Articles | Volume 32, issue 1
https://doi.org/10.5194/npg-32-23-2025
https://doi.org/10.5194/npg-32-23-2025
Research article
 | 
22 Jan 2025
Research article |  | 22 Jan 2025

Solving a North-type energy balance model using boundary integral methods

Aksel Samuelsberg and Per Kristen Jakobsen

Related subject area

Subject: Bifurcation, dynamical systems, chaos, phase transition, nonlinear waves, pattern formation | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere | Techniques: Theory
Dynamically optimal models of atmospheric motion
Alexander G. Voronovich
Nonlin. Processes Geophys., 31, 559–569, https://doi.org/10.5194/npg-31-559-2024,https://doi.org/10.5194/npg-31-559-2024, 2024
Short summary
Energy transfer from internal solitary waves to turbulence via high-frequency internal waves: seismic observations in the northern South China Sea
Linghan Meng, Haibin Song, Yongxian Guan, Shun Yang, Kun Zhang, and Mengli Liu
Nonlin. Processes Geophys., 31, 477–495, https://doi.org/10.5194/npg-31-477-2024,https://doi.org/10.5194/npg-31-477-2024, 2024
Short summary
Review article: Interdisciplinary perspectives on climate sciences – highlighting past and current scientific achievements
Vera Melinda Galfi, Tommaso Alberti, Lesley De Cruz, Christian L. E. Franzke, and Valerio Lembo
Nonlin. Processes Geophys., 31, 185–193, https://doi.org/10.5194/npg-31-185-2024,https://doi.org/10.5194/npg-31-185-2024, 2024
Short summary
Variational techniques for a one-dimensional energy balance model
Gianmarco Del Sarto, Jochen Bröcker, Franco Flandoli, and Tobias Kuna
Nonlin. Processes Geophys., 31, 137–150, https://doi.org/10.5194/npg-31-137-2024,https://doi.org/10.5194/npg-31-137-2024, 2024
Short summary
Sensitivity of the polar boundary layer to transient phenomena
Amandine Kaiser, Nikki Vercauteren, and Sebastian Krumscheid
Nonlin. Processes Geophys., 31, 45–60, https://doi.org/10.5194/npg-31-45-2024,https://doi.org/10.5194/npg-31-45-2024, 2024
Short summary

Cited articles

Abbot, D. S., Voigt, A., and Koll, D.: The Jormungand global climate state and implications for Neoproterozoic glaciations, J. Geophys. Res.-Atmos., 116, D18103, https://doi.org/10.1029/2011JD015927, 2011. a, b
Adams, B., Carr, J., Lenton, T., and White, A.: One-dimensional daisyworld: spatial interactions and pattern formation, J. Theor. Biol., 223, 505–513, 2003. a, b, c
Alberti, T., Primavera, L., Vecchio, A., Lepreti, F., and Carbone, V.: Spatial interactions in a modified Daisyworld model: Heat diffusivity and greenhouse effects, Phys. Rev. E, 92, 052717, https://doi.org/10.1103/PhysRevE.92.052717, 2015. a, b, c
Alberti, T., Lepreti, F., Vecchio, A., and Carbone, V.: On the stability of a climate model for an Earth-like planet with land-ocean coverage, J. Phys. Commun., 2, 065018, https://doi.org/10.1088/2399-6528/aacd8d, 2018. a
Bastiaansen, R., Dijkstra, H. A., and von der Heydt, A. S.: Fragmented tipping in a spatially heterogeneous world, Environ. Res. Lett., 17, 045006, https://doi.org/10.1088/1748-9326/ac59a8, 2022. a
Download
Short summary
We explored a simplified climate model based on Earth's energy budget. One advantage of such models is that they are easier to study mathematically. Using a mathematical technique known as boundary integral methods, we present a new way to solve these climate models. This method is particularly useful for modeling climates very different from Earth's current state, such as those on other planets or during past ice ages.