Articles | Volume 30, issue 4
https://doi.org/10.5194/npg-30-399-2023
https://doi.org/10.5194/npg-30-399-2023
Review article
 | 
05 Oct 2023
Review article |  | 05 Oct 2023

Review article: Dynamical systems, algebraic topology and the climate sciences

Michael Ghil and Denisse Sciamarella

Related authors

Orbital insolation variations, intrinsic climate variability, and Quaternary glaciations
Keno Riechers, Takahito Mitsui, Niklas Boers, and Michael Ghil
Clim. Past, 18, 863–893, https://doi.org/10.5194/cp-18-863-2022,https://doi.org/10.5194/cp-18-863-2022, 2022
Short summary
Abrupt climate changes and the astronomical theory: are they related?
Denis-Didier Rousseau, Witold Bagniewski, and Michael Ghil
Clim. Past, 18, 249–271, https://doi.org/10.5194/cp-18-249-2022,https://doi.org/10.5194/cp-18-249-2022, 2022
Short summary
Brief communication: An innovation-based estimation method for model error covariance in Kalman filters
Eviatar Bach and Michael Ghil
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2021-35,https://doi.org/10.5194/npg-2021-35, 2021
Preprint withdrawn
Short summary
Review article: Hilbert problems for the climate sciences in the 21st century – 20 years later
Michael Ghil
Nonlin. Processes Geophys., 27, 429–451, https://doi.org/10.5194/npg-27-429-2020,https://doi.org/10.5194/npg-27-429-2020, 2020
Short summary
Dansgaard–Oeschger-like events of the penultimate climate cycle: the loess point of view
Denis-Didier Rousseau, Pierre Antoine, Niklas Boers, France Lagroix, Michael Ghil, Johanna Lomax, Markus Fuchs, Maxime Debret, Christine Hatté, Olivier Moine, Caroline Gauthier, Diana Jordanova, and Neli Jordanova
Clim. Past, 16, 713–727, https://doi.org/10.5194/cp-16-713-2020,https://doi.org/10.5194/cp-16-713-2020, 2020
Short summary

Related subject area

Subject: Bifurcation, dynamical systems, chaos, phase transition, nonlinear waves, pattern formation | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere | Techniques: Theory
Review article: Interdisciplinary perspectives on climate sciences – highlighting past and current scientific achievements
Vera Melinda Galfi, Tommaso Alberti, Lesley De Cruz, Christian L. E. Franzke, and Valerio Lembo
Nonlin. Processes Geophys., 31, 185–193, https://doi.org/10.5194/npg-31-185-2024,https://doi.org/10.5194/npg-31-185-2024, 2024
Short summary
Variational techniques for a one-dimensional energy balance model
Gianmarco Del Sarto, Jochen Bröcker, Franco Flandoli, and Tobias Kuna
Nonlin. Processes Geophys., 31, 137–150, https://doi.org/10.5194/npg-31-137-2024,https://doi.org/10.5194/npg-31-137-2024, 2024
Short summary
Sensitivity of the polar boundary layer to transient phenomena
Amandine Kaiser, Nikki Vercauteren, and Sebastian Krumscheid
Nonlin. Processes Geophys., 31, 45–60, https://doi.org/10.5194/npg-31-45-2024,https://doi.org/10.5194/npg-31-45-2024, 2024
Short summary
High-frequency Internal Waves, High-mode Nonlinear Waves and K-H Billows on the South China Sea's Shelf Revealed by Marine Seismic Observation
Linghan Meng, Haibin Song, Yongxian Guan, Shun Yang, Kun Zhang, and Mengli Liu
EGUsphere, https://doi.org/10.5194/egusphere-2024-92,https://doi.org/10.5194/egusphere-2024-92, 2024
Short summary
Existence and influence of mixed states in a model of vegetation patterns
Lilian Vanderveken, Marina Martínez Montero, and Michel Crucifix
Nonlin. Processes Geophys., 30, 585–599, https://doi.org/10.5194/npg-30-585-2023,https://doi.org/10.5194/npg-30-585-2023, 2023
Short summary

Cited articles

Abarbanel, H. D. I. and Kennel, M. B.: Local false nearest neighbors and dynamical dimensions from observed chaotic data, Phys. Rev. E, 47, 3057–3068, https://doi.org/10.1103/PhysRevE.47.3057, 1993. a
Aguirre, L. A., Letellier, C., and Maquet, J.: Forecasting the time series of sunspot numbers, Solar Phys., 249, 103–120, 2008. a
Amon, A. and Lefranc, M.: Topological signature of deterministic chaos in short nonstationary signals from an optical parametric oscillator, Phys. Rev. Lett., 92, 094101, https://doi.org/10.1103/PhysRevLett.92.094101, 2004. a
Arnold, L.: Random Dynamical Systems, Springer-Verlag, New York/Berlin, 1998. a
Arnol'd, V. I.: Geometrical Methods in the Theory of Ordinary Differential Equations, Springer Science & Business Media; first Russian edition 1978, 2012. a, b, c
Download
Short summary
The problem of climate change is that of a chaotic system subject to time-dependent forcing, such as anthropogenic greenhouse gases and natural volcanism. To solve this problem, we describe the mathematics of dynamical systems with explicit time dependence and those of studying their behavior through topological methods. Here, we show how they are being applied to climate change and its predictability.