 for observations.

For each of the characteristics, a two-sample
Kolmogorov–Smirnov test was conducted to compare
the empirical cumulative distribution functions obtained
from observations and from the time-dependent-forcing
model. The test’s null hypothesis is that observed and mod-
eled samples come from the same underlying distribution.
For the duration, the test yields a p value of 0.0006, leading
to the rejection of the null hypothesis and suggesting that
the distributions might differ despite apparent similarities.
For the total angle covered in the SMM/RMM phase space,
p = 0.0428, which also leads to the rejection of the null
hypothesis at the 5 % significance level, although differences
are less pronounced. For the maxima of SMM/RMM ampli-
tude values, the p-value is 0.8116, indicating that the model
and observations produce statistically indistinguishable
distributions.

7.3 MJO starting and ending phases

Figure 8 shows the distribution of initial and final phases of
MJO events. The error bar for a given bin is calculated using
a binomial proportion confidence interval dependent on the
pass and fail rate of recorded locations being assigned to that
particular bin. The dashed line indicates the equal likelihood
of the ending location of an event being recorded in any of
the 8 bins. Almost all error bars overlap this line, in both
the simulations and the observations, indicating that these
graphs do not allow for statistically significant conclusions
to be drawn. We note, nonetheless, that the distribution of
starting phases might have some similarities. Two local max-
ima are observed around phases 2/3 and 6/7 for the starting
location (although a high peak is also shown in phase 5 for
the model, which is not present in observations). For the end-
ing phases, in observations, most of the events end in phase 8,
whereas in the model, the peak in phase 8 is relatively small.

To conclude Sect. 7, the time-dependent stochastic skele-
ton model captures reasonably well statistical features of the
MJO events, such as the distributions of durations, total an-
gles covered in SMM/RMM phase space, and the maxima
of SMM/RMM values, despite some disparities. However, it
does not reproduce well seasonal variations in the MJO oc-
currences. Nor does it seem to be able to reproduce spatial
differences in the MJO properties, such as its starting and
ending phase, although more investigation would be needed
to establish the presence of statistically significant differ-
ences. In the next section, we assess the ability of the model
to produce differences in the distributions of durations, total
angles, and SMM maxima under El Niño, La Niña, and neu-
tral ENSO conditions. Note that despite the model not being
able to reproduce seasonal variations, MJO events might still
be influenced by ENSO variations since they occur on much
longer timescales (typically of 2 to 7 years, although ENSO
itself also varies seasonally in intensity).
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Figure 7. Cumulative probability distribution of (a) the MJO events’ durations, (b) total angle covered in (RMM1, RMM2)/(SMM1, SMM2)
phase space, and (c) maximum RMM/SMM value for observed and simulated MJO events (981 simulated events and 153 observed events).

Figure 8. Histograms of the recorded starting (a) and ending phases (b) of MJO events in the model and in observations. The dashed line in-
dicates the equal likelihood of the ending location of an event being recorded in any of the 8 bins. The error bars indicate the 98 % uncertainty
estimate, calculated from a binomial proportion confidence interval.

8 Modulation of the MJO by ENSO

Equipped with our implementation of the stochastic skeleton
model suitable to incorporate time-dependent observation-
based forcings, we now study changes in the statistics of
selected MJO characteristics under the different phases of
ENSO (El Niño, La Niña, and neutral phase) in observations
and in the model.

To identify the ENSO phase during the period 1979–2021,
we use the NOAA Oceanic Niño Index (ONI), based on SST
anomalies in the Niño 3.4 region from 5° S–5° N and 170–
120° W. The index is computed by averaging the monthly
values of Niño 3.4 SST anomalies with a running 3-month
window. An El Niño event is declared when the index is
greater than or equal to 0.5 °C for at least five consecu-
tive values, i.e., five consecutive overlapping 3-month sea-
sons. A La Niña event is declared when the index is less
than or equal to −0.5 °C for at least five consecutive val-
ues. The Niño 3.4 values are available on the website of
NOAA (https://origin.cpc.ncep.noaa.gov/products/analysis_
monitoring/ensostuff/ONI_change.shtml).

Identifying MJO events that occurred during each of the
ENSO phases is straightforward for observational data, based
on the event’s date. Precisely, the whole length of the MJO

Table 1. Number of MJO events in observations and in the model
during each phase of ENSO.

ENSO phase El Niño La Niña Neutral Total

Observed MJO events 42 36 75 153
Simulated MJO events 205 228 547 980

event is considered. An event is said to have occurred during
El Niño/La Niña/neutral ENSO if more than half of the event
has occurred during that specific phase. For the model, as
explained in Sect. 5, simulations are run with forcing corre-
sponding to the period 1979–2021, resulting in time-stamped
outputs that are considered representative of this period. We
can then also identify simulated MJO events occurring dur-
ing El Niño, La Niña, and neutral ENSO phases based on
their dates. In addition, whereas in observations the number
of MJO events is constrained to a single 43-year record, lim-
iting the significance of statistical studies, we realize 15 in-
dependent runs of the model, obtaining much larger samples
and more robust statistical results. The total number of MJO
events in observations and in the model runs during each
phase of ENSO is reported in Table 1.
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Figure 9. Mean profiles of (a) latent heating (Sq) and (b) radiative
cooling (Sθ ), during El Niño, La Niña, and neutral ENSO condi-
tions from 1979 to 2021. The shaded areas correspond to 1 standard
deviation around the means. Stars indicate locations where forc-
ing profiles differ significantly (at the 5 % significance level) during
El Niño and La Niña.

To assess the ability of the stochastic skeleton model to re-
produce the observed modulation of MJO activity and char-
acteristics under different ENSO phases, it is essential that
the forcing functions Sq and Sθ adequately capture ENSO
variability. Figure 9 shows that this is indeed the case by pre-
senting the mean Sq and Sθ profiles during El Niño, La Niña,
and neutral ENSO conditions. The largest differences are ef-
fectively observed in the eastern equatorial Pacific. Further-
more, we used the Kolmogorov-Smirnov test to assess, at
each spatial point, whether the distributions of Sq (Sθ ) values
differ significantly during El Niño and La Niña. We found
significant differences at nearly all points at the 5 % signifi-
cance level (indicated by stars in the figure).

8.1 MJO activity across El Niño, La Niña, and neutral
ENSO

We first report the occurrence of MJO events across ENSO
phases for observations and simulations. Table 2 shows the
percentage of MJO active days during El Niño, La Niña, and
neutral ENSO for the period 1979–2021 (in observations and
simulations). Note that, for the simulations, the values cor-
respond to a mean over the 15 independent runs, and the
standard error of the mean is indicated. In addition, the to-
tal number of days (irrespective of MJO activity) belonging
to each of the three phases is indicated in the last row. We ob-
serve that the proportion of MJO days approximately follows
the proportion of the total number of days belonging to each
phase of ENSO, for both observations and simulations, with
the majority of events occurring during the neutral phase of

ENSO and the minimum during El Niño. When comparing
percentages in the first row with those in the last row, we see
that, in observations, El Niño and La Niña conditions seem to
slightly favor the occurrence of MJO events (with respect to
what would be expected from the proportion of these ENSO
phases). On the other hand, when comparing the second row
to the last, we see that, in the simulations, the opposite is ob-
served: the neutral ENSO conditions seem to slightly favor
the occurrence of MJO events. This small discrepancy could
be attributed to the design of the model, i.e., the omission of
certain mechanisms and interactions with other climate phe-
nomena, though the differences are minor and may simply
reflect limited sample sizes.

8.2 ENSO modulation of MJO characteristics

8.2.1 Observations

Figure 10 shows the cumulative probability distribution of
the MJO events’ durations, total angle covered in (RMM1,
RMM2) phase space, and maximum RMM value for ob-
served events occurring during El Niño, La Niña, and neutral
periods. The distributions show several differences. During
El Niño, observed MJO events appear to have a shorter dura-
tion compared to those occurring during La Niña and neutral
ENSO (Fig. 10a). In fact, the mean duration of MJO events
is 33 d for El Niño, 40 d for La Niña, and 36 d for the neu-
tral phase of ENSO. Further, the maximum duration is 73 d
for MJO events during El Niño, 100 d during La Niña, and
153 d during the neutral phase of ENSO. Similarly, during
El Niño, the total angle covered in RMM phase space by
MJO events seems to be shorter (Fig. 10b), suggesting that
events propagate over shorter distances. In fact, the mean an-
gle covered in RMM phase space by MJO events occurring
during El Niño is 0.7 · 2π , while it is 0.8 · 2π for La Niña
and the neutral phase of ENSO. The maximum angle cov-
ered in RMM phase space is 2.0 · 2π for events occurring
during El Niño (meaning that they have propagated twice
around the entire globe), 2.4 ·2π for events occurring during
La Niña, and 3.4 · 2π for events occurring during the neu-
tral phase of ENSO. Note that previous studies have reported
that during El Niño periods, MJO events tend to propagate
further eastward (Kessler, 2001; Tam and Lau, 2005; Pohl
and Matthews, 2007). This does not contradict the present re-
sults since the methodologies and definitions of MJO events
vary between these studies. In addition, we consider here the
total angle in RMM phase space and not the final location
of MJO events. Finally, for the maxima of RMM amplitude
(Fig. 10c), the differences in the cumulative distributions are
slightly more intricate than for the other two characteristics.
The mean is 2.5 for events during El Niño, 2.6 during the
La Niña, and 2.5 during the neutral phase. The maximum
values are 4.6 for El Niño, 4.0 for La Niña, and 3.9 for the
neutral phase of ENSO. The mean and maximum values of
all characteristics are summarized in Table 3.
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Table 2. Comparison of observed and simulated percentages of active MJO days across ENSO phases – percentages from the total of active
MJO days, where “active MJO days” are the days during MJO events as defined in Sect. 4. The last line represents the total number of days
(active and inactive MJO) in each phase of ENSO over the period 1979–2021.

ENSO phase El Niño La Niña Neutral

Observed active MJO days 24.8 % 26.3 % 48.9 %
Simulated active MJO events 21.7± 1.5 % 23.7± 1.16 % 54.6± 1.9 %
Total number of days per phase 3497 (22.8 %) 3924 (25.6 %) 7920 (51.6 %)

Figure 10. Cumulative probability distribution of (a) the MJO events’ durations, (b) total angle covered in (RMM1, RMM2) phase space,
and (c) maximum RMM value for observed events occurring during El Niño, La Niña, and neutral periods between 1979 and 2021. The
number of events in each sample is reported in Table 1.

8.2.2 Simulations

Finally, we look at the characteristics of MJO events in the
model during El Niño, La Niña, and neutral conditions. The
results are shown in Fig. 11. For all three MJO charac-
teristics, the cumulative distributions are very similar dur-
ing El Niño, La Niña, and neutral conditions. We perform
a Kolmogorov-Smirnov test to identify whether statistically
significant differences exist between the El Niño and La Niña
samples for each of the three characteristics. For the duration
of MJO events, the test yields a D value (representing the
maximum distance between the two curves) of 0.0865 and
a p value of 0.4. For the total angles covered, the D value
is 0.1307 and the p value 0.05. For the maxima of SMM
values, the D value is 0.0858 and the p value 0.4. Hence,
none of the three tests provides sufficient evidence to reject
the null hypothesis that the two samples come from the same
distribution at the 5 % significance level.

We might nonetheless compare the mean and maxima of
the three characteristics. To do so, we compute these values
in 15 independent simulation runs and determine the mean
and standard error of the resulting values. They are sum-
marized in Table 3. On average, we observe slightly smaller
mean and maximum durations of MJO events during El Niño
compared to other phases of ENSO. We also observe smaller
mean and maximum values (on average) of the total angle
covered in the SMM phase space during El Niño. No spe-
cific tendency is observed for the maxima of SMM values. In
all cases, the differences between these values remain small.

8.2.3 Discussion

Comparing observations and simulations, the main differ-
ence lies in the fact that, in the simulations, the cumulative
distributions of MJO characteristics do not significantly dif-
fer under different ENSO conditions (unlike in observations,
although limited sample sizes might affect observed pat-
terns). Since the model’s forcings Sq and Sθ are significantly
different during El Niño and La Niña conditions (Fig. 9), the
lack of the model’s response to ENSO variability suggests a
limitation in the representation of key physical mechanisms
governing the MJO–ENSO interactions.

However, some similarities between observations and sim-
ulations are still seen when looking at the mean and maxima
of MJO characteristics. In both observations and the model,
the mean and maximum duration of MJO events are smaller
for events occurring during El Niño and larger for events oc-
curring during La Niña (although these differences are rela-
tively small in the model). Similarly, the mean and maximum
of the total SMM/RMM angle are smaller during El Niño
than during La Niña. On the other hand, no such general ten-
dency is seen for the maximum of SMM/RMM amplitude.

9 Conclusions

We have implemented time-varying observation-based forc-
ing profiles in the MJO stochastic skeleton model. As in
previous works (Majda and Stechmann, 2009b, 2011; Thual
et al., 2014), the model captures several important features
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Table 3. Comparison of the mean and maximum values of selected MJO characteristics between observations and simulations. For observa-
tions, the values are calculated as a mean over 15 independent simulation runs with the corresponding standard error.

Parameter Statistic El Niño La Niña Neutral

Duration (days) Obs.
Mean 33 40 36
Max. 73 100 153

Sim.
Mean 38.3± 1.2 40.7± 1.9 39.6± 0.8
Max. 73.4± 4.4 80.9± 6.2 90.7± 5.6

Angle in SMM Phase Space Obs.
Mean 0.7 · 2π 0.8 · 2π 0.8 · 2π
Max. 2.0 · 2π 2.4 · 2π 3.4 · 2π

Sim.
Mean (0.73± 0.02) 2π (0.79± 0.04) 2π (0.75± 0.01) 2π
Max. (1.44± 0.10) 2π (1.55± 0.13) 2π (1.75± 0.15) 2π

Maxima of SMM Amplitude Obs.
Mean 2.5 2.6 2.5
Max. 4.6 4.0 3.9

Sim.
Mean 2.57± 0.04 2.51± 0.05 2.53± 0.02
Max. 3.71± 0.11 3.82± 0.14 3.96± 0.09

Figure 11. Cumulative probability distribution of the MJO events’ durations, total angle covered in (SMM1, SMM2) phase space, and
maximum SMM value for simulated events occurring during El Niño, La Niña, and neutral periods. The simulations were forced with data
covering the period 1979–2021. The number of events in each sample is reported in Table 1.

of the MJO, including its phase speed of around 5 ms−1,
its flat dispersion relation, its horizontal quadrupole vortex
structure (not shown here), and the intermittent generation
of MJO events. We found that, when considering planetary
scales, the climatology and variance of observed convective
activity are in very good agreement. Using an RMM-like in-
dex in the model, we were able to objectively identify MJO
events and to analyze their characteristics. We find agree-
ment between observations and simulations for the statistics
of MJO event durations, total angles covered in SMM/RMM
phase space, and maxima of SMM/RMM amplitudes. How-
ever, we also show that the model cannot reproduce well the
seasonal variations in the MJO occurrences. This could be
due to the 3-month averaging of the forcing profiles, which
was introduced to ensure the generation of MJO events in the

model. This forcing better captures the long-term trends but
may have the side effect of blurring the differences between
seasons. We note that the number of MJO events generated
in the stochastic skeleton model forced with these profiles re-
mains lower than in observations. Future work should inves-
tigate the effect of different lengths of time-averaging win-
dows on the frequency of MJO events in the model and on
their statistical properties to find the appropriate balance be-
tween the large-scale nature of the model ingredients and an
appropriate inclusion of relevant short-scale variability.

The model also fails to accurately replicate spatial varia-
tions in the MJO properties, such as its starting and ending
phases. This limitation may be attributed to the stochastic-
ity in the model, as pointed out in Stachnik et al. (2015).
The stochasticity likely has the effect of dampening the ge-
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ographic dependencies that should arise from the applica-
tion of zonally varying forcing functions. Further investiga-
tion would be required to separate the effects of stochastic-
ity, zonally varying forcing, and non-linearity on the spatial
properties of simulated MJO events. To investigate how tem-
poral variability at longer timescales affects the MJO, we
evaluated differences in the statistics of the three MJO char-
acteristics mentioned above (duration, angle, and maximum
amplitude) under the different phases of ENSO (El Niño,
La Niña, and neutral phase) in observations and in the model.
We found that while observations might suggest some differ-
ences (for instance, a tendency towards shorter-lived MJO
events during El Niño), the model does not identify statisti-
cally significant differences in duration, total angle covered
in SMM phase space, or the maximum SMM value of simu-
lated MJO events between the different ENSO phases.

In conclusion, our results show that the model reproduces
well the planetary-scale variability of convective activity and
selected characteristics of MJO events, but it does not cap-
ture the impact of ENSO phases on these characteristics. This
is due to limitations in the structure and ingredients of the
skeleton model. More complex interactions such as changes
in mean state winds and ocean coupling (Díaz et al., 2023;
Suematsu and Miura, 2022; Wei and Ren, 2019; Moser et al.,
2024) are needed to capture the interaction between ENSO
and the MJO. Further investigation will be needed to deter-
mine whether the interannual variability of the model forc-
ing functions impacts other MJO characteristics which have
not been studied here, such as the propagation speed of in-
dividual events or their longitudinal extent. In order to com-
pute these characteristics as precisely as possible and to make
objective comparisons between the model and observations,
one will need to implement a method able to track the MJO
(e.g., its convective center) in both the simulations and the
reanalysis.

Further, while the skeleton model allows us to gain a bet-
ter understanding of the fundamental physical mechanisms
of the MJO, more complexity will likely be needed to fully
reproduce the modulation of the MJO by ENSO. In particu-
lar, ENSO impacts the extent of MJO penetration in the Pa-
cific Ocean (Pohl and Matthews, 2007; Tam and Lau, 2005;
Kessler, 2001). During El Niño years, MJO convective activ-
ities often extend eastward beyond the dateline into the Pa-
cific, while during La Niña years, they tend to remain west of
the dateline. Pohl and Matthews (2007) also reported that the
duration of MJO events is longer during La Niña and shorter
during El Niño when events occur from March to May and
October to December. Hence, in order to be able to study the
effects of ENSO on the MJO, one condition of any model
should be that it captures the spatial variability of the MJO
as well as its seasonal variations.

Code and data availability. The datasets used for computing
the model’s forcing profiles (Sect. 3) are publicly accessi-

ble. The NCEP/NCAR reanalysis latent heat net flux data
(Kalnay et al., 1996) can be freely downloaded from https:
//psl.noaa.gov/data/gridded/data.ncep.reanalysis.html (NOAA
PSL), while the NCEP Global Precipitation Climatology Project
(GPCP) data (Adler et al., 2016; Huffman et al., 2001) are available
from https://www.ncei.noaa.gov/products/climate-data-records/
precipitation-gpcp-monthly (last access: April 2023) (NOAA
NCEI) and https://doi.org/10.7289/V56971M6. The Python code
used to compute these profiles is accessible in Ehstand (2025,
https://doi.org/10.20350/digitalCSIC/17017). The Julia implemen-
tations of the stochastic MJO skeleton model and the code used
for the postprocessing and analysis of its outputs are also available
in Ehstand (2025, https://doi.org/10.20350/digitalCSIC/17017), as
well as the model output data and Julia notebooks to reproduce the
figures in the present paper.

For observational indices, the RMM index data can be
freely downloaded from the website of http://www.bom.gov.
au/climate/mjo/ (Australian Bureau of Meteorology, 2023).
The Niño 3.4 index can be freely accessed on the website
of https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/
ensostuff/ONI_change.shtml (NOAA, 2023).

Author contributions. NE performed the simulations, analyzed
the data, created the figures, and wrote the first manuscript draft.
NE, RVD, EHG, and CL directed the study. All authors contributed
to ideas, interpretation of the results, and manuscript revisions.

Competing interests. At least one of the (co-)authors is a mem-
ber of the editorial board of Nonlinear Processes in Geophysics.
The peer-review process was guided by an independent editor, and
the authors also have no other competing interests to declare.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. Noémie Ehstand would like to thank Nan
Chen and Tabea Gleiter for their help with understanding and
implementing the stochastic skeleton model. She is also grate-
ful to H. Reed Ogrosky and Samuel N. Stechmann for the
helpful email exchanges. This project has received funding
from the European Union’s Horizon 2020 research and innova-
tion program under Marie Skłodowska-Curie Grant Agreement
No. 813844, from the Agencia Estatal de Investigación (MI-
CIU/AEI/10.13039/501100011033) under the María de Maeztu
project CEX2021-001164-M, and from the Agencia Estatal de
Investigación (MICIU/AEI/10.13039/501100011033) and FEDER
“Una manera de hacer Europa” under Project LAMARCA No.
PID2021-123352OB-C32. Reik V. Donner acknowledges financial
support by the German Federal Ministry for Education and Re-
search (BMBF) via the JPI Climate/JPI Oceans Project ROADMAP
(Grant No. 01LP2002B).

Nonlin. Processes Geophys., 32, 367–382, 2025 https://doi.org/10.5194/npg-32-367-2025

https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html
https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html
https://www.ncei.noaa.gov/products/climate-data-records/precipitation-gpcp-monthly
https://www.ncei.noaa.gov/products/climate-data-records/precipitation-gpcp-monthly
https://doi.org/10.7289/V56971M6
https://doi.org/10.20350/digitalCSIC/17017
https://doi.org/10.20350/digitalCSIC/17017
http://www.bom.gov.au/climate/mjo/
http://www.bom.gov.au/climate/mjo/
https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_change.shtml
https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_change.shtml


N. Ehstand et al.: The stochastic skeleton model for the Madden–Julian Oscillation 381

Financial support. This research has been supported by
the Agencia Estatal de Investigación and FEDER (grant nos.
CEX2021-001164-M and PID2021-123352OB-C32), the EU
Horizon 2020 (Marie Sklłodowska-Curie grant no. 813844), and
the Bundesministerium für Bildung und Forschung (grant no.
01LP2002B).

The article processing charges for this open-access
publication were covered by the CSIC Open Access Publication
Support Initiative through its Unit of Information Resources for
Research (URICI).

Review statement. This paper was edited by Jezabel Curbelo and
reviewed by two anonymous referees.

References

Adler, R., Wang, J.-J., Sapiano, M., Huffman, G., Chiu, L., Xie,
P. P., Ferraro, R., Schneider, U., Becker, A., Bolvin, D., Nelkin,
E., Gu, G., and NOAA CDR Program: Global Precipitation Cli-
matology Project (GPCP) Climate Data Record (CDR), Ver-
sion 2.3 (Monthly), National Centers for Environmental Informa-
tion [data set], https://doi.org/10.7289/V56971M6 (last access:
18 April 2023), 2016.

Australian Bureau of Meteorology: Real-Time Multivariate MJO
Index Data, Australian Bureau of Meteorology [data set], http://
www.bom.gov.au/climate/mjo/ (last access: 12 June 2023), 2023.

Chen, G. and Wang, B.: Circulation Factors Determining the Prop-
agation Speed of the Madden–Julian Oscillation, J. Climate, 33,
3367–3380, https://doi.org/10.1175/JCLI-D-19-0661.1, 2020.

Chen, S. and Stechmann, S. N.: Nonlinear traveling waves for
the skeleton of the Madden–Julian oscillation, Commun. Math.
Sci., 14, 571–592, https://doi.org/10.4310/cms.2016.v14.n2.a11,
2016.

Corral, A., Minjares, M., and Barreiro, M.: Increased
extinction probability of the Madden-Julian oscilla-
tion after about 27 days, Phys. Rev. E, 108, 054214,
https://doi.org/10.1103/PhysRevE.108.054214, 2023.

Díaz, N., Barreiro, M., and Rubido, N.: Data driven models of
the Madden-Julian Oscillation: understanding its evolution and
ENSO modulation, npj Climate and Atmospheric Science, 6,
https://doi.org/10.1038/s41612-023-00527-8, 2023.

Ehstand, N.: Code and data for the stochastic skele-
ton model of the Madden-Julian oscilation with time-
dependent observation-based forcing, digital.csic [code],
https://doi.org/10.20350/digitalCSIC/17017, 2025.

Huffman, G. J., Adler, R. F., Morrissey, M. M., Bolvin,
D. T., Curtis, S., Joyce, R., McGavock, B., and
Susskind, J.: Global Precipitation at One-Degree Daily
Resolution from Multisatellite Observations, J. Hy-
drometeorol., 2, 36–50, https://doi.org/10.1175/1525-
7541(2001)002<0036:gpaodd>2.0.co;2, 2001.

Jeong, J.-H., Ho, C.-H., Kim, B.-M., and Kwon, W.-T.: Influence of
the Madden-Julian Oscillation on wintertime surface air temper-
ature and cold surges in east Asia, J. Geophys. Res.-Atmos., 110,
D11104, https://doi.org/10.1029/2004jd005408, 2005.

Jiang, X., Adames, A. F., Kim, D., Maloney, E. D., Lin, H., Kim,
H., Zhang, C., DeMott, C. A., and Klingaman, N. P.: Fifty Years
of Research on the Madden-Julian Oscillation: Recent Progress,
Challenges, and Perspectives, J. Geophys. Res.-Atmos., 125,
e2019JD030911, https://doi.org/10.1029/2019JD030911, 2020.

Jones, C., Waliser, D. E., Lau, K. M., and Stern, W.: Global Occur-
rences of Extreme Precipitation and the Madden–Julian Oscilla-
tion: Observations and Predictability, J. Climate, 17, 4575–4589,
https://doi.org/10.1175/3238.1, 2004.

Juliá, C., Rahn, D. A., and Rutllant, J. A.: Assessing the Influence
of the MJO on Strong Precipitation Events in Subtropical, Semi-
Arid North-Central Chile (30°S), J. Climate, 25, 7003–7013,
https://doi.org/10.1175/jcli-d-11-00679.1, 2012.

Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven,
D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen,
J., Zhu, Y., Leetmaa, A., Reynolds, R., Chelliah, M.,
Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C.,
Ropelewski, C., Wang, J., Jenne, R., and Joseph, D.:
The NCEP/NCAR 40-Year Reanalysis Project, B. Am.
Meteorol. Soc., 77, 437–472, https://doi.org/10.1175/1520-
0477(1996)077<0437:tnyrp>2.0.co;2, 1996 (data available at:
https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html, last
access: 18 April 2023).

Kessler, W. S.: EOF Representations of the Madden–
Julian Oscillation and Its Connection with ENSO,
J. Climate, 14, 3055–3061, https://doi.org/10.1175/1520-
0442(2001)014<3055:erotmj>2.0.co;2, 2001.

Khouider, B., Majda, A. J., and Stechmann, S. N.: Climate science
in the tropics: waves, vortices and PDEs, Nonlinearity, 26, R1,
https://doi.org/10.1088/0951-7715/26/1/r1, 2013.

Kiladis, G. N., Wheeler, M. C., Haertel, P. T., Straub, K. H.,
and Roundy, P. E.: Convectively coupled equatorial waves, Rev.
Geophys., 47, RG2003, https://doi.org/10.1029/2008rg000266,
2009.

Kim, H., Janiga, M. A., and Pegion, K.: MJO Propaga-
tion Processes and Mean Biases in the SubX and S2S
Reforecasts, J. Geophys. Res.-Atmos., 124, 9314–9331,
https://doi.org/10.1029/2019JD031139, 2019.

Lim, Y., Son, S.-W., and Kim, D.: MJO Prediction Skill of
the Subseasonal-to-Seasonal Prediction Models, J. Climate, 31,
4075–4094, https://doi.org/10.1175/JCLI-D-17-0545.1, 2018.

Liu, Y., Bao, Q., He, B., Wu, X., Yang, J., Liu, Y., Wu, G., Zhu, T.,
Zhou, S., Tang, Y., Qu, A., Fan, Y., Liu, A., Chen, D., Luo, Z.,
Hu, X., and Wu, T.: Dynamical Madden–Julian Oscillation fore-
casts using an ensemble subseasonal-to-seasonal forecast system
of the IAP-CAS model, Geosci. Model Dev., 17, 6249–6275,
https://doi.org/10.5194/gmd-17-6249-2024, 2024.

Madden, R. A. and Julian, P. R.: Description of Global-Scale
Circulation Cells in the Tropics with a 40–50 Day Period,
J. Atmos. Sci., 29, 1109–1123, https://doi.org/10.1175/1520-
0469(1972)029<1109:dogscc>2.0.co;2, 1972.

Majda, A. J. and Stechmann, S. N.: A Simple Dynamical Model
with Features of Convective Momentum Transport, J. At-
mos. Sci., 66, 373–392, https://doi.org/10.1175/2008JAS2805.1,
2009a.

Majda, A. J. and Stechmann, S. N.: The skeleton of tropical in-
traseasonal oscillations, P. Natl. Acad. Sci. USA, 106, 8417–
8422, https://doi.org/10.1073/pnas.0903367106, 2009b.

https://doi.org/10.5194/npg-32-367-2025 Nonlin. Processes Geophys., 32, 367–382, 2025

https://doi.org/10.7289/V56971M6
http://www.bom.gov.au/climate/mjo/
http://www.bom.gov.au/climate/mjo/
https://doi.org/10.1175/JCLI-D-19-0661.1
https://doi.org/10.4310/cms.2016.v14.n2.a11
https://doi.org/10.1103/PhysRevE.108.054214
https://doi.org/10.1038/s41612-023-00527-8
https://doi.org/10.20350/digitalCSIC/17017
https://doi.org/10.1175/1525-7541(2001)002<0036:gpaodd>2.0.co;2
https://doi.org/10.1175/1525-7541(2001)002<0036:gpaodd>2.0.co;2
https://doi.org/10.1029/2004jd005408
https://doi.org/10.1029/2019JD030911
https://doi.org/10.1175/3238.1
https://doi.org/10.1175/jcli-d-11-00679.1
https://doi.org/10.1175/1520-0477(1996)077<0437:tnyrp>2.0.co;2
https://doi.org/10.1175/1520-0477(1996)077<0437:tnyrp>2.0.co;2
https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html
https://doi.org/10.1175/1520-0442(2001)014<3055:erotmj>2.0.co;2
https://doi.org/10.1175/1520-0442(2001)014<3055:erotmj>2.0.co;2
https://doi.org/10.1088/0951-7715/26/1/r1
https://doi.org/10.1029/2008rg000266
https://doi.org/10.1029/2019JD031139
https://doi.org/10.1175/JCLI-D-17-0545.1
https://doi.org/10.5194/gmd-17-6249-2024
https://doi.org/10.1175/1520-0469(1972)029<1109:dogscc>2.0.co;2
https://doi.org/10.1175/1520-0469(1972)029<1109:dogscc>2.0.co;2
https://doi.org/10.1175/2008JAS2805.1
https://doi.org/10.1073/pnas.0903367106


382 N. Ehstand et al.: The stochastic skeleton model for the Madden–Julian Oscillation

Majda, A. J. and Stechmann, S. N.: Nonlinear Dynamics and Re-
gional Variations in the MJO Skeleton, J. Atmos. Sci., 68, 3053–
3071, https://doi.org/10.1175/JAS-D-11-053.1, 2011.

Majda, A. J. and Tong, X. T.: Geometric Ergodicity for Piecewise
Contracting Processes with Applications for Tropical Stochas-
tic Lattice Models, Commun. Pure Appl. Math., 69, 1110–1153,
https://doi.org/10.1002/cpa.21584, 2016.

Majda, A. J., Stechmann, S. N., Chen, S., Ogrosky, H. R.,
and Thual, S.: Tropical Intraseasonal Variability and the
Stochastic Skeleton Method, Springer International Publish-
ing, ISBN 9783030222475, https://doi.org/10.1007/978-3-030-
22247-5, 2019.

Moser, C., Chen, N., and Zhang, Y.: A Stochastic Conceptual
Model for the Coupled ENSO and MJO, arXiv [preprint],
https://doi.org/10.48550/arXiv.2411.05264, 2024.

NOAA (National Centers for Environmental Information): Monthly
Niño-3.4 Index, NOAA [data set], https://origin.cpc.ncep.noaa.
gov/products/analysis_monitoring/ensostuff/ONI_change.shtml
(last access: 12 June 2023), 2023.

Ogrosky, H. R. and Stechmann, S. N.: The MJO skeleton model
with observation-based background state and forcing, Q. J. Roy.
Meteor. Soc., 141, 2654–2669, https://doi.org/10.1002/qj.2552,
2015.

Ogrosky, H. R., Stechmann, S. N., and Majda, A. J.: Boreal sum-
mer intraseasonal oscillations in the MJO skeleton model with
observation-based forcing, Dynam. Atmos. Oceans, 78, 38–56,
https://doi.org/10.1016/j.dynatmoce.2017.01.001, 2017.

Pohl, B. and Camberlin, P.: Influence of the Madden–Julian Oscil-
lation on East African rainfall: II. March–May season extremes
and interannual variability, Q. J. Roy. Meteor. Soc., 132, 2541–
2558, https://doi.org/10.1256/qj.05.223, 2006.

Pohl, B. and Matthews, A. J.: Observed Changes in the Lifetime and
Amplitude of the Madden–Julian Oscillation Associated with
Interannual ENSO Sea Surface Temperature Anomalies, J. Cli-
mate, 20, 2659–2674, https://doi.org/10.1175/jcli4230.1, 2007.

Silini, R., Barreiro, M., and Masoller, C.: Machine learning pre-
diction of the Madden-Julian oscillation, npj Climate and Atmo-
spheric Science, 4, https://doi.org/10.1038/s41612-021-00214-6,
2021.

Stachnik, J. P., Waliser, D. E., Majda, A. J., Stechmann, S. N.,
and Thual, S.: Evaluating MJO event initiation and decay in the
skeleton model using an RMM-like index, J. Geophys. Res., 120,
11486–11508, https://doi.org/10.1002/2015JD023916, 2015.

Stechmann, S. N. and Majda, A. J.: Identifying the Skeleton of
the Madden–Julian Oscillation in Observational Data, Mon.
Weather Rev., 143, 395–416, https://doi.org/10.1175/MWR-D-
14-00169.1, 2015.

Suematsu, T. and Miura, H.: Changes in the Eastward Move-
ment Speed of the Madden–Julian Oscillation with Fluctu-
ation in the Walker Circulation, J. Climate, 35, 211–225,
https://doi.org/10.1175/jcli-d-21-0269.1, 2022.

Tam, C.-Y. and Lau, N.-C.: Modulation of the Madden-Julian Os-
cillation by ENSO: Inferences from Observations and GCM
Simulations, J. Meteorol. Soc. Jpn. Ser. II, 83, 727–743,
https://doi.org/10.2151/jmsj.83.727, 2005.

Thompson, D. B. and Roundy, P. E.: The Relationship between
the Madden–Julian Oscillation and U. S. Violent Tornado Out-
breaks in the Spring, Mon. Weather Rev., 141, 2087–2095,
https://doi.org/10.1175/mwr-d-12-00173.1, 2013.

Thual, S. and Majda, A. J.: A Suite of Skeleton Models for the
MJO with Refined Vertical Structure, Mathematics of Climate
and Weather Forecasting, 1, https://doi.org/10.1515/mcwf-2015-
0004, 2015.

Thual, S. and Majda, A. J.: A skeleton model for the MJO
with refined vertical structure, Clim. Dynam., 46, 2773–2786,
https://doi.org/10.1007/s00382-015-2731-x, 2016.

Thual, S., Majda, A. J., and Stechmann, S. N.: A Stochastic
Skeleton Model for the MJO, J. Atmos. Sci., 71, 697–715,
https://doi.org/10.1175/jas-d-13-0186.1, 2014.

Thual, S., Majda, A. J., and Stechmann, S. N.: Asymmet-
ric intraseasonal events in the stochastic skeleton MJO
model with seasonal cycle, Clim. Dynam., 45, 603–618,
https://doi.org/10.1007/s00382-014-2256-8, 2015.

Vallis, G. K.: Atmospheric and Oceanic Fluid Dy-
namics: Fundamentals and Large-Scale Circulation,
Cambridge University Press, ISBN 9781107588417,
https://doi.org/10.1017/9781107588417, 2017.

Vitart, F., Cunningham, C., DeFlorio, M., Dutra, E., Ferranti, L.,
Golding, B., Hudson, D., Jones, C., Lavaysse, C., Robbins,
J., and Tippett, M. K.: Sub-seasonal to Seasonal Prediction
of Weather Extremes, chap. 17, in: Sub-Seasonal to Seasonal
Prediction, edited by: Robertson, A. W. and Vitart, F., Else-
vier, ISBN 978-0-12-811714-9, https://doi.org/10.1016/B978-0-
12-811714-9.00017-6, pp. 365–386, 2019.

Wei, Y. and Ren, H.-L.: Modulation of ENSO on Fast and Slow
MJO Modes during Boreal Winter, J. Climate, 32, 7483–7506,
https://doi.org/10.1175/jcli-d-19-0013.1, 2019.

Wheeler, M. C. and Hendon, H. H.: An All-Season Real-
Time Multivariate MJO Index: Development of an
Index for Monitoring and Prediction, Mon. Weather
Rev., 132, 1917–1932, https://doi.org/10.1175/1520-
0493(2004)132<1917:aarmmi>2.0.co;2, 2004.

White, A.: DYNAMIC METEOROLOGY | Primitive Equations,
in: Encyclopedia of Atmospheric Sciences, edited by: Holton,
J. R., Academic Press, Oxford, ISBN 978-0-12-227090-1,
https://doi.org/10.1016/B0-12-227090-8/00139-1, pp. 694–702,
2003.

Woolnough, S. J.: The Madden-Julian Oscillation, chap. 5, in:
Sub-Seasonal to Seasonal Prediction, edited by: Robertson,
A. W. and Vitart, F., Elsevier, ISBN 978-0-12-811714-9,
https://doi.org/10.1016/B978-0-12-811714-9.00005-X, pp. 93–
117, 2019.

Zhang, C.: Madden–Julian Oscillation: Bridging Weather
and Climate, B. Am. Meteorol. Soc., 94, 1849–1870,
https://doi.org/10.1175/bams-d-12-00026.1, 2013.

Zhang, C., Adames, A. F., Khouider, B., Wang, B., and Yang, D.:
Four Theories of the Madden-Julian Oscillation, Rev. Geophys.,
58, e2019RG000685, https://doi.org/10.1029/2019rg000685,
2020.

Zhou, X., Wang, L., Hsu, P.-c., Li, T., and Xiang, B.: Understand-
ing the Factors Controlling MJO Prediction Skill across Events,
J. Climate, 37, 5323–5336, https://doi.org/10.1175/JCLI-D-23-
0635.1, 2024.

Nonlin. Processes Geophys., 32, 367–382, 2025 https://doi.org/10.5194/npg-32-367-2025

https://doi.org/10.1175/JAS-D-11-053.1
https://doi.org/10.1002/cpa.21584
https://doi.org/10.1007/978-3-030-22247-5
https://doi.org/10.1007/978-3-030-22247-5
https://doi.org/10.48550/arXiv.2411.05264
https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_change.shtml
https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_change.shtml
https://doi.org/10.1002/qj.2552
https://doi.org/10.1016/j.dynatmoce.2017.01.001
https://doi.org/10.1256/qj.05.223
https://doi.org/10.1175/jcli4230.1
https://doi.org/10.1038/s41612-021-00214-6
https://doi.org/10.1002/2015JD023916
https://doi.org/10.1175/MWR-D-14-00169.1
https://doi.org/10.1175/MWR-D-14-00169.1
https://doi.org/10.1175/jcli-d-21-0269.1
https://doi.org/10.2151/jmsj.83.727
https://doi.org/10.1175/mwr-d-12-00173.1
https://doi.org/10.1515/mcwf-2015-0004
https://doi.org/10.1515/mcwf-2015-0004
https://doi.org/10.1007/s00382-015-2731-x
https://doi.org/10.1175/jas-d-13-0186.1
https://doi.org/10.1007/s00382-014-2256-8
https://doi.org/10.1017/9781107588417
https://doi.org/10.1016/B978-0-12-811714-9.00017-6
https://doi.org/10.1016/B978-0-12-811714-9.00017-6
https://doi.org/10.1175/jcli-d-19-0013.1
https://doi.org/10.1175/1520-0493(2004)132<1917:aarmmi>2.0.co;2
https://doi.org/10.1175/1520-0493(2004)132<1917:aarmmi>2.0.co;2
https://doi.org/10.1016/B0-12-227090-8/00139-1
https://doi.org/10.1016/B978-0-12-811714-9.00005-X
https://doi.org/10.1175/bams-d-12-00026.1
https://doi.org/10.1029/2019rg000685
https://doi.org/10.1175/JCLI-D-23-0635.1
https://doi.org/10.1175/JCLI-D-23-0635.1

	Abstract
	Introduction
	The MJO skeleton model
	Deterministic model
	Stochastic model

	Observation-based time-dependent forcing functions
	Data sources
	Estimation procedure

	Identification of MJO events: the skeleton multivariate MJO index
	Numerical solution
	Hovmöller diagrams of the model variables
	Power spectrum of the envelope of convective activity
	Climatology and variance of the envelope of convective activity

	Identification of MJO events with the SMM index
	MJO characteristics in the skeleton model and in observations
	MJO seasonal variations
	MJO lifetime, extent in SMM/RMM phase space, and maximum SMM/RMM amplitude
	MJO starting and ending phases

	Modulation of the MJO by ENSO
	MJO activity across El Niño, La Niña, and neutral ENSO
	ENSO modulation of MJO characteristics
	Observations
	Simulations
	Discussion


	Conclusions
	Code and data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

