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Abstract. Simplified climate models, such as energy balance models (EBMs), are useful conceptual tools, in
part because their reduced complexity often allows for studies using analytical methods. In this paper, we solve a
North-type EBM using a boundary integral method (BIM). The North-type EBM is a diffusive, one-dimensional
EBM with a nonlinear albedo feedback mechanism. We discuss this approach in light of existing analytical
techniques for this type of equation. Subsequently, we test the proposed method by solving multiple North-type
EBMs with a zonally symmetric continent featuring an altered ice-albedo feedback dynamic. We demonstrate
that the introduction of a continent results in new equilibrium states characterized by multiple ice edges and
ice belts. Furthermore, we show that the BIM serves as an efficient framework for handling unconventional ice
distributions and model configurations for North-type EBMs.

1 Introduction

Despite the advancement in computational power, concep-
tual climate models remain valuable tools for understand-
ing the Earth’s climate system. The complexity of realistic
models has highlighted the need for a hierarchical model
structure where conceptual models provide a solid theoret-
ical foundation as model complexity increases (Schneider
and Dickinson, 1974; Claussen et al., 2002; McGuffie and
Henderson-Sellers, 2014). Energy balance models (EBMs)
stand out as some of the simplest climate models. Their
simplicity allows for both analytical and numerical studies
of climate responses to forcings. So-called zero-dimensional
EBMs describe the Earth’s global mean temperature and in-
clude no spatial variables. Zero-dimensional EBMs are read-
ily examined using analytical tools (North, 1990; Ghil and
Lucarini, 2020; Lohmann, 2020). One-dimensional EBMs
with a latitude dependence, coupled with a linear transport
term and a nonlinear albedo feedback, often called Budyko-
type models, also lend themselves to analytical investigations
(Budyko, 1969; Held and Suarez, 1974; Widiasih, 2013;
Walsh and Widiasih, 2014). A more physically motivated
transport mechanism (Rose and Marshall, 2009) may be in-
cluded in the model by instead adding a diffusion term. One-

dimensional EBMs with meridional heat transport by diffu-
sion, hereafter called North-type models, have attracted con-
siderable interest (North et al., 1981; Ghil, 1976; Bódai et al.,
2015; Del Sarto et al., 2024). While the inclusion of the diffu-
sion term complicates the models, mathematically speaking,
in certain configurations these models may be studied us-
ing analytical methods. Pioneering analytical investigations
into these models have been conducted by North (North,
1975a, b; North et al., 1981). A general solution expressed
through a Fourier–Legendre series for the equilibrium tem-
perature field was found using spectral methods for a step
function albedo. Although this solution is rapidly converging
for standard model configurations such as the idealized aqua-
planet, a geographical input with parameter discontinuities
across land–sea boundaries causes the spectral solution to
converge slowly (Mengel et al., 1988; North and Kim, 2017).

In this paper, we solve the stationary form of an EBM with
a meridional heat transport and a nonlinear albedo feedback
using an analytical method: the boundary integral method
(BIM). This North-type EBM describes the zonal mean sur-
face temperature with its key features being a linear heat dif-
fusion across latitudes, an ice-albedo feedback mechanism
and the stabilizing effect of the outgoing longwave radiation.
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The model may be formulated as
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Qs(θ )(1− a(T ))−A
(1)

using spherical coordinates, where the polar angle, θ , is the
latitude. The latitude ranges from θ = 0, the north pole, to
θ = π , the south pole. Here C represents the heat capacity of
the lower atmosphere and hydrosphere with an assigned av-
erage constant value, and D is the diffusion rate determining
the strength of the meridional heat transport. The parameter
Q is defined as one-fourth of the mean total solar irradiance
(TSI), as the disk silhouette capturing solar radiation is one-
fourth of the Earth’s total area. To address the solar radiation
distribution across latitudes, the model incorporates an aver-
age annual latitudinal energy distribution function, denoted
s(θ ). Additionally, the model assumes a constant lapse rate,
establishing a linear relationship between surface tempera-
ture and outgoing energy, expressed asEout = A+BT , where
A and B are constants (Budyko, 1969). The ice-albedo feed-
back mechanism is included by allowing for a temperature-
dependent albedo,

a(T )=

{
a1, T >−Ts,

a2, T <−Ts,
(2)

where −Ts is the critical temperature for ice formation at the
surface. Latitudes with an annual mean temperature below
−Ts are deemed to have an ice cover. Consequently, there
will be a critical latitude at which the ice cover ends and be-
gins. A major challenge arises in determining the location
of the critical latitude under the given constraints. We show
that the BIM offers a convenient way to address this, even for
scenarios with several critical latitudes.

The proposed method is tested on a model configuration
where the idealized aquaplanet is given a zonally symmet-
ric continent with an altered ice-albedo feedback mechanism.
Equilibrium solutions to Eq. (1) are found, and a bifurcation
diagram is drawn for three different systems with a zonally
symmetric continent. Lin and North (1990) previously stud-
ied similar zonal band continent configurations, and a circu-
lar cap of land centered at one pole was studied by Mengel
et al. (1988). In these studies, land and sea were differen-
tiated by a change in heat capacity, with no change in the
stationary equation. Here, we demonstrate that the BIM rep-
resents an analytical method that efficiently handles arbitrary
parameter discontinuities at the land–sea interface in North-
type EBMs. Additionally, we show that the introduction of
a continent with altered equilibrium parameters gives rise to
new equilibrium states, characterized by unconventional ice
distributions featuring multiple ice edges and ice belts.

2 Results

BIMs are a general approach for boundary value problems,
where the problem is reduced to boundary integral equations
involving an associated Green’s function (Hsiao and Wend-
land, 2008; Morino and Piva, 2012). To showcase the appli-
cation of the BIM in the context of EBMs, we employ it to
find the equilibrium solutions to the classical idealized aqua-
planet. Using Ts as a scale for temperature, T = TsT̃ , where
T̃ = T̃ (θ ) is the non-dimensional temperature field at latitude
θ , we may write the stationary form of the energy balance
equation (Eq. 1) in non-dimensional form:
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where β = B
D

, α = A
TsD

and η = Q
TsD

. Hereafter, the tilde no-
tation on the non-dimensional temperatures will be omitted,
as the subsequent analysis will focus exclusively on non-
dimensional temperatures. Defining
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it can be shown that, for two functions v and u on the domain
[θ1,θ2], we have
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Defining

h(T ,θ )= ηs(θ )(1− a(T ))−α, (6)

we may write Eq. (3) in the compact form:

LT = h. (7)

Let K be a Green’s function for operator (4). That is,

LK(θ,ξ )= δξ (θ ), (8)

where δξ (θ ) is a Dirac delta function along the curve θ ∈
[0,π ] (see Appendix A, Eq. A4). Inserting v = T and u=K
into the identity in Eq. (5), we have∫ θ2
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dθ sinθ{TLK −KLT } ={
K sinθ
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(9)

Inserting Eqs. (7) and (8) into Eq. (9) and rearranging for T ,
any exact solution T (θ ) to Eq. (3) must satisfy the identity

T (ξ )=
∫ θ2
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(10)
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A suitable Green’s function is found in Appendix A.

K(θ,ξ )=
Pλ(cosξ )(π cot(πλ)Pλ(cosθ )−2Qλ(cosθ ))

2(1+λ)(Pλ(cosξ )Qλ+1(cosξ )−Pλ+1(cosξ )Qλ(cosξ )) , θ > ξ,

Pλ(cosθ )(π cot(πλ)Pλ(cosξ )−2Qλ(cosξ ))
2(1+λ)(Pλ(cosξ )Qλ+1(cosξ )−Pλ+1(cosξ )Qλ(cosξ )) , θ < ξ.

(11)

Here Pλ and Qλ are Legendre functions of order λ, where

λ=
1
2

(√
1− 4β − 1

)
. (12)

This Green’s function is continuous and bounded on the do-
main θ ∈ [0,π ], and its derivative is also bounded at the
boundaries θ = 0 and θ = π for a given ξ ∈ [0,π ].

2.1 No partial ice cover

The BIM relies on initially positing an ansatz regarding the
distribution of ice and water, and then the domain is parti-
tioned into regions where the albedo function remains invari-
ant with respect to temperature. Subsequently, the identity
in Eq. (10) is applied within these regions to obtain explicit
expressions for the solution to Eq. (3). We start by analyz-
ing solutions where the surface has no partial ice cover. This
is the linear problem where the ice-albedo feedback is inac-
tive due to extreme temperatures. The step function albedo
(Eq. 2) leads to

h(T ,θ )=

{
ηs(θ )(1− a1)−α, T >−1,

ηs(θ )(1− a2)−α, T <−1.
(13)

Note that h is a function of non-dimensional temperature;
hence, the critical temperature for the presence of surface ice
is T =−1. For theses extreme cases, where T >−1∀θ ∈
[0,π ] and T <−1∀θ ∈ [0,π ], the surface is either (1) de-
void of ice entirely or (2) entirely covered by ice. Conse-
quently, the function h is constant in the domain [0,π ], and
we may apply the relation in Eq. (10) to the full domain: let-
ting θ1→ 0+ and θ2→ π−, we get

T (ξ )=
∫ π

0
dθ sinθ K(θ,ξ )h(T ,θ )

+ lim
θ2→π−

K(θ2,ξ ) sinθ2
∂T

∂θ
(θ2)

− lim
θ2→π−

T (θ2) sinθ2
∂K

∂θ
(θ2,ξ )

− lim
θ1→0+

K(θ1,ξ ) sinθ1
∂T

∂θ
(θ1)

+ lim
θ1→0+

T (θ1) sinθ1
∂K

∂θ
(θ1,ξ ).

(14)

Green’s function, K , and its derivative are bounded at the
boundary (see Appendix A). The gradient must vanish at the

boundaries (North, 1975a) as we do not allow for heat trans-
port at the poles, leading to the boundary conditions

lim
θ→0

sinθ
∂T

∂θ
(θ )= 0 (15)

and

lim
θ→π

sinθ
∂T

∂θ
(θ )= 0. (16)

This ensures that Eq. (14) takes the simpler form

T (ξ )=

π∫
0

dθ sinθ K(θ,ξ )h(T ,θ ). (17)

Using this, we may express the solution to Eq. (3) as

T (ξ )=

π∫
0

dθ sinθ K(θ,ξ )h1(θ ) (18)

for case (1) and

T (ξ )=

π∫
0

dθ sinθ K(θ,ξ )h2(θ ) (19)

for case (2), where h1 = ηs(θ )(1−a1)−α and h2 = ηs(θ )(1−
a2)−α.

2.2 Partial ice cover

For solutions to Eq. (1) where the zonal mean temperature
profile is not strictly above or below the critical temperature,
Ts, the surface will have a partial ice cover analogous to the
Earth’s current climate state. Critical latitudes, denoted as θc1

and θc2 , mark the transitions between ice and water cover-
age. Assuming that T remains continuous across the criti-
cal latitudes, the non-dimensional temperature at these lati-
tudes must necessarily be T (θc1 )= T (θc2 )=−1. Given that
the radiation distribution s(θ ) prescribes an incoming radia-
tion maximum at the equator, the ice cover must be centered
at the poles (as illustrated in Fig. 1 but without the continent),
and it is sensible to partition the domain into the following
subdomains:

θ ∈ (0,θc1 ), (20)
θ ∈ (θc1 ,θc2 ) (21)

and

θ ∈ (θc2 ,π ), (22)

such that

LT = h1 (23)
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Figure 1. Schematic of the domain θ ∈ [0,π ] of Eq. (1) for a planet
with a zonally symmetric continent and partial ice cover. The extent
of the continent, i.e., θl1 and θl2 , is determined by Eq. (34). The
ice caps extend from θ = 0 to the critical latitude θ = θc1 and from
θ = θc2 to θ = π .

in the region in Eq. (21) and

LT = h2 (24)

in the regions in Eqs. (20) and (22).
The relation in Eq. (10) is applied in these regions, and we

get

T (ξ )=
∫ θc1

0
dθ sinθ K(θ,ξ )h2(θ )
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and

T (ξ )=
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in the regions in Eqs. (20), (21) and (22), respectively. The
solution to Eq. (3) within the three subdomains may be ex-
pressed through the relations in Eqs. (25)–(27), given the
points θc1 and θc2 , as well as the spatial derivative of T
at these points. These unknown boundary values are deter-
mined by solving the following system of boundary integral
equations, obtained by letting ξ approach the boundaries of
the three subdomains in Eqs. (25)–(27):
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−1=
∫ π
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T (π )=
∫ π

θc2

dθ sinθ K(θ,π )h2(θ )

−K(θc2 ,π ) sin(θc2 )
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− sin(θc2 ) lim
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The system of equations (Eqs. 28–33) can be solved for T (0),
T (π ), ∂T

∂θ
(θc1 ), ∂T

∂θ
(θc2 ), θc1 and θc2 through a combination

of both analytical and numerical methods. Finding θc1 and
θc2 ultimately requires a root search, as the integrals cannot
be evaluated analytically. However, these values may be ap-
proximated to a high precision. For the root search, we used
a Broyden’s method, as computing the Jacobian is expen-
sive for solutions with multiple critical latitudes. Note that
the system of equations (Eqs. 28–33) can have more than one
solution, indicating multiple equilibria.

2.3 With a continent

The method presented may be extended to include one or
more zonally symmetric continents. The following analy-
sis includes one such continent with a meridional extent of
l = π

4 , stretching from latitude θl1 to latitude θl2 . Figure 1 il-
lustrates a planet with a continent of this kind. The analysis
was repeated three times for three different continent config-
urations,

θl1 =
π

2
−
l

2
− ε,

θl2 =
π

2
+
l

2
− ε.

(34)

where ε = 0, ε = 0.1 and ε = 0.5. Parameter values on the
continent may be altered to distinguish land from ocean and
better capture the thermal response of the lithosphere. Here,
the heat capacity C, the critical temperature for ice forma-
tion Ts and the albedo a(T ) were altered on the part of the
domain corresponding to the continent. This has the effect of
changing the ice dynamics and subsequently the ice-albedo
feedback on the continent. The extent of the continent l is
kept constant, and no ice–ocean–land feedback is included
in the model. Mathematical details on the application of the
presented method to model configurations with a continent
are omitted for brevity. Instead, we provide some results of
our analysis. Interested readers are referred to Samuelsberg
and Jakobsen (2023) for a full derivation of these solutions.
The multiple branch structure of the model is displayed in

Table 1. Model parameters used in the presented work. A, B, C,
Cland and Ts are taken from North et al. (1981). D is taken from
Kaper and Engler (2013), and s(θ ) is taken from McGehee and
Lehman (2012).

Parameter Value

s(θ ) s0+ s1cos2(θ − π
2
)

s0 0.523
s1 0.716
A 203 Wm−2

B 2.09 Wm−2 °C−1

D 0.208 ·B
C 4.7B t0
Cland 0.16B t0
t0 1 year
Ts 10 °C
Ts,land 1 °C
a1 0.06
a2 0.6
a1,land 0.3
a2,land 0.6

Fig. 2 through bifurcation diagrams of the system with a con-
tinent configuration as in Eq. (34), where ε = 0, ε = 0.1 and
ε = 0.5. The control parameter is the scaled TSI Q. Stability
properties of the stationary solutions are assessed using the
numerical perturbation scheme outlined in Appendix B.

3 Discussion

We have applied the BIM to solve the stationary form of a
North-type EBM with a zonally symmetric continent in three
different configurations. The introduction of a continent re-
sulted in the emergence of new equilibrium states. EBMs
have a rich multiple solution structure (North, 1990). In zero-
dimensional models that incorporate the ice-albedo feed-
back, three solutions exist; as one extends to one-dimensional
models, the multiple branch structure becomes more com-
plicated. North showed that there exist up to five solutions
for a range of TSI values in the globally averaged model,
one of which is the famously unstable small-ice-cap solution
(North, 1984). From Fig. 2a, it is evident that up to seven
equilibria may exist for a range ofQ values in model config-
urations with a continent. The continent is initially placed in
a north–south symmetrical configuration to investigate how
the system is affected by symmetry. The meridional symme-
try is subsequently violated by increasing ε. Although the
number of equilibria for any given Q is at most seven for
ε = 0 and ε = 0.1, the range over which seven equilibria can
exist is reduced as ε is increased and has disappeared for
ε = 0.5. Prescribing the system with inherently symmetrical
boundary conditions, i.e., ε = 0, evidently introduces a very
fine dynamic as seen in the looping branches in the bifur-
cation diagram of Fig. 2a, which disappears for non-zero ε.

https://doi.org/10.5194/npg-32-23-2025 Nonlin. Processes Geophys., 32, 23–33, 2025
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Figure 2. Bifurcation diagrams. Annual mean equilibrium surface temperatures plotted against the control parameter Q for model configu-
rations with a continent as in Eq. (34), where ε = 0, ε = 0.1 and ε = 0.5. Model parameters are those in Table 1. Solid lines indicate stable
solutions and dotted lines are unstable solutions. The upper, stable branches in the bifurcation diagrams contain ice-free solutions, and the
lower, stable branches contain solutions with a full ice cover (Snowball Earth states). Intermediate branches contain solutions with a partial
ice cover.

Furthermore, equilibria with a more complicated ice distribu-
tion, characterized by more than two critical latitudes, only
appear for ε = 0. Despite this, the range of TSI over which
stable partial-ice-cover solutions can exist, i.e., the interme-
diate branches in Fig. 2, is much shorter for ε = 0. The range
of stable, intermediate branches is longest for ε = 0.5. Addi-
tionally, for ε = 0.5, there is a large range of TSI values over
which bi-stability occurs between the ice-free solution and
the partial-ice-cover solution, as seen in Fig. 2c. These ob-
servations are notable because, although it is well established
that the climate has changed throughout geological history,
the role of the land–sea distribution is not fully understood
(Fluteau, 2003).

The robustness of the method was tested by allowing for
parameter discontinuities at the land–sea boundaries. Mengel
et al. (1988) and North and Kim (2017) have discussed the
application of Fourier–Legendre series in EBMs with param-
eter discontinuities at the continent edges: a discontinuity in
the albedo and heat capacity parameter C causes a solution
expressed through Legendre modes to converge slowly. Pre-
sumably, similar discontinuities in other parameters will have
the same effect. Moreover, North (1975a) discussed the po-
tential for changing parameter values on finite zonal strips
using spectral methods, but they did not address how this
may result in several ice edges. The dynamics of EBMs are
highly sensitive to model parameters (Soldatenko and Col-
man, 2019), and the introduction of a continent to the model
can result in some unusual ice distributions. Figure 3 shows
an equilibrium solution with six critical latitudes and two ice
belts on the continent. Studying several critical latitudes is a
natural extension of the BIM and follows the same general
procedure. A similar ice belt has been observed by changing
the obliquity of the model using the spectral method (Rose
et al., 2017). For high obliquities, the traditional ice distribu-
tion of the two-critical-latitude solution is inverted, allow-
ing for a similar analysis to the classical partial-ice-cover
states, without additional ice edges. The ice belts overlay-
ing the continent form a striped pattern, a phenomenon also

Figure 3. An equilibrium solution (unstable) to Eq. (1) with a conti-
nent as in Eq. (34), where ε = 0,Q= 294 Wm−2 and other param-
eters are those in Table 1. Green vertical lines mark the continent
borders, and blue vertical lines mark critical latitudes. The red hor-
izontal lines mark the critical temperatures for ice formation.

observed in the related one-dimensional Daisyworld model
with diffusion (Adams et al., 2003; Alberti et al., 2015).
Adams et al. (2003) found that the daisies never coexisted;
instead the equilibrium solution is characterized by zonal
bands of single-species colonies reminiscent of Fig. 3. A sim-
ilar striped pattern of daisy coverage was reported by Alberti
et al. (2015) in a one-dimensional Daisyworld model with
diffusion and a greenhouse effect.

Although the BIM is an effective approach for solving
North-type EBMs, it has certain limitations. A step func-
tion albedo is used here, and the method is easily ex-
tended to any latitude dependence for the albedo. However,
this method, like the spectral method, is limited to a step
function-like temperature response at the ice edge. An arbi-
trary temperature-dependent albedo on either side of the ice
edge renders the energy balance equation unsolvable through
the presented method. An additional drawback of the pre-
sented method is that a root search is required to find the crit-
ical latitudes, θci . For solutions with a low number of critical
latitudes, this poses no significant challenge. However, as the
number of critical latitudes increases, so does the complexity
of the root search and the necessity for a good starting point
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in the iteration. For solutions located in branches connected
to the ice-free branch and the Snowball Earth branch in the
bifurcation diagram, this is generally not a problem. Since
these extreme solutions always exist within certain parame-
ter regimes, we identify the bifurcation points and update the
ansatz accordingly, repeating this process until the upper and
lower branches connect. This approach ensures sufficient ini-
tial points for the root searches, allowing all coexisting states
in connected branches to be identified. Additionally, for solu-
tions with one, two or three critical latitudes, a graphical so-
lution to the system of boundary integral equations (Eqs. 28–
33) is possible, ensuring that any isolated branches are also
detected. However, detecting isolated branches with multi-
ple critical latitudes requires a more numerically expensive
approach. Furthermore, the method can become tedious for
complicated geographies and a high number of critical lati-
tudes.

The BIM has a wide range of potential applications.
While the model studied here only includes an ice-albedo
feedback mechanism, the BIM can be generalized to solve
one-dimensional EBMs with additional albedo feedbacks. A
vegetation feedback has previously been introduced within
an EBM framework for zero-dimensional models (Rom-
bouts and Ghil, 2015; Alberti et al., 2018) and related one-
dimensional models (Wood et al., 2008; Adams et al., 2003;
Alberti et al., 2015). The method we have presented is ap-
plicable to North-type EBMs where the model is piecewise
linear on subdomains, specifically if the explicit tempera-
ture dependence in the integrand of Eq. (10) can be elimi-
nated through an appropriate partitioning of the domain. For
instance, a vegetation feedback mechanism can be imple-
mented by adding vegetation on the continent for tempera-
tures within a certain growth regime, where the vegetation is
modeled by altering the albedo. The BIM can be directly ap-
plied to North-type models with such simplified vegetation
responses. Furthermore, including additional spatial depen-
dence in the albedo represents another natural application of
the BIM. For example, in studies involving North-type EBMs
related to Snowball Earth events, alternative albedo param-
eterizations (Abbot et al., 2011) or spatial dependence for
other model parameters can be easily implemented with the
BIM. The ability to effectively handle spatially dependent
model parameters also makes the BIM an appropriate tool
for studying fragmented tipping in North-type EBMs (Basti-
aansen et al., 2022).

4 Conclusions

In this paper, we have presented an analytical method for
solving North-type EBMs. Solutions are expressed through
explicit expressions, readily obtainable from quadrature
methods. The presented method has some notable advantages
compared to other analytical methods, e.g., North (1975a),
for solving energy balance equations of this kind. It does

not rely on truncating series expansions. Furthermore, the
method remains straightforward and, computationally speak-
ing, very fast, even for problems with partial land–sea ge-
ographies and parameter discontinuities at the boundaries
separating land and sea. In addition, the BIM offers a for-
mulaic framework for handling equilibrium solutions with
several critical latitudes, θci , and unconventional ice distri-
butions.

The development of new analytical methods of studying
EBMs is motivated by the recognition of EBMs as useful
tools for researchers in a variety of fields. The inherent sim-
plicity of EBMs, characterized by few parameters, renders
them particularly suitable for certain aspects of paleoclima-
tology (North and Kim, 2017; Abbot et al., 2011; Widiasih
et al., 2024) and planetary science (Rose et al., 2017), where
poorly constrained parameters and a diverse set of planetary
conditions are frequently encountered. The BIM represents
a systematic approach to solving North-type EBMs and ex-
cels under unconventional model configurations, particularly
where emerging solutions describe climate states markedly
different from the prevailing state of Earth. Analytical inves-
tigations of conceptual models continue to provide a valuable
testing ground for ideas in climate science and insights into
the complex dynamics involved as one ascends the climate
model hierarchy.

Appendix A: Finding a Green’s function

In this section, we find a Green’s function, K(θ,ξ ), for the
operator in Eq. (4). A Green’s function is any solution to
Eq. (8). The two defining properties of the Dirac delta func-
tion are the following:

1. For any surface of interest, S, we must have∫
S

dAδξ = 1. (A1)

2. For any function, f (x), defined on S, we must have∫
S

dAδξf = f (ξ ). (A2)

For the line θ ∈ [0,π ] along the surface of a sphere with ra-
dius R, it can be shown that the term

δξ (θ )=
δ(θ − ξ )

2πR2 sinθ
, (A3)

where δ(θ − ξ ) is the usual delayed Dirac delta function on
the line, will ensure that Eqs. (A1) and (A2) are satisfied. It
is convenient to scale the Green’s function we are seeking by
a factor such that the right-hand side of Eq. (A3) becomes
unity and that Eq. (8) becomes

LK =
δ(θ − ξ )

sinθ
. (A4)
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We will demand that Green’s function is continuous across
θ = ξ ; therefore, we must have

lim
θ→ξ+

K(θ,ξ )= lim
θ→ξ−

K(θ,ξ ). (A5)

Integrating Eq. (A4) over a small interval centered on θ = ξ ,
we get∫ ξ+ε

ξ−ε

dθ sinθ
{
−

1
sinθ

∂

∂θ

(
sinθ

∂K

∂θ

)
+βK

}
=∫ ξ+ε

ξ−ε

dθ sinθ
δ(θ − ξ )

sinθ
,

(A6)

−

∫ ξ+ε

ξ−ε

dθ
∂

∂θ

(
sinθ

∂

∂θ
K(θ,ξ )

)
+β

∫ ξ+ε

ξ−ε

dθ sinθ K(θ,ξ )= 1,

(A7)

− sinθ
∂

∂θ
K(θ,ξ )

∣∣∣∣ξ+ε
ξ−ε

+β

ξ+ε∫
ξ−ε

dθ sinθ K(θ,ξ )= 1. (A8)

Letting ε→ 0, we must have

lim
θ→ξ+

∂

∂θ
K(θ,ξ )− lim

θ→ξ−

∂

∂θ
K(θ,ξ )=−

1
sinξ

. (A9)

At θ 6= ξ we evidently have

LK(θ,ξ )= 0. (A10)

We can therefore conclude that K(θ,ξ ) must satisfy the nec-
essary conditions of Eqs. (A5), (A9) and (A10). In order to
find a Green’s function that solves Eq. (A4), we need to find
a basis of solutions for an equation of the form

−
1

sinθ
∂

∂θ

(
sinθ

∂

∂θ
y(θ )

)
+βy(θ )= 0. (A11)

Introducing a change of variables, x = cosθ , and a function,
u, such that u(cosθ )= y(θ ), it can be shown that Eq. (A11)
can be written in the form

(1− x2)
∂2

∂x2 u(x)+ 2x
∂

∂x
u(x)−βu(x)= 0. (A12)

Let λ be a number such that −β = λ(λ+ 1). We may now
write Eq. (A12) as a Legendre equation:

(1− x2)
∂2

∂x2 u(x)+ 2x
∂

∂x
u(x)+ λ(λ+ 1)u(x)= 0, (A13)

which for some arbitrary real or complex value λ will
have the known basis of solutions

{
Pλ, Qλ

}
. We can

therefore use the basis
{
Pλ(cosθ ), Qλ(cosθ )

}
, where λ=

1
2

(√
1− 4β − 1

)
, to construct the general solution to

Eq. (A10):

K(θ,ξ )={
a(ξ )Pλ(cosθ )+ b(ξ )Qλ(cosθ ), θ > ξ,

c(ξ )Pλ(cosθ )+ d(ξ )Qλ(cosθ ), θ < ξ.

(A14)

The coefficients a(ξ ),b(ξ ),c(ξ ) and d(ξ ) can be determined
through the conditions in Eqs. (A5) and (A9). Any choice
of these coefficients satisfying Eqs. (A5) and (A9) will give
a Green’s function for the operator in Eq. (4). However, it
makes sense for us to seek a Green’s function that is non-
singular in the domain θ ∈ [0,π ]: we want to develop a set
of conditions for the coefficients a(ξ ), b(ξ ), c(ξ ) and d(ξ ) to
ensure that Green’s function (Eq. A14) is non-singular when
θ→ 0 and θ→ π . Let

K+(θ,ξ )= a(ξ )Pλ(cosθ )+ b(ξ )Qλ(cosθ ),

K−(θ,ξ )= c(ξ )Pλ(cosθ )+ d(ξ )Qλ(cosθ )
(A15)

such that

K(θ,ξ )=

{
K+(θ,ξ ), θ > ξ,

K−(θ,ξ ), θ < ξ.
(A16)

Using a computer algebra system, we find a series expansion
of K+ around θ = π , and we recognize that there is a term
in this expansion containing log(π − θ ) with a coefficient
c+0(a(ξ ),b(ξ )). We want to ensure that K+ is non-singular
at θ = π and therefore demand that

c+0(a(ξ ),b(ξ ))= 0∀ξ ∈ [0,π ]. (A17)

Similarly, we find a series expansion of K− around θ = 0.
In this expansion, there is a term containing log(θ ) with a
coefficient c−0(c(ξ ),d(ξ )), and we demand that

c−0(c(ξ ),d(ξ ))= 0∀ξ ∈ [0,π ]. (A18)

Solving the system of equations (Eqs. A5, A9, A17 and A18)
for a(ξ ), b(ξ ), c(ξ ) and d(ξ ), we find the following Green’s
function:

K(θ,ξ )= (A19)
Pλ(cosξ )(π cot(πλ)Pλ(cosθ )−2Qλ(cosθ ))

2(1+λ)(Pλ(cosξ )Qλ+1(cosξ )−Pλ+1(cosξ )Qλ(cosξ )) , θ > ξ,

Pλ(cosθ )(π cot(πλ)Pλ(cosξ )−2Qλ(cosξ ))
2(1+λ)(Pλ(cosξ )Qλ+1(cosξ )−Pλ+1(cosξ )Qλ(cosξ )) , θ < ξ.

Green’s function (Eq. A19) is non-singular and bounded
at θ = 0 and θ = π . The derivative of Green’s function (
Eq. A19) is also bounded at the boundary and tends to zero
∀ξ ∈ [0,π ].

Appendix B: Stability analysis

In this section, we are going to test the stability of the sta-
tionary solutions found using the BIM. Applying the nota-
tion from Sect. 2, we may write the time-dependent form of
Eq. (1) as

γ ∂tT +LT = h(T ,θ ), (B1)

where γ = C
t0D

. Stationary solutions are denoted T0 =

T (θ, t = 0), such that LT0 = h. We wish to investigate
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whether a small perturbation, δ, away from the equilibrium,
T0, will grow in time. The perturbed solution, T (θ, t)=
T0(θ )+ δ(θ, t), inserted into Eq. (B1) yields

γ ∂tδ+LT0+Lδ = h(T0+ δ,θ ). (B2)

A first-order expansion around (T0,θ ) of the right-hand side
may be expressed as

h(T0+ δ,θ )≈ h(T0,θ )+hT (T0,θ )δ. (B3)

Here we let the term

a(T )= a1+
a2− a1

2
(1+ tanh(−σ (T + 1))), (B4)

where the slope parameter σ = 50, be a smooth function
replicating the behavior of the step function albedo such that
the derivative hT (T0,θ )= ∂h

∂T
(T0,θ ) may be found analyti-

cally for a given T0. By substituting Eq. (B3) into Eq. (B2),
we get

∂tδ =Hδ, (B5)

where

H(·)=
1
γ

[hT (T0,θ )(·)−L(·)] . (B6)

Suppose that the perturbation δ has the form

δ(θ, t)= eλtδ0(θ ). (B7)

This turns Eq. (B5) into the following eigenvalue problem:

λδ0 =Hζ0. (B8)

Real and positive λ values will evidently cause the perturba-
tion to grow exponentially, resulting in an unstable but sta-
tionary solution T0. The eigenvalues were subsequently ap-
proximated using a numerical scheme that solves the associ-
ated eigenvalue problem:

λδ0 =Hδ0, (B9)

where the set of linear equations{
λδi0 =

1
γ

[
hT
(
T i0 ,θi

)
δi0− L̂δi0

]}N
i=0

(B10)

gives rise to the coefficient matrix H. Here T i0 is the station-
ary solution evaluated on a uniform spatial grid, and L̂(·) is a
finite difference approximation of the differential operator L.
It can be shown that a second-order centered difference ap-
proximation for a smooth function δ0, evaluated on a uniform
grid θi , where δi0 = δ0(θi), is

L̂δi0 = βδ
i
0 (B11)

−
2
(
δi−1

0 − 2δi0+ δ
i+1
0
)
+
(
δi−1

0 − 4δi0+ 3δi+1
0
)
dθ cotθi

2dθ2 .

At either end of the grid, forward and backward approxima-
tions are needed. These are

L̂f δ0
0 = βδ

0
0 (B12)

+
−2
(
δ0

0 − 2δ1
0 + δ

2
0
)
+
(
5δ0

0 − 8δ1
0 + 3δ2

0
)
dθ cotθ0

2dθ2

and

L̂bδN0 = βδ
N
0 (B13)

+
−2
(
δN−2

0 − 2δN−1
0 + δN0

)
+
(
δN−2

0 − δN0
)
dθ cotθN

2dθ2

for the forward and backward approximations, respectively.
Furthermore, as t grows the perturbation in Eq. (B7) must
adhere to the same constraints as the solution, i.e., the bound-
ary conditions in Eqs. (15) and (16). A discrete formula-
tion of these is δ0

0 = δ
2
0 and δN0 = δ

N−2
0 , which we ensure

is enforced. We build the matrix H and examine the asso-
ciated eigenvalues for a large number of points in the bi-
furcation diagram. Stability properties are subsequently in-
ferred from the ensemble of stationary solutions within the
same branch. The presented stability analysis agrees with
the slope-stability theorem put forth by Cahalan and North
(1979).
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