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Abstract. The definition of climate itself cannot be given without a proper understanding of the key ideas
of long-term behavior of a system, as provided by dynamical systems theory. Hence, it is not surprising that
concepts and methods of this theory have percolated into the climate sciences as early as the 1960s. The ma-
jor increase in public awareness of the socio-economic threats and opportunities of climate change has led
more recently to two major developments in the climate sciences: (i) the Intergovernmental Panel on Climate
Change’s successive Assessment Reports and (ii) an increasing understanding of the interplay between natu-
ral climate variability and anthropogenically driven climate change. Both of these developments have benefited
from remarkable technological advances in computing resources, relating throughput as well as storage, and in
observational capabilities, regarding both platforms and instruments.

Starting with the early contributions of nonlinear dynamics to the climate sciences, we review here the more
recent contributions of (a) the theory of non-autonomous and random dynamical systems to an understanding of
the interplay between natural variability and anthropogenic climate change and (b) the role of algebraic topology
in shedding additional light on this interplay. The review is thus a trip leading from the applications of classical
bifurcation theory to multiple possible climates to the tipping points associated with transitions from one type of
climatic behavior to another in the presence of time-dependent forcing, deterministic as well as stochastic.

1 Introduction and motivation

This paper is based on the invited talks given by the two au-
thors in an online series on “Perspectives on climate sciences:
From historical developments to research frontiers”. The se-
ries had twice-monthly talks from July 2020 to July 2021
and its success led to the idea of having a special issue
of Nonlinear Processes in Geophysics. The talks of the
two co-authors are available at https://youtu.be/xjccOfptYII

(last access: 27 September 2023) (Michael Ghil) and https:
//youtu.be/W1yndTsvR0g (last access: 27 September 2023)
(Denisse Sciamarella). In the present paper, we go beyond
the lively but more perishable video version to what we hope
is a more coherent and permanent record of the convergence
between two strains of Henri Poincaré’s heritage – dynamical
systems theory (Poincaré, 1892, 1893, 1899, 2017) and alge-
braic topology (Poincaré, 1895; Siersma, 2012) – and their
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joint applications to the climate sciences. This convergence
resulted from the two authors meeting in November 2018 at
the University of Buenos Aires, where Michael Ghil gave a
series of six lectures on “Mathematical Problems in Climate
Dynamics” at the invitation of Denisse Sciamarella; see Ghil
(2021a, b, c, d, e).

1.1 Dynamical systems and climate dynamics

Many of the ideas and methods of dynamical systems the-
ory were introduced into the climate sciences by a genera-
tion of pioneers in the 1960s. Stommel (1961) formulated
a two-box and two-pipe model for the oceans’ overturning
circulation that had two stable, steady-state solutions with
counter-rotating flows. Veronis (1963) used another form
of reduced-order model, by projecting a one-layer, single-
gyre wind-driven circulation model onto a small number of
Fourier modes and likewise found multiple solutions, both
steady and periodic. Most intriguingly, Lorenz (1963a) ap-
plied the same type of low-truncation Galerkin method to
a Boussinesq model of flow between two horizontal plates,
heated from below and cooled from above. In this setting,
transitions from a quiescent fluid to two mutually symmetric
flow patterns and to chaotic solutions occurred. The latter,
particularly simple, convection model governed by only three
ordinary differential equations (ODEs) provided inspiration
for hundreds of papers on deterministically chaotic phenom-
ena in the climate sciences and way beyond.

None of the pioneering papers mentioned above, though,
nor any of the thousands of papers since, exhibits all the phe-
nomena – mathematical and physical – of interest in this re-
view paper. As we proceed, the illustrative examples will be
taken from atmospheric, oceanographic and climate models
that capture best one or a few of these phenomena.

It is important to realize that Poincaré had already seen the
analogy between the chaos he found in the so-called reduced
three-body problem of celestial mechanics (Poincaré, 1892,
1893, 1899; Gray, 2013; Poincaré, 2017) and the “sensitive
dependence on initial conditions” that he realized occurred in
the evolution of the weather. In fact, in Book I, Chap. IV of
Poincaré (1908), called “Le Hasard”, he states that “it may
happen that small differences in the initial conditions pro-
duce very great ones in the final phenomena”. And his second
example of sensitive dependence is weather:

Our second example will be very analogous to the
first and we shall take it from meteorology. Why
have the meteorologists such difficulty in predict-
ing the weather with any certainty? Why do the
rains, the tempests themselves seem to us to come
by chance, so that many persons find it quite nat-
ural to pray for rain or shine, when they would
think it ridiculous to pray for an eclipse? We see
that great perturbations generally happen in re-
gions where the atmosphere is in unstable equilib-

rium. The meteorologists are aware that this equi-
librium is unstable and that a cyclone is arising
somewhere; but where they can not tell; one-tenth
of a degree more or less at any point, and the cy-
clone bursts here and not there, and spreads its rav-
ages over countries it would have spared. This we
could have foreseen if we had known that tenth of
a degree, but the observations were neither suffi-
ciently close nor sufficiently precise, and for this
reason all seems due to the agency of chance. Here
again we find the same contrast between a very
slight cause, unappreciable to the observer, and im-
portant effects, which are sometimes tremendous
disasters.

The translations are both from Poincaré (2003, Book I,
Chap. IV, “Chance”).

The work of Lorenz (1963a), while actually referring to
a highly simplified model of thermal convection, illustrates
perfectly Poincaré’s insights about the role of what we now
call deterministic chaos rather than pure chance. Ghil and
Childress (1987) presented the applications of dynamical
systems theory to large-scale atmospheric and climate dy-
namics as well as to dynamo theory and geomagnetism, in a
systematic book form; they included a gradual introduction
to the basic mathematical concepts and tools involved, and
this book was reissued by Springer in 2012 as an e-book. Di-
jkstra (2013) provided a considerably expanded version of
Ghil and Childress (1987), in terms of both the mathematical
content and the areas of climatic applications, which include
oceanographic and coupled ocean–atmosphere phenomena.

Aside from its applications to the climate sciences, the dy-
namical systems literature is quite extensive, in covering both
mathematical fundamentals and applications to other areas.
Holmes (2007) provides a fine historical overview of the field
from 1885 to 1965, along with a fairly complete bibliogra-
phy. Two important books are Arnol’d (2012) and Gucken-
heimer and Holmes (1983). Further references – including
some that treat the subject for infinite-dimensional function
spaces, like those that describe the solutions of the partial dif-
ferential equations of fluid dynamics – are given in the sub-
sequent list of noteworthy insights that dynamical systems
theory has provided for the climate sciences.

Following Ghil et al. (1991) and Ghil (2019), we summa-
rize herewith some key insights in the climate sciences from
the theory of autonomous dynamical systems, in which time-
dependent forcing or coefficients are absent.

1. The equations of continuum mechanics are nonlinear.
Surprisingly many phenomena can be explained by lin-
earization about a particular fixed basic state. Many
more cannot.

2. Behavior of solutions to nonlinear equations – subject to
some reasonable mathematical assumptions – changes
qualitatively only at isolated points in phase-parameter

Nonlin. Processes Geophys., 30, 399–434, 2023 https://doi.org/10.5194/npg-30-399-2023



M. Ghil and D. Sciamarella: Chaos, topology and climate 401

space, called bifurcation points. Behavior along a single
branch of solutions, between such points, is modified
only quantitatively and can be explored by linearization
about the basic state, which changes as the parameters
change. That is, nonlinear dynamics are much like lin-
ear dynamics, only more so (Lorenz, 1963a, b; Ghil and
Childress, 1987).

3. Bifurcation trees lead from the simplest, most symmet-
ric states to highly complex and realistic ones, with
much lower symmetry in either space or time or both.
These trees can be explored partially by analytic meth-
ods (Jin and Ghil, 1990; Jordan and Smith, 2007) and
more fully by numerical ones, such as pseudo-arclength
continuation (Legras and Ghil, 1985; Dijkstra, 2005).

4. The truly nonlinear behavior near bifurcation points in-
volves robust transitions, of great generality, between
single and multiple fixed points (saddle–node, pitchfork
and transcritical bifurcations), fixed points and limit cy-
cles (Hopf bifurcation), and limit cycles and strange at-
tractors (“routes to chaos”: Eckmann, 1981; Gucken-
heimer and Holmes, 1983). As the complexity of the
behavior increases, its predictability decreases (Ghil,
2001).

5. Behavior in the most realistic, chaotic regime can be
described by the ergodic theory of dynamical systems.
In this regime, statistical information similar to but more
detailed than for truly random behavior can be extracted
and used for predictive purposes (Eckmann and Ruelle,
1985; Mo and Ghil, 1987; Ghil and Robertson, 2000).

6. Chaos and strange attractors are not restricted to low-
order systems. They can be shown to exist for the full
equations governing continuum mechanics (Constantin
et al., 1989; Temam, 2000). The detailed exploration of
finite- but high-dimensional attractors is in full swing
(Legras and Ghil, 1985; Dijkstra, 2005; Simonnet et al.,
2009; Doedel and Tuckerman, 2012; Dijkstra et al.,
2014).

7. Single time series (Takens, 1981) and single numbers
derived from them (e.g., Grassberger, 1983) have been
used to describe chaotic behavior. This very simple and
straightforward use of a nonlinear concept has attracted
considerable attention to deterministically chaotic dy-
namics, including in the geosciences (Nicolis and Nico-
lis, 1984; Tsonis and Elsner, 1988). The use of sin-
gle time series, while exciting in theory, is not very
promising when the series are short and noisy (Ru-
elle, 1990; Smith, 1988). The increasing availability of
a large number of similar series at different points in
space, combined with physical insight, is compensating
more and more for the shortcomings of each individual

time series in describing the complexity of many phe-
nomena in the geosciences, as well as advancing their
prediction (Ghil et al., 2002).

Further details on the contributions of autonomous dynami-
cal systems theory in general and the concepts and methods
of bifurcation theory in particular, appear in Sect. 2.1. The re-
cent contributions of the theory of non-autonomous and ran-
dom dynamical systems (NDSs and RDSs) – with their gen-
eralization of bifurcations to tipping points – are reviewed in
Sect. 2.2.

1.2 Algebraic topology and chaotic dynamics

What is the topology of chaos, and why is it important in
the theory of dynamical systems and in the time series anal-
ysis for nonlinear and chaotic dynamics? We attempt here to
provide answers to these questions, with an emphasis on ap-
plications to the climate sciences. Essentially, the concepts
and tools of algebraic topology can be applied to the evo-
lution of systems in both phase space and physical space as
well as to the interesting back-and-forth trip between the two
spaces. This complementary view of the way that dynamics
and topology interact is a main motivation of the present ar-
ticle.

The emphasis on time dependence and dynamics here
should not allow us to forget, though, the huge role that
homologies have already been playing in the fields of im-
age processing and visualization (e.g., Heine et al., 2016;
Singh Bansal et al., 2022, and references therein). Signifi-
cant advances in computational topology (Edelsbrunner and
Harer, 2022) have helped substantially in these more static
area of applications and will clearly do so in the more dy-
namic ones contemplated herein.

In Sect. 3.1, we present the rather novel approach
of Branched Manifold Analysis through Homologies
(BraMAH) (Sciamarella and Mindlin, 2001; Charó et al.,
2021b) for approximating the branched manifolds (Birman
and Williams, 1983a, b) of dynamical systems by a cell com-
plex that allows one to characterize the manifold by its ho-
mology groups in phase space (Poincaré, 1895; Sciamarella
and Mindlin, 1999). The detection and description of lo-
calized coherent sets (LCSs) in two-dimensional flows in
physical space by BraMAH-based methods is reviewed in
Sect. 3.2.

The most recent developments of the merging of the two
strands of Poincaré’s heritage – algebraic topology and dy-
namical systems – are covered in Sect. 3.3 and 3.4. In
Sect. 3.3, we introduce the templex, a novel concept in al-
gebraic topology (Charó et al., 2022, 2023), which comple-
ments the previously mentioned cell complexes of BraMAH
by a directed graph (digraph), whose nodes are the cells and
which approximates the flow on the branched manifold. The
extension of this concept to the noise-perturbed chaotic at-
tractors of RDS theory follows in Sect. 3.4.
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In the rest of this section, we provide some quick histor-
ical background to the current interest in the ways in which
algebraic topology can help one infer a system’s chaotic dy-
namics from one or more time series of its observables. The
first methods of time series analysis that associated geometric
properties with experimental time series appeared in the early
1980s (e.g., Packard et al., 1980). These geometric methods
continue to be used, for instance, to analyze datasets of La-
grangian trajectories and understand the geometry of trans-
port (Banisch and Koltai, 2017).

But is geometry the best lens one can use to classify
data according to underlying differences in dynamics? Clas-
sifying dynamics is possible thanks to invariants or quasi-
invariants in phase space. Gilmore (1998) classified invari-
ants as belonging to three distinct categories:

– metric invariants, such as dimensions of various types,
e.g., correlation dimension (Grassberger and Procaccia,
1983) or multifractal scaling functions (Halsey et al.,
1986);

– dynamic invariants, such as Lyapunov exponents (Os-
eledec, 1968; Wolf et al., 1985), further discussed by
Eckmann and Ruelle (1985) and Abarbanel and Kennel
(1993); and finally

– topological invariants, linking numbers, relative rota-
tion rates, Conway polynomials and branched mani-
folds (Williams, 1974).

The first two kinds of invariants do not provide information
on how to model the system’s dynamics, while topological
invariants actually do. Why is this so? Topology deals with
the properties of a geometric object that do not change when
continuous deformations are performed. Stretching, twisting,
crumpling or bending preserve topology; while cutting or
suturing holes, gluing separated pieces, or producing self-
crossings do not. Volumes in phase space can be stretched
or squeezed, folded or torn. The particular manner in which
these processes are combined repetitively in phase space
leads to a structure. The topology of such a structure is the
signature of the mechanisms acting to build certain dynam-
ics.

The “recipe” to “knead” the Lorenz (1963a) strange at-
tractor is illustrated in Fig. 1 as a sequence of steps that are
topological in nature. Quoting Gilmore and Lefranc (2003),
“sets of initial conditions (cubes) are sliced, by running into
an axis with a stable and unstable direction (the z axis for
Lorenz-like systems), for example. The different parts flow
off in different directions in the phase space, where they
may encounter other sliced parts from different regions of
the phase space. These are squeezed together and eventually
return to regions they originated from (recursion).”

The advantage of using topology instead of geometry or
fractality to describe chaos lies in the fact that topology pro-
vides information about the elementary stretching, folding,

Figure 1. Sketch of the topological processes that intervene in
obtaining the strange attractor of the Lorenz (1963a) convection
model. From Letellier and Gilmore (2013) with permission by
World Scientific Publishing Corp.

tearing or squeezing mechanisms that act in phase space to
shape the flow. Geometric features may differ, but if the un-
derlying dynamics obey certain equivalence principles, the
topology should be the same. Topological equivalence be-
tween branched manifolds is defined by isotopy. In other
words, two objects are isotopic if it is possible to mold one
into the other without tearing or gluing it. It is in this sense
that we speak of dynamical equivalence. Different geometric
deformations of the Lorenz attractor that preserve its topol-
ogy are sketched in Fig. 2. There is a two-way correspon-
dence between topology and dynamics, in a sense that will
be clarified in Sect. 3.

A good starting point for this quick historical perspective
is the pioneering paper of Henri Poincaré (Poincaré, 1895),
who first described the way in which a dynamical system’s
properties depend upon its topology; see also Gray (2013,
Chap. 8). The concept of a branched manifold, introduced
by Williams (1974), was anticipated in Edward N. Lorenz’s
famous convection paper: on Lorenz (1963a, p. 138), he re-
marks that “the [computed] trajectory is confined to a pair
of surfaces which appear to merge in the lower portion of
Fig. 3.” The paper’s Fig. 3 is reproduced here, coincidentally,
as Fig. 3 as well. Lorenz plots the isopleths ofX as a function
of Y and Z of the strange attractor, to approximate surfaces
formed by all points on limiting trajectories. The etymology
of “isopleth” combines “iso” with the ancient Greek word
plêthos, “a great number”, as in the modern English word
“plethora”. It is generically used to refer to a curve of points
sharing the same value of some quantity. We will return to a
stochastically perturbed version of the Lorenz (1963a) model
in Sects. 2.2 and 3.4.

Joan Birman and Robert F. Williams used branched man-
ifolds to classify chaotic attractors in terms of the way pe-
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Figure 2. Point clouds associated with different geometrical representations of the Lorenz (1963a) attractor. They are obtained by integrating
the model’s governing equations using coordinate transformations for some of the variables. The butterfly is deformed, but the topological
structure of the butterfly is maintained.

Figure 3. Isopleths of X (thin solid curves) as a function of Y and
Z, based on a single trajectory of length 6000 time steps of the
Lorenz (1963a) attractor, and isopleths of the lower of the two val-
ues of X where two values occur (dashed curves) for approximate
surfaces formed by all points on nearby trajectories. The heavy solid
curve and the extension of the dotted curves indicate natural bound-
aries of the surfaces. From Lorenz (1963a), published in 1963 by
the American Meteorological Society.

riodic orbits are “knotted” in dynamical systems (Birman
and Williams, 1983a, b). These authors discovered that sys-
tems whose branched manifolds have the same topology, are
dynamically equivalent. From this discovery, a topologist’s
dream blooms: can one classify types of dynamics as one
classifies the elements in Mendeleev’s table?

In the late 1990s, it became possible to determine whether
or not two three-dimensional (3-D) dissipative dynamical
systems are equivalent by using knot theory (Gilmore, 1998;
Gilmore and Lefranc, 2003; Natiello et al., 2007; Letellier
and Gilmore, 2013). In Sect. 3.1, we address the question of
how these authors and many more worked with knots, the dif-
ficulties that arose with knot theory, and how the latter were

solved, at least in part, using the homology groups of alge-
braic topology. Section 3.2–3.4 describe the applications of
BraMAH to the Lagrangian analysis of fluid flows in phys-
ical space, the introduction of digraphs to complement cell
complexes in describing the flow on a branched manifold in
phase space and the extension of the templexes that describe
the latter to noise-driven chaotic systems.

2 Dynamical systems theory for the climate
sciences

As we indicated in Sect. 1.1, dynamical systems theory en-
tered the evolution of the climate sciences – at that time con-
sisting mainly of meteorology and oceanography – in the
1960s, in the pioneering papers of Lorenz (1963a, b), Veronis
(1963), Stommel (1961) and others. These and other papers
of the 1960s and early 1970s did not necessarily include ex-
plicit references to bifurcation theory, although awareness of
the fundamental concepts and methods was clearly present in
one form or another. In the 1970s, another set of papers, on
energy balance models (EBMs), reported on the possibility
of alternative stable steady states (warm and cold) of Earth’s
climate system (Held and Suarez, 1974a; North, 1975). Ghil
(1976a) specifically introduced the saddle–node bifurcation
into this climate setting as well as numerical methods needed
to deal with it in the context of a full partial differential equa-
tion model of climate rather than of low-order or otherwise
simplified models.

The contributions of “nonlinear dynamics”, as dynamical
systems theory tended to be referred to by physicists and
other non-mathematicians by training, were presented for the
first time in a quadrennial report (1987–1991) of the US geo-
sciences community to the International Union of Geodesy
and Geophysics (IUGG) by Ghil et al. (1991). The presenta-
tion of elementary bifurcations below is for a broad audience
and is based on Boers et al. (2022). It focuses on multista-
bility and the possible transitions between different regimes
of behavior: in Sect. 2.1 for systems with time-independent
forcing and coefficients and in Sect. 2.2 for systems in which
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time dependence is present in either the forcing or the coef-
ficients or both.

2.1 Autonomous dynamical systems

Assume that the state of a system of interest can be described
by a vector x ∈ Rd and that the time evolution of x(t) is gov-
erned by the following equation of motion, namely a first-
order autonomous ODE:

ẋ = f (x;p). (1)

Here (·)· = d(·)/dt , f denotes a generally nonlinear, smooth
– i.e., continuously differentiable, up to some order – vector
field and p a scalar parameter or, in more general cases, a
small set of parameters. For clarity, one separates the vari-
ables x from the parameter p by a semicolon. The term “au-
tonomous” refers to the fact that in Eq. (1) both the coeffi-
cients and the forcing are constant in time. This means that
changes in p are assumed to be infinitely slow or, at least,
very slow compared to the characteristic internal-variability
times of the system being modeled.

Points x∗ for which f (x∗;p)= 0 are called fixed points.
Linearizing the equation of motion around a given fixed point
x∗ yields, for a small perturbation x̃ = x− x∗,

˙̃x = f ′(x∗;p)x̃; (2)

here f ′(x∗;p) is the Jacobian matrix comprised of the ele-
ments ∂fi/∂xj . For an initial condition x̃0, the solution to
this linearized equation is given by

x̃(t)= ef
′t x̃0 . (3)

We call a fixed point x∗ linearly stable if all eigenvalues of
f ′ have negative real part and linearly unstable otherwise. A
scalar example will be given in Sect. 2.1.1.

The bifurcations of a dynamical system that we deal with
in this subsection describe the creation and annihilation of
fixed points as well as changes in their linear stability. Further
types of bifurcations are considered in the next subsection.

Typically, bifurcations lead to abrupt qualitative changes
in the dynamics, explaining why they are often invoked as
a mathematical model for abrupt regime shifts or state tran-
sitions in real-world systems. Until fairly recently, bifurca-
tions were studied mostly in the context of autonomous dy-
namical systems. The more realistic situations in which the
forcing is allowed to depend explicitly on time are addressed
in Sect. 2.2. In this broader context, bifurcations have been
called “tippings” in the climate sciences (Lenton et al., 2008;
Ashwin et al., 2012; Kuehn, 2011; Ghil, 2019) and else-
where.

There are at least two different interpretations of “tipping”
and “tipping points” in the literature. One of these, emanat-
ing from Gladwell (2000) and Lenton et al. (2008), interprets
tipping merely as a sudden change, whether due to a well-
defined bifurcation or not. In this interpretation, a tipping

point is merely a threshold. The other interpretation sees a
tipping point as a generalization to non-autonomous systems
of a bifurcation point (Kuehn, 2011; Ghil, 2019).

In the latter case, tipping is necessarily related to a tipping
point in phase-parameter space as opposed to just a threshold
in some parameter value; thus, not every jump or critical tran-
sition arises from a such a point. Both points of view – pun
intended, of course – have their merits, but confusion should
be avoided to the extent possible. Clearly, in this review arti-
cle, we follow the more unambiguously defined mathemati-
cal version.

2.1.1 The double-well potential as a source of bistability

As an instructive and widely used example, we briefly intro-
duce a prototype model to describe scalar dynamical systems
than can occupy either one of two stable fixed points, sepa-
rated by an unstable one, as plotted in Fig. 4a. The double-
well potential U (x;p)= x4/4−x2/2−px leads to the equa-
tion of motion

ẋ = U ′(x;p)=−x3
+ x+p, (4)

where U ′ = ∂U/∂x. For p <−p∗ this dynamical system
only has the stable fixed point x∗− and for p > p∗ it only has
the stable fixed point x∗+, while for −p∗ < p < p∗ the two
stable fixed points x∗± coexist and there is a third, unstable
fixed point x∗0 in between these two.

The two stable fixed points correspond to the two minima
of the potential U above, whereas ±p∗ represents the two
critical thresholds of the system. In this scalar case, the basins
of attraction of the two minima are the intervals −∞< x <

x∗0 and x∗0 < x <+∞, respectively. They are separated by
the unstable fixed point x∗0 , which is a local maximum of the
potential U (x).

Changing p slowly from, say, p =−1 to p =+1 will
lead to a bifurcation-induced critical transition from x∗− to
x∗+ at the critical value p = p∗. When p is subsequently
changed back from p = 1 to p =−1, the transition from x∗+
back to x∗− will only occur at p =−p∗. This phenomenon
of jumps from one fixed point to the other occurring at dis-
tinct parameter values is called hysteresis, and it is highly
relevant to the practical reversibility of abrupt transitions.
It was studied, for instance, in electromagnetic systems by
James Clerk Maxwell and by Pierre Curie, and it is important
in the physical, biomedical, engineering and socio-economic
sciences. In the context of the climate sciences, a hysteresis
loop like the one seen in Fig. 4a has been described in de-
tail for EBMs by Ghil and Childress (1987, Chap. 10) and by
Ghil (1994), using solar insolation as the parameter p.

The bifurcation introduced above is called a double-fold
bifurcation, since it is obtained by combining a supercriti-
cal fold (with the stable branch reaching forward to p→∞)
with a subcritical one (with the stable branch reaching back-
ward to p→−∞). A more recent version of such a double-
fold bifurcation is plotted in Fig. 2 of Von der Heydt et al.
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Figure 4. Bifurcation diagrams for (a) the double-fold, (b) su-
percritical pitchfork and (c) supercritical Hopf bifurcation. Stable
fixed-point branches are indicated by solid lines and unstable ones
by dashed lines. The colored lines in panel (a) correspond to a hys-
teresis cycle. See text for details. After Boers et al. (2022) under
CC-BY license.

(2016) for an energy balance model with respect to carbon
dioxide concentration as the parameter p. The single-fold
bifurcation is often called a saddle–node bifurcation (super-
or subcritical) since in two dimensions it corresponds to the
merging of a node that is stable in both directions on one
branch with a saddle that is stable in one direction and unsta-
ble in the perpendicular direction on the other branch; see, for
instance, Ghil and Childress (1987, Fig. 12.3) for sketches of
the stability of fixed points for a linear autonomous ODE sys-
tem in two dimensions.

2.1.2 Bistability in the presence of symmetry: the
pitchfork bifurcation

Another example of bistability is given by a pitchfork bifur-
cation (Fig. 4b). Its so-called normal form, i.e., the simplest
ODE that exhibits the change in behavior of interest, is

ẋ = x(p− x2). (5)

This bifurcation captures bistable behavior in systems in
which spatial mirror symmetry prevails for low p values. A
well-known example in the climate sciences is symmetry in a
meridional plane for an idealized Atlantic Meridional Over-
turning Circulation (AMOC) at low buoyancy forcing by a
weak pole-to-Equator temperature and precipitation gradient
(Quon and Ghil, 1992; Ghil, 2001; Dijkstra, 2005). In this
case, water sinks at both poles and rises on either side of the
Equator, forming two overturning cells that are symmetric
with respect to the equatorial plane.

The solutions of Eq. (5) are x0 = 0 and x± =±
√
p. In

this normal form, the scalar symmetry of the latter two so-
lutions with respect to 0 stands for the mirror symmetry of
the AMOC’s overturning cells with respect to the Equator.

The bifurcation occurs as the parameter p, which is a
normalized form of the thermal and salinity forcing in the
AMOC case and crosses over from negative to positive val-
ues. It is easy to check that, for p ≤ 0, x0 = 0 is the unique
fixed point, while for p > 0, the three fixed points coexist.
Their linear stability is given by considering infinitesimal
perturbations around a given steady-state solution x = x∗+ξ .

With the scalar version f = f (x;p) of the notation in
Eq. (1), we have the scalar version of Eq. (2) in the specific
case at hand given by

(x∗+ ξ )· = f (x∗+ ξ ;p)

= 0+
∂f (x;p)
∂x

∣∣∣∣
x=x∗

ξ +O(ξ2)' p− 3x2
∗ .

Since ẋ∗ = 0, this leaves

ξ̇ = p− 3x2
∗ (6)

to determine linear stability for small ξ (Ghil and Childress,
1987; Dijkstra and Ghil, 2005). Thus it is clear that, for
p < 0, the unique solution x∗ = 0 is linearly stable; but, for
p > 0, this null solution becomes linearly unstable, while the
two mutually symmetric solutions x∗ = x± =±

√
p are sta-

ble, since p− 3p < 0. We thus suspect that, for sufficiently
strong buoyancy forcing, the two-cell AMOC will lose its
stability and yield the approximately single-cell AMOC that
is currently observed; see Stocker and Wright (1991) or Quon
and Ghil (1992), for instance.

2.1.3 Beyond bistability: Hopf bifurcation and limit cycles

Bistability is only the first step up the bifurcation tree that
leads from system behavior with the highest degree of sym-
metry in space and time – possibly as simple as uniform in
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both – to behavior that has greater and greater complexity
(Eckmann, 1981; Ghil and Childress, 1987; Strogatz, 2018).
We outline now one further step up this tree, the one lead-
ing from fixed points to stable periodic solutions, called limit
cycles in dynamical systems parlance.

In polar coordinates, this normal form is given by

ρ̇ = ρ(µ− ρ2), θ̇ = υ, (7)

with υ =−1 for uniform counterclockwise rotation around
the origin. The two equations above are decoupled and the
one for the radial variable ρ = x2

+ y2 has exactly the same
form as the pitchfork normal form for x in Eq. (5). Note,
though, that here ρ is necessarily nonnegative and the mirror
symmetry of Fig. 4b is replaced by the rotational symmetry
of Fig. 4c.

The version shown in Fig. 4 is the supercritical one, which
leads to a smooth increase with µ in the amplitude of an
oscillation generated by the Hopf bifurcation. For plots of
the subcritical Hopf bifurcation, please see Ghil and Chil-
dress (1987, Figs. 12.8 and 12.9). In particular, in the pres-
ence of higher-order terms, as in Fig. 12.9b of Ghil and Chil-
dress (1987), a sharp jump from no oscillation to a finite-
amplitude one occurs as µ passes a critical threshold, and
one can have a hysteresis cycle between no oscillation and
a large-amplitude oscillation. For instance, it is a matter of
some debate whether the Mid-Pleistocene Transition – dur-
ing which both the amplitude and the dominant periodicity
of climatic variability changed – might be associated with a
sub- or a supercritical Hopf bifurcation; see Riechers et al.
(2022, and references therein).

2.1.4 Successive bifurcations and routes to chaos

A further step on the route to chaos for deterministic sys-
tems with no explicit time dependence (Eckmann, 1981; Ghil
and Childress, 1987; Strogatz, 2018) involves the transition
from a one-dimensional limit cycle to a two-dimensional
torus in phase space. In the latter case, the motion on the
torus is quasi-periodic – i.e., the coordinates of the point on
the torus are of the form (x,y)= (x(t)= f (υ1t,υ2t),y(t)=
g(υ1t,υ2t)), where the functions f (s, t) and g(s, t) are arbi-
trary and the two angular frequencies υ1 and υ2 are incom-
mensurable; i.e., υ1/υ2 is not a rational number.

This kind of motion is typical in celestial mechanics
(Arnold et al., 2007; Ghil and Childress, 1987), and, in fact,
the periodicities that are associated with the orbital forcing of
the glacial–interglacial cycles are of this type, although one
usually refers to them by truncated values – such as those in
Table 12.1 of Ghil and Childress (1987) – that could suggest
that the ratios between these periodicities, like 41 kyr for the
obliquity and 19 kyr for the precessional parameter, do have
a common denominator. The latter view is clearly an over-
simplification but this is not the place to discuss chaos in the
solar system, whether Hamiltonian or, more recently, dissi-
pative.

Quasi-periodic motion already looks much more irregular
than purely periodic motion. Thus, for instance, the intervals
between lunar or solar eclipses are highly irregular. Still, the
14th century scholar Nicole Oresme was already aware of
the kinematic consequences of quasi-periodicity for celes-
tial motions (Grant, 1961). He realized that a periodic and
a quasi-periodic motion cannot be distinguished from each
other during a finite observation interval. Oresme also knew
that the motion of a point on a torus will describe a simple
closed loop if the two angular velocities are commensurable,
while the point’s orbit will never close but densely cover the
surface of the torus if the two velocities are incommensurable
(Arnol’d, 2012), i.e., in a way that is visually indistinguish-
able from painting the whole torus a uniform color.

From quasi-periodic motion to a deterministically chaotic
one there are several routes (Eckmann, 1981), as already
mentioned in Sect. 1.1. Some of these routes to chaos were
explored numerically in the climate sciences by Lorenz
(1963a, b) and described more didactically in Chaps. V and
VI of Ghil and Childress (1987) for atmospheric motions.
For such routes in the paleoclimatic context, see Ghil and
Childress (1987, Chap. XII) as well as Ghil (1994). We shall
not go into greater detail herein but pass instead to the more
recent insights from the theory of dynamical systems subject
to time-dependent forcing.

2.2 Non-autonomous and random dynamical systems

Realistically, the natural systems that we want to describe
in terms of dynamical systems theory are non-autonomous,
meaning that f in Eq. (1) above has an explicit time de-
pendence: ∂f /∂t 6≡ 0. The Earth system as a whole, as well
as all its components, is clearly non-autonomous, being af-
fected by time-dependent forcing, such as quasi-periodic
variations in solar insolation due to gravitational perturba-
tions in Earth’s orbit (Milankovitch, 1920), along with an-
thropogenic forcing due to rising greenhouse gas concen-
trations (Arrhenius, 1896; Houghton et al., 1990; Solomon,
2007; IPCC, 2014, 2021).

Moreover, there is typically high-frequency forcing, such
as cloud processes or weather variability. In a drastic sim-
plification, this type of forcing is often represented by white
noise (Hasselmann, 1976). Including both deterministic and
stochastic time dependence requires a description of the dy-
namics in terms of stochastic differential equations of the
form

dX= F(X, t;p)dt + σ (X)dη, (8)

where dη denotes the infinitesimal increments of a Wiener
process, which are stationary and independently distributed
according to a normal distribution with mean µ= 0 and vari-
ance E(|dη|2)= dt . Often, a further simplification is made in
assuming that the noise is additive or state-independent, and
thus σ = const. above. The possibly time-dependent but still
deterministic term F(X, t;p) is called the drift.
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Interest in autonomous dynamical systems and their bi-
furcations started over 2 centuries ago and can be traced
back to Leonhard Euler and the Bernoullis, while that in
non-autonomous and random dynamical systems (NDSs and
RDSs) only goes back a few decades. We describe some key
differences between the two cases next and justify the need
for considering pullback attractors (PBAs) in the latter case.

2.2.1 NDSs, RDSs and pullback attraction

For the sake of simplicity, we assume that the physical sys-
tem under consideration is described by a set of ODEs. In the
autonomous case, such a set of ODEs can be formally written
as

dX
dt
= F(X), X(t0)= X0; (9)

here t ∈ R, X ∈ Rd , F : Rd→ Rd , and d is the number of the
system’s dependent variables.

For the non-autonomous case, the brief presentation here
follows Caraballo and Han (2017) and the paradigmatic for-
mulation of the initial-value problem is

dX
dt
=G(t,x), X(t0)= X0. (10)

As in Eq. (9), t ∈ R, X ∈ Rd and G : R×Rd→ Rd in
Eq. (10), and one still assumes that G has “nice” properties
that guarantee the existence, uniqueness and continuous de-
pendence on initial states and on parameters for the solutions
of Eq. (10). Furthermore, Caraballo and Han (2017) show
that, provided the vector field G(t,X) is dissipative, solutions
of Eq. (10) exist and satisfy the two other properties globally,
i.e., for all t ∈ R. We call such a global solution ϕ(t, t0,X0).

There are two key distinctions between the autonomous
case and the non-autonomous one:

a. In the autonomous setting, solutions cannot intersect,
since there is only one trajectory through a given point
X0 ∈ Rd due to uniqueness. Hence, for d = 2, the only
possible (forward) attracting sets are fixed points and
limit cycles; i.e., chaotic behavior and strange attrac-
tors can only occur for d ≥ 3. The NDS setting is dif-
ferent in these respects; i.e., intersections are possible
at 2 times t1 and t2 6= t1, and thus chaos can occur for
d = 2 and periodic forcing, as is the case, for instance,
in the Van der Pol oscillator (e.g., Guckenheimer and
Holmes, 1983).

b. In the autonomous setting, solutions depend only on the
time t − t0 elapsed since initial time, while in the NDS
setting, they depend separately on the initial time t0 and
the current time t , at which we observe the system. In
the former setting, it suffices to consider forward-in-
time attraction, which results in attractors that are fixed;
time-independent objects, such as fixed points; limit cy-
cles; tori; and strange attractors. In the latter case, we

need to define pullback attraction and the PBAs that it
leads to.

Before proceeding with a more rigorous justification for and
definition of a PBA, here it is, in the simplest possible terms:
a pullback attractor is a possibly time-dependent object in
a system’s phase space that exhibits attraction in the sense
of convergence at each time t to a set, called a snapshot, to
which the system’s initial state at time s tends as s tends to
−∞. This is distinct from the forward attractors that can be
defined for autonomous systems started at a fixed time t0.

Given the uniqueness and the continuous dependence of
the global solutions to Eq. (10) on initial states and on pa-
rameters, it is straightforward to verify that a global solution
ϕ of Eq. (10) satisfies

i. the initial value property at t = t0, namely
ϕ(t0, t0,X0)= X0, and

ii. the two-parameter semigroup evolution property,

ϕ(t2, t0,X0)= ϕ(t2, t1,ϕ(t1, t0,X0)) for t0 ≤ t1 ≤ t2,

which corresponds to the concatenation of solutions;
i.e., in order to go from t0 to t2 one can go first from
t0 to t1 and then from t1 to t2.

One can then provide the following definition of a process.
Definition 1. Let R2

+ = {(t, t0) ∈ R2
: t ≥ t0}. A process on

Rd is a family of mappings

ϕ(t, t0, ·)) : Rd→ Rd , (t, t0) ∈ R2
+,

which satisfy

i. the initial value property ϕ(t0, t0,X)= X for all X ∈ Rd
and any t0 ∈ R,

ii. the two-parameter semigroup property for all X ∈ Rd
and both (t2, t1) ∈ R2

+ and (t1, t0) ∈ R2
+, and

iii. the continuity property that the mapping (t, t0,X) 7−→
ϕ(t, t0,X) be continuous on R2

+×Rd .

An alternative NDS formulation for this process formulation
is the so-called skew-product formulation, which goes back
to the work of George R. Sell, as reviewed in Sell (1971); see
also Kloeden and Yang (2020). A process as defined above
is also called a two-parameter semigroup on Rd , in contrast
with the one-parameter semigroup of an autonomous dynam-
ical system, since the former depends not just on the initial
time t0, as in the latter case, but also on the current time t .

This difference matters, in particular, in determining the
asymptotic behavior of the solutions. In the autonomous
case, a global solution is invariant with respect to transla-
tion in time: ϕ(t, t0,X0)= ϕ(t − t0,0,X0). Hence, the usual
forward asymptotic behavior for t→+∞ and fixed t0 is the
same as the behavior for fixed t and t0→−∞. This equiva-
lence may no longer hold when the translation invariance is
lost, as it is in the NDS case.
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To illustrate the effect of this lost invariance, consider
the following simple scalar ODE (Caraballo and Han, 2017,
Sect. 3.2.1):

dx
dt
=−ax+ b sin t, x(t0)= x0, t ≥ t0, (11)

for which analytical computations can be carried out ex-
plicitly. Individual solutions do not have a forward limit as
t→+∞ for fixed t0, but the difference between any two so-
lutions vanishes in this limit. The particular solution

A(t)=
b(a sin t − cos t)

a2+ 1
(12)

provides the long-term information on the behavior of all the
solutions of Eq. (11). This result is best captured by recog-
nizing that the pullback limit,

lim
t0→−∞

ϕ(t, t0,x0)=A(t) for all t and x0 ∈ R, (13)

yields A(t) as the PBA of all the solutions of Eq. (11).
One is thus led to the following rigorous definition of a

PBA for a forced dissipative dynamical system subject to a
time-dependent forcing, where we have generalized Rd to a
finite-dimensional metric space X and have replaced t0 by s,
for greater symmetry.

Definition 2. A PBA A is an indexed family of invariant
sets (A(t))t∈R that depend on time and satisfy the following
conditions:

1. For all t , A(t) is a compact subset in X that is invariant
with respect to the two-parameter semigroup F(t, s),

F(t, s)A(s)=A(t) for every s ≤ t, and (14)

2. for all t , pullback attraction is reached when

lim
s→−∞

DH(F(t, s)B,A(t))= 0 for all B ∈ C, (15)

where DH(E,D) is the Hausdorff semi-distance be-
tween two sets and C is a collection of bounded sets
in X .

In the physical literature, the invariant sets A(t) at a given
t ∈ R have been called snapshots (Romeiras et al., 1990) and
this terminology has been used also in the recent climate lit-
erature on the applications of NDSs, RDSs and PBAs (Ghil
et al., 2008; Chekroun et al., 2011; Tél et al., 2020).

The finite-dimensional definition above follows Charó
et al. (2021b, Appendix A and references therein). In fact,
both deterministic and stochastic versions of forcing have
been applied, for instance, by Chekroun et al. (2018) in the
study of an infinite-dimensional, delay-differential equation
model of the El Niño–Southern Oscillation (ENSO). The de-
terministic forcing corresponded to the purely periodic, sea-
sonal changes in insolation, while the stochastic component

Figure 5. The graph of the PBA for the simple NDS example gov-
erned by Eq. (16) and given by the indexed family

(
σ
α (t − 1

α )
)
t∈<

,
along with several trajectories that converge to it from times s2 <
s1 < t1 < t2. Here t1 < t2 are the increasing times at which we ob-
serve the system, while s2 < s1 are the decreasing times to which
we have to pull back in order to get the convergence. Figure cour-
tesy of Mickaël D. Chekroun.

represented the westerly wind bursts appearing in various
ENSO models by Fei-Fei Jin and Axel Timmermann (e.g.,
Timmermann and Jin, 2002); see also Chekroun et al. (2011,
Sect. 4.3). This ENSO example, among many others, shows
that there is great flexibility in the application of the concepts
and methods of non-autonomous dynamical systems (NDS
and RDS) theory to climate problems.

2.3 Simple examples of pullback and random attractors

A straight-line PBA. An even simpler example of a PBA than
the one of Eqs. (11) and (12) above is given by

ẋ =−αx+ σ t, (16)

with both α and σ being positive. The example was provided
by Mickaël D. Chekroun (personal communication, 2011).
The autonomous part of this ODE, ẋ =−αx, is dissipative,
and all solutions x(t;x0)= x(t;x(0)= x0) converge to 0 as
t→+∞. What about the non-autonomous, forced ODE?

Here, the time-dependent forcing σ t and the state-
dependent dissipation −αx will tend to balance. But, again,
as in the example of Sect. 2.2.1, there is no forward limit as
t→+∞, and one has to use the pullback limit, i.e., replace
x(t;x0) by x(s, t;x0)= x(t;x(s)= x0) and let s→−∞. Do-
ing so yields the snapshots

A(t)=
σ

α

(
t −

1
α

)
. (17)

These snapshots are, in the extremely simple case at hand,
just the points along the straight line illustrated in Fig. 5,
which is the graph of the PBA (A(t))t∈<.

A PBA with periodic forcing. To further improve the
reader’s intuition for PBAs, we provide a second illustrative
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example here. It was worked out in detail by Riechers et al.
(2022).

A system defined in polar coordinates by

ρ̇ = α(µ− ρ), φ̇ = υ, with ρ, µ ∈ R+ and φ ∈ R/2π, (18)

can easily be seen to exhibit a limit cycle in the (x,y) plane
with (x = ρ cosφ,y = ρ sinφ). An initial deviation of ρ from
µ will decay exponentially, and the system converges to an
oscillation of radius µ with the angular velocity υ. Here,
we transform this autonomous dynamical system into a non-
autonomous one by modulating the target radius µ with a
sinusoidal forcing

µ→ µ(t)= µ+β sin(νt), (19)

where the modulation is moderate, so as to guarantee that
µ+β sin(νt)> 0 for all t .

Since the dynamics of the phase φ and of the radius ρ are
decoupled, the corresponding equations can be solved and
analyzed separately. While the temporal development of the
phase is trivial, the pullback invariant attracting set of the
radius for the initial condition ρ(s)= ρ0 is given by

A(ρ)(t;ρ0)= lim
s→−∞

ρ(t, s;ρ0)= αβ sin(νt +ϑ)+µ, (20a)

with

ϑ = arctan(−ν/α), (20b)

as shown in Riechers et al. (2022, Appendix B). Note that,
in the limit s→−∞, the dependence on the initial value ρ0
vanishes and the attracting set A(ρ)

t performs an oscillation
of the same frequency as the forcing. It lags the phase of
the time-dependent fixed point by the constant ϑ , while its
amplitude is amplified by the factor α. Since ρ is restricted
to positive values, this solution requires αβ < µ.

The PBA with respect to the coordinate ρ is comprised of
the family of all the sets A(ρ)

t as defined in Eqs. (20a) and
(20b) and thus reads

A(ρ)
= {αβ sin(νt +ϑ)+µ}t∈R. (21)

Since the pullback limit for the phase φ does not exist, no
constraints on it other than φ ∈ [0,2π ) are imposed by the
dynamics. Hence, for the system (18) comprised of radius
and phase, we find that

lim
t0→−∞

dH

((
ρ(t; t0,ρ0),φ(t; t0,φ0)

)
,

{
(
αβ sin(νt +ϑ)+µ,φ

)
: φ ∈ [0,2π )}︸ ︷︷ ︸

At

)
= 0, (22)

where dH denotes the Hausdorff semi-distance. The
pullback-attracting sets At at time t are circles in the

(x,y) plane with oscillating radius, and the system’s PBA
is given by the family of these circles:

A= {
(
αβ sin(νt +ϑ)+µ,φ

)
: φ ∈ [0,2π )}t∈R. (23)

Figure 6 shows trajectories of the system starting from dif-
ferent points in the past. In panel a the trajectories are de-
picted in the 3-D space spanned by the two Cartesian co-
ordinates (x,y) and the time t , where the usual transforma-
tion from polar to Cartesian coordinates was applied. The
shaded surface in this panel represents the PBA of the sys-
tem. Panel b shows a heat map (Wilkinson and Friendly,
2009) that approximates a portion of the PBA’s invariant
measure projected onto the (x,y) plane. For a clean defini-
tion of such a measure in NDSs and RDSs, there are sev-
eral references (e.g., Ghil et al., 2008; Chekroun et al., 2011;
Caraballo and Han, 2017; Kloeden and Yang, 2020). Essen-
tially, the heat map here counts the number of times that the
trajectories in panel a cross small pixels in the (x,y) plane.

Note that the structure of the system’s trajectories depends
on the ratio υ/ν, and three different cases must be distin-
guished. If the radius is modulated with the same frequency
as the oscillation itself, i.e., υ = ν, after one period the sys-
tem practically repeats its orbit. More precisely, the radius of
the oscillation does differ from one “round trip” to the next,
but this difference tends to zero as ρ(t) asymptotically ap-
proaches A(ρ)

t . If υ and ν are rationally related, mυ = nν
with n,m ∈ N, then the same quasi-repetition of the orbit
occurs after n periods of the radial modulation and m pe-
riods of the system’s oscillation. Such a trajectory will ap-
pear as an n-fold quasi-closed loop. Finally, if υ/ν 6∈ Z, then
the trajectory does not repeat itself but instead densely cov-
ers the annular disk D = {(ρ,φ) : ρ ∈ [µ−αβ,µ+αβ] and
φ ∈ [0,2π )}. The trivial evolution of the phase is depicted in
panel c, while the trajectories of ρ(t) and their convergence
to A(ρ)

t are shown in panel d.

2.3.1 Random attractors (RAs)

Let us return now to the more general, nonlinear and stochas-
tic case of Eq. (8) that includes not only deterministic time
dependence F(X, t) but also random forcing:

dX= F(X, t)dt +G(X)dη; (24)

here η = η(t,ω) represents a Wiener process, which is taken
to be scalar; its independent increments dη are commonly
referred to as “white noise”, and ω labels the particular real-
ization of this random process. More generally, one can also
deal with a vector Wiener process, as in Eq. (8). See, for in-
stance, Wax (1954) for early references on these matters.

When G= const. the noise is additive, while for ∂G/∂X 6=
0, we speak of multiplicative noise. Intuitively, the distinction
between dt and dη in the stochastic differential Eq. (24) is
necessary since, roughly speaking and following the Einstein
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Figure 6. Trajectories and PBA of the system defined by Eqs. (18)–(20b). (a) Trajectories (ρ(t),φ(t)) of the system starting from different
times in the past in the 3-D space spanned by the two Cartesian coordinates (x,y) and time t ; the system’s PBA lies on the red-shaded surface.
(b) Heat map of the three trajectories’ projection onto the (x,y) plane. A video of the heat map filling up, as more and more trajectories
with different initial conditions are added, is provided in the Supplementary Material to Riechers et al. (2022). (c) Temporal evolution of the
phase. (d) Temporal evolution of the radius (solid colored lines) together with its PBA (dashed red line). From Riechers et al. (2022) with
thanks to the coauthors Keno Riechers, Takashita Mitsui and Niklas Boers.

(1905, reprinted 1956) paper on Brownian motion, it is the
variance of a Wiener process that is proportional to time and
thus dη ∝ (dt)1/2. In Eq. (24), for the sake of simplicity, we
also dropped the dependence on a parameter p that we had
introduced, for the sake of generality, in Eq. (8).

The noise processes may include “weather” and volcanic
eruptions when X(t) is “climate,” thus generalizing the lin-
ear model of Hasselmann (1976), or cloud processes when
we are dealing with the weather itself: one person’s signal is
another person’s noise, as the saying goes. In the case of ran-
dom forcing, the concepts introduced by the simple example
of Eq. (8) above can be illustrated by the random attractor
A(ω) in Fig. 7.

Chekroun et al. (2011) studied a specific case of such
a random attractor for the paradigmatic, climate-related
Lorenz (1963a) convection model. The authors introduced

multiplicative noise into each of the ODEs of the original,
deterministically chaotic system, as shown below:

dX = Pr (Y −X)dt + σXdη, (25a)
dY = (rX−Y −XZ)dt + σYdη, (25b)
dZ = (−bZ+XY )dt + σZdη; (25c)

here r = 28, Pr = 10 and b = 8/3 are the standard parameter
values for chaotic behavior in the absence of noise and σ is a
constant variance of the Wiener process that is not necessar-
ily small. The well-known strange attractor of the determin-
istic case is replaced by the Lorenz model’s random attractor,
dubbed LORA by the authors by the authors of Chekroun et
al. (2011).

Four snapshots At (ω) of LORA are plotted in Fig. 8
here, and a video of its evolution in time A(ω)= {At (ω)}t∈R
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Figure 7. Schematic diagram of a random attractor A(ω) and of the
pullback attraction to it; here ω labels the particular realization of
the random process θ (t)ω that drives the system. We illustrate the
evolution in time t of the random process θ (t)ω (light solid black
line at the bottom), the random attractor A(ω) itself (yellow band
in the middle) with the snapshots A0(ω)=A(ω; t = 0) and A(ω; t)
(the two vertical sections, heavy solid), and the flow of an arbitrary
compact set B from “pullback times” s =−τ2 and s =−τ1 onto the
attractor (heavy blue bands). See Appendix A in Ghil et al. (2008)
for the requisite properties of the random process θ (t)ω that drives
the RDS. After Ghil et al. (2008) with permission from Elsevier.

is available as Supplementary Material in Chekroun et al.
(2011). What is actually plotted, in both the figure repro-
duced here and in the video, is the approximation of the time-
dependent invariant measure νt (ω) supported by the attractor.
A full definition of the sample measures of random attractors
would occupy too much space in an already rather long re-
view paper; please see Chekroun et al. (2011, Appendix A)
and Charó et al. (2023, Appendix C), along with the refer-
ences therein.

The striking effects of the noise on the nonlinear dynamics
that are visible in Fig. 8 here and in the video of Chekroun
et al. (2011) motivated much of the work reviewed in Sect. 3
below, starting with LORA’s topological study by Charó et al.
(2021b). The latter study gathered further insights into the
abrupt changes in the snapshots’ topology at critical points in
time, changes that suggested the possibility of random pro-
cesses giving rise to qualitative jumps in climate variability.

2.3.2 Abrupt transitions in non-autonomous systems

Ashwin et al. (2012) have proposed three classes of abrupt
transitions in systems that can be described by Eq. (24):
(i) bifurcation-induced transitions, (ii) noise-induced transi-
tions and (iii) rate-induced transitions. An example of the
first class has already been given in Sect. 2.1 and Fig. 4a
above.

For an example of the second class, assume that the con-
trol parameter p remains constant in the drift term of Eq. (8),
which is taken again to correspond to a double-well poten-
tial, as in Eq. (4). Noise-induced transitions occur when the

Figure 8. Heatmaps of the time-dependent invariant measure νt (ω)
supported by four snapshots At (ω) of LORA. The values of the pa-
rameters r,s and b are the classical ones, while the variance of the
noise is σ = 0.5. The color bar, shown in Chekroun et al. (2011,
Fig. 2) for a single snapshot, is on a log scale, and it quantifies the
probability of landing in a particular region of phase space; shown is
a projection of the 3-D phase space (X,Y,Z) onto the (X,Z) plane.
Note the complex, interlaced filament structures between highly
populated regions (in yellow) and moderately populated ones (in
red); the less populated a small patch, the darker its color. The time
interval between the snapshots shown (left to right and top to bot-
tom) is 1t = 0.0875 in the nondimensional time units of the deter-
ministic Lorenz (1963a) model. Reproduced from Chekroun et al.
(2011, Fig. 3) with permission from Elsevier.

noise amplitude is sufficiently high for the system to switch
occasionally, and unpredictably, from one potential well to
the other. Moreover, when p varies so as to push the system
toward a bifurcation point, the noise will cause it to transition
before – and, in certain cases, long before – the critical pa-
rameter value p∗ of the corresponding deterministic system
is reached.

Finally, the third class of rate-induced transitions arises
when there is no strong separation between the system’s in-
trinsic timescales and those at which the control parameter
changes. So far, we implicitly assumed that, for each change
in p, the system has sufficient time to adapt to the new equi-
librium position; this type of slow change in p is sometimes
called quasi-adiabatic. If this is not the case, the fixed point
attracting the system may change its position so quickly that
the system cannot follow and eventually loses track of the
basin of attraction in which it started and falls into the other
one (Ashwin et al., 2012).
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Figure 9. Sketch of a double-fold bifurcation and how it leads
to abrupt transitions and hysteresis in the temporal evolution of a
system in a double-well potential with slowly changing parameter
p = p(εt), where ε� 1, driven by additive white noise. The stable
branch of fixed points is indicated by the solid part of the red line
and the unstable one by the dashed part of the red line. Compare
with Fig. 4a. After Boers et al. (2022).

Ashwin et al. (2012) have called these transitions tippings
and refer to the three types described above as B tipping, N
tipping and R tipping. Thus, aside from the rhetorically strik-
ing character of tipping points, tippings are the mathemat-
ically well-defined generalization of the bifurcations treated
in the autonomous dynamical systems of Sect. 2.1 to the non-
autonomous and random setting addressed herein. In fact, the
first two types, B and N tipping, are not totally novel inas-
much as they only add deeper insight to what happens when a
parameter p changes at a slow but finite (rather than infinitely
slow rate). The biggest surprises occur for R tipping (Wiec-
zorek et al., 2011; Feudel et al., 2018; Ghil, 2019; Pierini and
Ghil, 2021), but we will not deal explicitly with this form of
tipping herein.

We illustrate in Fig. 9 the N tipping of a system governed
by dx = U ′(x;p)dt + σdW , with U as in Eq. (4) and dW
as in Eq. (24), but σ = const. For example, simple EBMs
(Ghil and Lucarini, 2020) exhibit a double-fold bifurcation
of this kind, as described already in Sect. 2.1 above. The up-
per stable branch corresponds in this case to the current cli-
mate state, while the lower one corresponds to the Snowball
Earth state (Held and Suarez, 1974b; Ghil, 1976b; Ghil and
Lucarini, 2020).

To simulate the system’s trajectory, the control parameter
p is varied slowly from+1 to−1 and back to+1, causing the
system to transition first from the upper stable branch to the
lower one and then, at a considerably higher p value, back
to the upper stable branch. Note that due to the noise driving
the system, transitions typically occur earlier than expected
from the corresponding deterministic dynamics governed by
Eq. (4).

Note also that in the generalization from autonomous bi-
furcations to non-autonomous tippings, the phrase “tipping

point” – aside from its threatening implication – is somewhat
misleading: a bifurcation point is a point in phase-parameter
space, like (±x∗,±p∗) for the double well of Eq. (4) and
Fig. 4a. The meaning attached to it by Gladwell (2000) in
general and by Lenton et al. (2008) in the climate sciences
refers only to the value of the forcing, like ±p∗ in the case
above.

3 Topological structure of flows in phase space and
in physical space

At the end of Sect. 1.2, we mentioned that knot theory
provided a first approach towards unveiling the topological
structure of a flow in a 3-D phase space. In this case, the
term “flow” does not refer to a fluid flow in physical space
but to a family of solution curves of ODEs or other evolution
equations (Arnol’d, 2012; Coddington and Levinson, 1955;
Guckenheimer and Holmes, 1983). Of course, a flow in phase
space may – as we will see later in Sect. 3.2 – refer to a par-
ticle in the Lagrangian description of a fluid flow in physical
space. There is a strong link between the two situations, but
the keywords refer to different motivations and objectives.

Clarifying the difference between these two kinds of flow,
in physical space and in phase space, is relevant here be-
cause, in the community involved in the work been reviewed
here, the phrase “topological chaos” is used when study-
ing how fluid–particle trajectories are entangled in physical
space during a mixing experiment. A noteworthy example is
the motion induced by spatially periodic obstacles in a two-
dimensional flow in order to form nontrivial braids (Gouil-
lart et al., 2006; Thiffeault and Finn, 2006b), as shown in
Fig. 10. Such motion generates exponential stretching of ma-
terial lines and hence efficient mixing.

On the other hand, “topology of chaos” or “chaos topol-
ogy”, for short, considers the problem of how multi-
dimensional point clouds or trajectories are topologically
structured in phase space. Such a study in phase space is not
equivalent to the type of study illustrated in Fig. 10. Working
with the topology of real fluid-flow trajectories in physical
space requires working in no more than three dimensions,
for example. The topological structure we will always be re-
ferring to in the present work is defined in phase space, even
when studying how such a topological structure is related to
the motion of fluid particles in physical space. In 3-D phase
space, deterministic flows can be characterized by topologi-
cal invariants and, therefore, in terms of knots.

Mathematically, a knot is an embedding of a circle in 3-
D Euclidean space R3. We can imagine a knot as a thin
tangled rope in 3-D space whose ends are glued together
(Prasolov and Sossinsky, 1997). Two mathematical knots are
equivalent if one can be transformed into the other via a de-
formation of R3 into itself, known as an ambient isotopy;
these transformations correspond to manipulations of a knot-
ted string that do not involve cutting it or passing it through
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Figure 10. Topological chaos emerges in stirring or mixing experiments. Here we see stylized streamlines induced by pairs of rods on a
periodic lattice and we see how these streamlines are stretched in physical space. From Thiffeault and Finn (2006a), under CC-BY license.

itself. The knot approach – i.e., extracting the knot content
of hyperbolic attractors – is based on a geometrical construc-
tion that was named template or knot holder. The first way of
applying this approach consisted in computing certain knot
invariants – such as linking numbers or Conway polynomi-
als – by starting from a set of trajectories (Gilmore, 1998;
Gilmore and Lefranc, 2003; Natiello et al., 2007; Letellier
and Gilmore, 2013).

There are in fact three steps in this knot-theoretical ap-
proach, and the aim of each one is achieved in a particular
way:

1. approximate the neighboring unstable periodic orbits
(UPOs) around which the flow is evolving with an or-
bit or closed curve,

2. find a topological representation of the orbit structure
and

3. obtain an algebraic description of the topological repre-
sentation.

The first step is rooted in Henri Poincaré’s observation that
one can always choose a model’s periodic solution as a first
approximation of an aperiodic one (Poincaré, 1892, 1893,
1899). To achieve the first step, one thus applies a close
returns method (Mindlin and Gilmore, 1992; Boyd et al.,
1994). If the trajectories being studied have been obtained
from a data-driven method rather than a model simulation –
using, for instance, time-delay embeddings (Takens, 1981)
– this step requires long, well-sampled time series that are
noise free for orbits to be reconstructed accurately.

Knot theory comes in the procedure’s second step and
computing the identified knot invariants closes the procedure.
Another possibility, instead of using knots, is resorting to
braids, as discussed by Natiello et al. (2007). A braid is a col-
lection of strands crossing over or under each other. The braid
approach is based on results from Thurston on the classifica-
tion of two-dimensional diffeomorphisms and on the braid
content of a given diffeomorphism (Fathi, 1979). The spirit

of the procedure is the same because when connecting the
ends of a braid, one ends up with a knot. In the Letellier and
Gilmore (2013) Festschrift for Robert Gilmore’s 70th birth-
day, Mario Natiello’s Chap. 7 is entitled “A braided view of
a knotty story”. The reason is that knots dissolve into trivial
objects in dimensions higher than three.

In “How topology came to chaos”, Gilmore (2013b,
p. 175) explains that metric and dynamical invariants do not
provide a way to distinguish among the different types of
chaotic attractors and that a tool of a different nature was
needed to create a dictionary of processes and mechanisms
underlying a chaotic system. While Gilmore, Lefranc and co-
workers were “mulling over implementing a program [based
on building tables of linking numbers and relative rotation
rates between trajectories, a] better solution became avail-
able”. Joan Birman and Robert Williams had shown that the
dissipative nature of a flow in phase space allows projecting
the points along the direction of the stable manifold by iden-
tifying all the points with the same future.

Gilmore continues as follows:

Suppose we have a dissipative [chaotic] flow in
three dimensions: There is one positive Lyapunov
exponent λ1 > 0 [for the unstable direction,] one
negative Lyapunov exponent λ3 < 0 [for the stable
direction], and one zero exponent λ2 = 0 “along
the direction of the flow”. The dissipative nature of
the flow requires λ1+ λ2+ λ3 = 0. Then it is pos-
sible to project points in the phase space “down”
along the direction of the stable manifold. This is
done by identifying all the points with the same fu-
ture:

x ' y if lim
t→+∞

|x(t)− y(t)| = 0,

[where] x(t) is the future in phase space of
the point x = x(0) under the flow. This Birman-
Williams identification effectively projects the [3-
D] flow down to a two-dimensional set that is a
manifold almost everywhere,
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except at the points where the flow splits into branches head-
ing towards distinct parts of phase space or at the points
where two branches are squeezed together. These mathemat-
ical structures were called branched manifolds.

A branched manifold, in the strict sense of the two words
that make up the term, can in fact be defined mathematically
without reference either to a flow or to the Birman–Williams
projection mentioned above. Following Kinsey (1993, p. 64),
an n-dimensional manifold is a topological space such that
every point has a neighborhood topologically equivalent to
an n-dimensional open disk with center x and radius r .
Such a manifold is said to be Hausdorff if and only if any
two distinct points have disjoint neighborhoods. The second
condition is not satisfied precisely at the junction between
branches, i.e., at the locations that describe stretching and
squeezing of a flow in phase space.

A branched manifold is, therefore, a manifold that is not
required to fulfill the Hausdorff property. We prefer this more
general definition, instead of the one related to the Birman–
Williams projection, for several reasons, including the possi-
bility of extending the concept of a branched manifold to the
structure of instantaneous snapshots of random attractors, as
we shall see in Sect. 3.4. This mathematical definition of a
branched manifold will also let us extend the procedure to
cases in which the hypotheses of the Birman–Williams the-
orem – in which the dynamical system must be hyperbolic,
3-D and dissipative – are not valid. In most geoscientific ap-
plications, for instance, uniform hyperbolicity does not ap-
ply.

As the topological structure of a branched manifold is
closely related to the stretching and squeezing mechanisms
that constitute the fingerprint of a certain chaotic attractor,
its properties can be used to distinguish among different
attractors. This is how one can justify the two-way corre-
spondence between topology and dynamics. This correspon-
dence remains valid in the case of four-dimensional semi-
conservative systems (Charó et al., 2019, 2021a), for which
the hypotheses of the Birman–Williams theorem do not hold.

The terms “branched manifold” and “template” have often
been used interchangeably. We do not regard them as syn-
onyms, for technical reasons that will be important in the de-
velopment of the concept of templex in Sect. 3.3. A branched
manifold is just a particular type of manifold that can be re-
constructed from a set of points in Rn, by approximating sub-
sets of points by disks of local dimension d ≤ n. Now, to de-
scribe branched manifolds immersed in n≥ 4, we still need
a different tool. This tool is in fact provided by homology
theory.

3.1 Branched manifold analysis through homologies

Homologies provide an algebraization of topology by build-
ing compressed representations of a certain object through
cell complexes and by computing essential signatures of the
object’s shape through homology groups that do not depend

on the particular representation used to compute them. Ho-
mology groups enable the analysis of n-dimensional mani-
folds or point clouds, with n as high as desired. This pro-
cedure can handle time-delay embeddings produced with
shorter and reasonably noisy time series, since the method
no longer relies on orbit reconstruction in phase space. In
Natiello’s terms (Letellier and Gilmore, 2013, Chap. 7), ho-
mologies are knotless and orbit-less, and the topological pro-
gram can be extended to deal with higher-dimensional sys-
tems and with real, noisy data.

Other approaches that characterize aspects of dynamical
chaos in arbitrary dimensions (e.g., Lefranc, 2006) are some-
what similar to cell complexes. These approaches so far only
address estimating the entropy of the flow, which is still an
important issue in and of itself.

To illustrate how homologies work, let us take as an exam-
ple a point cloud obtained by the integration of the determin-
istic (Lorenz, 1963a) model. Here too the methodology has
three steps, but they differ in their tasks and their objectives:

1. approximate the points as lying on a branched manifold,

2. find a topological approximation of the branched mani-
fold and

3. obtain an algebraic description of the topological struc-
ture.

Essentially, the passage through the closed orbits is replaced
by passing through the branched manifold.

A branched manifold is a generalization of a differentiable
manifold that may have singularities of a very restricted type,
which correspond to the branching, and it admits a well-
defined tangent space at each point. In other words, such a
manifold has the property that each point has a neighborhood
that is homeomorphic to either a full 2-ball or a half 2-ball,
and which is locally homeomorphic to Euclidean space or lo-
cally metrizable but not globally so because of the branching
(Williams, 1974). A typical branching line is one that joins
the “pair of surfaces which appear to merge in the lower por-
tion of Fig. 3”.

As points in our cloud are assumed to lie on a branched
manifold, we can classify the points into subsets that consti-
tute a good local approximation of a d disk, where d is the
local dimension of the branched manifold and n is the di-
mension of phase space (d ≤ n). In the case of the Lorenz
attractor, d = 2 and n= 3. The topological representation is
obtained if we convert each subset of points into an individ-
ual cell of a cell complex. This complex is sort of a skeleton
of the object of interest, namely the Lorenz (1963a) attractor
in the case at hand.

Here we use polygons for the cells that pave the attractor’s
branched manifold. These cells must be correctly glued to
each other in order to retain the topological features of the
original point cloud. Once the cell complex is constructed,
homologies can be computed to yield an algebraic descrip-
tion of the approximating structure. In this review paper, we
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will not go into the mathematical definitions and theorems
required to fully and correctly understand cell complexes
and homology theory but only give a taste of the theoret-
ical framework via challenging applications. The reader is
referred to Kinsey (1993) for the full mathematics at a com-
fortable level and to Sciamarella (2019) for a more detailed
explanation of the geoscientific applications.

The key point here is that the homology groups represent
essential information about the branched manifold, while be-
ing independent of the number of cells used to construct the
complex (Poincaré, 1895; Siersma, 2012). The topological
structure describing the manifold can thus be identified and
higher dimensions can be handled, and relatively short and
noisy data can be sufficient for this purpose, too.

When Michael Ghil visited the University of Buenos Aires
in fall 2018 and got acquainted with this methodology, whose
first results were published 2 decades ago (Sciamarella and
Mindlin, 1999, 2001), he suggested one should give it a name
that identifies and distinguishes it from other methods that
had become popular in the meantime in topological data
analysis, in particular that of persistent homologies (PHs:
Zomorodian and Carlsson, 2004; Edelsbrunner and Harer,
2008). The PH methodology has been enormously success-
ful in problems of shape recognition and classification from
large but incomplete datasets.

In dynamic problems, and especially in chaotic dynamics,
the PH approach has to contend with the difficulty of finding
robust criteria for the degree to which a cell complex repre-
sents a manifold that underlies a point cloud (Carlsson and
Zomorodian, 2007). Instead of insisting on the improved ap-
proximation of such a manifold, PH chooses to display and
evaluate the properties of a sequence of cell complexes con-
structed with a cell creation rule, called a filtration, which
depends on a filtration parameter, such as the size of the
balls used to approximate the original space around each
point of the point cloud. The problem with filtrations is that
it is perfectly possible that none of the complexes created
by a dynamics-independent rule correctly approximates the
branched manifold whose topology is to be described.

For this reason, the Buenos Aires group chose to estab-
lish special rules for the construction of a complex, namely
rules that take into account that the objective of the re-
construction is not just any arbitrary shape but a branched
manifold in phase space. Michael Ghil’s suggestion led to
the use of Branched Manifold Analysis through Homologies
(BraMAH) for this method, a name that says it all and simul-
taneously recalls the Hindu god of creation and knowledge,
which seems very auspicious. The precursors of this tech-
nique are four researchers of the Nonlinear Systems Labo-
ratory of the Mathematics Institute at the University of War-
wick, who extracted Betti numbers from time series (Mul-
doon et al., 1993). Betti numbers define the rank of the
homology groups, and they can be seen as the number of
“holes” in a point cloud. This method served as a guide to

construct a cell complex from a point cloud, using singular
value decomposition.

We review here briefly the improvements that Sciamarella
and Mindlin (1999, 2001) brought to the Warwick approach.
The information that was obtained as output by Muldoon
et al. (1993) is useful but incomplete if one wishes to iden-
tify a branched manifold. As observed in the concluding re-
marks of the latter paper, the examples used therein involve
boundaryless manifolds traversed by a dense orbit, but they
suggest potential applications to a wider class of objects in-
cluding branched manifolds. In order to identify a branched
manifold from a point cloud through homologies, it is impor-
tant to realize that there is much more information contained
in a cell complex than just the Betti numbers and that much
of this information is relevant to describing the underlying
topology.

Sciamarella and Mindlin (1999) were able to show that the
branched manifold could be reconstructed with all its fea-
tures, including torsions and branch locations, from a noisy
dataset. The example used was a time series associated with a
voice signal of a Spanish speaker articulating the word casa.
The topological analysis was carried out on the first vowel,
showing that a 3-D time-delay embedding of the acoustic
pressure yielded a point cloud with an organization that is
typical of a branched manifold. The authors used this dataset
to show that the BraMAH method could be applied to recon-
struction from a noisy time series, where identifying unstable
periodic orbits would have been very difficult or even impos-
sible. They succeeded in characterizing the topology of this
dataset but also in showing that their approach and its under-
lying principles had been fruitful.

In their follow-up paper, Sciamarella and Mindlin (2001)
described the algorithm in detail, coded in Wolfram Math-
ematica, and presented an example of a four-dimensional
dynamical system having chaotic solutions of the Shilnikov
type. The flow generated by the set of ODEs considered
therein was such that any 3-D projection contained self-
intersections, stressing the truly four-dimensional nature of
the dataset. Sciamarella and Mindlin (1999, 2001) thus
showed that their approach could overcome the two main
obstacles in the topological analysis of dynamical systems,
namely the limitations of dimensionality imposed by the
knot-theoretical approach and the noise.

BraMAH can also detect the presence of a Klein bottle
in the data, like the one discovered by Mindlin and Solari
(1997). Recall that a Klein bottle is a one-sided surface that
is formed by passing the narrow end of a tapered tube through
the side of the tube and flaring this end out to join the other
end. Immersed in three dimensions – as usually shown in
the drawings we are used to – a Klein bottle presents self-
intersections, and this is why it is a paradigmatic example
of a structure that is inherently four-dimensional. In phase
space, self-intersections violate uniqueness, and this is why
projections may be not only inconvenient but also mislead-
ing. Returning to the Muldoon et al. (1993) algorithm, the
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Betti numbers alone that it computes do not distinguish a
Klein bottle from a Möbius strip. The moral is that the topo-
logical description of nonlinear dynamical systems in phase
space should not only count the holes – as done today by
many available topological toolkits – but should be carried
out more fully, as in BraMAH. The method is illustrated in
Fig. 11, where it is applied to the strange attractor of the de-
terministic Lorenz (1963a) model, according to Charó et al.
(2022) and Charó et al. (2023).

The topological-analysis program has been applied to
many fields of science: voice production (Sciamarella and
Mindlin, 1999), ocean color (Tufillaro, 2013), biological mo-
tor patterns (Mindlin, 2013), financial economics (Gilmore,
2013a), nano-oscillators (Gilmore and Gilmore, 2013) and so
on. What is the purpose? To quote Robert Gilmore: “Topo-
logical methods can be used to determine whether or not two
dynamical systems are equivalent; in particular, they can de-
termine whether a model developed from time-series data is
an accurate representation of a physical system. Conversely,
it can be used to provide a model for the dynamical mecha-
nisms that generate chaotic data”. The topological program
can hence be harnessed for multiple purposes, including but
not restricted to

1. validating or refuting models (simulations vs. observa-
tions),

2. comparing models (time series generated by different
models),

3. comparing datasets (e.g., in situ versus satellite data),

4. characterizing and labeling chaotic behaviors (towards
a systematic classification), and

5. classifying sets of time series according to their main
dynamical traits (e.g., in Lagrangian flow analysis).

3.2 Lagrangian coherence in fluid flows

In fluid mechanics, two viewpoints are possible. In the Eule-
rian viewpoint, fluid motion is observed at specific locations
in space, as time passes. In the Lagrangian viewpoint, in-
stead, the observer follows individual fluid particles as they
move through the fluid domain. The Eulerian description
is more often used for prediction and other purposes. La-
grangian analysis, though, is a powerful way to analyze fluid
flows when tracking and understanding the origins and fates
of individual particles are important (Bennett, 2006). The
fluid envelopes of the Earth system, for instance, exhibit a
wide variety of dynamical motions that can act quite differ-
ently on mixing and transport. In the ocean, for instance, fluid
particles carry tracers such as nutrients, plankton, heat, salt
or marine debris (Van Sebille et al., 2018). Hence, in the cli-
mate sciences, we are often interested in how particles in the
ocean or the atmosphere move and how this motion affects
tracer transport.

The oft observed formation of ordered patterns in fluids
with complex behavior has led to the search for a theory
that could explain Lagrangian coherence in terms of an un-
derlying skeleton responsible for structuring the pathways
of sets of fluid particles. These structures may have a finite
lifetime, and so one refers to them as finite-time coherent
sets (e.g., Williams et al., 2015). Sensitivity to initial con-
ditions makes Lagrangian fluid motion inherently unstable,
calling for methods from nonlinear dynamical systems the-
ory (Haller, 2015). In this section, we show how algebraic
and chaos topology can help one understand transport in fluid
flows (Charó et al., 2020, 2021a) and, more specifically, we
demonstrate BraMAH’s potential in this setting.

The unsteady or driven double gyre (DDG) system is an
analytic model, often used to show how much Lagrangian
patterns may differ from patterns in Eulerian fields. Shadden
et al. (2005) introduced the DDG model to mimic the motion
of two adjacent oceanic gyres enclosed by land, and, since
the work of Sulalitha Priyankara et al. (2017), it has been
known to present chaotic transport between the two counter-
rotating laterally oscillating vortices. The Lagrangian model
is defined by the following set of ODEs:

ẋ(t; t0,x0)= v(t;x(t; t0,x0)), (26a)
x(t0; t0,x0)= x0. (26b)

Here the initial conditions x0 lie in a rectangular domain�=
[0,2]× [0,1] and v = (u,v) is the Eulerian velocity field,
which is derived from the streamfunction ψ = ψ(x,y, t)
given by

ψ(x1,x2, t)= Asin(πf (x1, t)) sin(πx2), (27a)

f (x1, t)= a(t)x1
2
+ b(t)x1, a(t)= η sin(ωt) ,

b(t)= 1− 2a(t). (27b)

The usual parameter values are A= 0.1, η = 0.1 and ω =
π/5. Note that u=−∂ψ/∂y and v = ∂ψ/∂x and hence the
flow is non-divergent at all times (∂u/∂x+ ∂v/∂y = 0).

Clearly, this DDG model is non-autonomous for η 6= 0,
since the coefficients a,b are periodic in time. Note, how-
ever, that the streamfunction ψ(x1,x2, t) given by Eqs. (27a)
and (27b) would not correspond to a solution of the Navier–
Stokes equations in two dimensions: it is a synthetic exam-
ple that (i) exhibits somewhat familiar oceanic flow patterns;
and (ii) chaotic behavior within certain subsets of the induced
particle motion (Shadden et al., 2005). In fact, more realis-
tic Eulerian flows that are solutions of the so-called quasi-
geostrophic equations governing the wind-driven oceanic cir-
culation subject to rotation (Pedlosky, 1987; Dijkstra, 2005)
are themselves chaotic, rather than periodic in time, for real-
istic parameter values (Jiang et al., 1995; Dijkstra and Ghil,
2005).

From the Eulerian perspective, the DDG has a time-
periodic and simple behavior, a snapshot of which is shown
in Fig. 12a. What happens, though, if there is an “oil spill”
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Figure 11. BraMAH analysis of the Lorenz (1963a) attractor. (a) Cell complex with the 0-cells (vertices), 1-cells (line segments) and 2-cells
(polygons) constructed as an approximation to subsets of points in a point cloud withN0 = 25000 points; reproduced from Charó et al. (2023)
under CC-BY license. (b) A diagram showing the labeled 0-cells. Curved arrows indicate the orientation of the 2-cells {γi : i = 1,2, . . .,14}.
The heavy horizontal line in panel (b) indicates the singular line that unites the two branches; reproduced from Charó et al. (2022) with the
permission of AIP Publishing.

in the middle of the DDG domain? When injecting a pas-
sive tracer, as in Fig. 12b, blank regions appear, i.e., zones
of particles in motion that are never reached by the oil spill,
and present circular or triangular shapes. The system being
conservative, particle behavior depends on the initial particle
position being integrated. The oil spill spreads in a chaotic
sea surrounding regular islands containing particles where
behavior is quasi-periodic. Between the regular islands and
the chaotic sea, there are hermetic transport barriers, inhibit-
ing particles to move from one region to another one. This
simple, synthetic example demonstrates therewith that flow
patterns can effectively differ depending on whether the sys-
tem is observed in Eulerian or Lagrangian terms. The trans-
port barriers are not even visible in the Eulerian perspective.
For further details on particle behavior, the reader is referred
to Charó et al. (2019).

How can BraMAH help us in Lagrangian analysis? The in-
teresting cases, as shown by the DDG example, correspond
to dynamical systems that are non-autonomous. But in such
systems, some processes involved in the particle dynamics
derived from the Eulerian streamfunction are not explicitly
described in the two-dimensional space spanned by the par-
ticle positions’ coordinates. Many authors choose to work in
an “extended phase space”, in which time is added as a phase
space coordinate.

But such an extended phase space is in fact deceptive,
since it assigns a double status to the time variable, which
should not play the role of both an independent and a de-
pendent variable. Due to this double status, some tools from
autonomous dynamical systems theory do not apply (Charó
et al., 2019). The importance of this point in the topology
of chaos should not be neglected. In fact, one of the funda-
mental hypotheses in writing a dynamical system as a set of

ODEs is that time is the only independent variable, while all
state variables are time dependent.

Working in a space whose dimension is increased by 1 due
to introducing the extra ODE ṫ = 1 leads to certain difficul-
ties in using the tools borrowed from nonlinear dynamical
systems theory – for instance, the state space is no longer
bounded. In this extended phase space, a periodic orbit is no
longer a closed curve, simply because when the system re-
turns to the same state, it does not return to the same point.
The very definition of phase space in which a point repre-
sents one-to-one a state of the system is no longer valid in
the extended phase space.

Many of the properties that are valid in a well-defined
phase space are altered in an extended phase space, and
topology is one of them. In the case of the DDG model dis-
cussed by Charó et al. (2019), the starting point is a non-
autonomous system of two ODEs. The extended phase space
– with a third ODE written as ṫ = 1 – is three-dimensional.
But the paper shows that a fourth dimension is needed to
rewrite the system as an autonomous set of ODEs without us-
ing the standard extension trick. The genuine phase space of
the autonomously written driven double gyre has four ODEs.
Two additional variables are required: u and v.

Such a transformation gets rid of the explicit time depen-
dence with a legitimate procedure that does not run into the
previously explained inconsistency. In this four-dimensional
phase space, and for certain initial conditions, the topological
structure that is obtained is a Klein bottle. A Klein bottle can-
not be immersed into a 3-D space without self-intersections:
the role of the fourth dimension that is required to rewrite
the system in an autonomous form is, therefore, highly rel-
evant here. Thus, to use topological tools self-consistently,
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Figure 12. Eulerian and Lagrangian perspectives for a fluid flow in the case of the Shadden et al. (2005) driven double gyre (DDG).
(a) Vorticity field and (b) passive tracer injected in the middle of the domain (1,0.5). The blank regions are not static: they describe closed
orbits within the right and left hemispheres of the domain and deform as they move. The video can be seen at https://youtu.be/W1yndTsvR0g
(last access: 27 September 2023). Particles in these four blank regions are trapped within them and exhibit a regular, non-chaotic behavior,
while particles in the region visited by the tracer do exhibit Lagrangian chaos. The DDG is known to have an embedded horseshoe near
the point (1,1) (Sulalitha Priyankara et al., 2017). Subsets of particles behaving alike – and therefore sharing the same topology – swarm
together robustly.

one must be prepared to work in a well-defined phase space,
and with as many dimensions as required.

In the fluid-flow problem, the four-dimensional phase
space complements the Lagrangian variables by an indirect
representation of the Eulerian variables. A knotless approach
like BraMAH does allow one to work in such a space, which
was previously out of reach for a topological analysis. As we
shall see, though, in Sect. 3.4, a more general approach to the
topological study of NDS and RDS problems is to extend the
time-independent BraMAH of Sect. 3.1 and the associated
templexes of Sect. 3.3 to the corresponding time-dependent
cases.

When applied to time series describing particle trajecto-
ries in fluid flows, BraMAH falls within a family of meth-
ods that measure the complexity of individual trajectories to
identify coherent regions, i.e., regions with qualitatively dif-
ferent dynamical trajectory behavior. Rypina et al. (2011),
for instance, use correlation dimension as a measure of com-
plexity. Correlation dimension, though, is a metric invariant,
which does not provide information on how to model the
system’s dynamics. Charó et al. (2020) applied BraMAH to
Lagrangian trajectories x(t; t0,x0) and obtained the topol-
ogy of the associated branched manifold in the full four-
dimensional phase space of the DDG equations in their La-
grangian form (26a) and (26b). This result is achieved by
deriving the recipes that knead the DDG model’s dynamical
behavior in phase space, without having to look into the ge-
ometrical complexity of individual particle trajectories.

Returning now to the oil spill in the middle of the DDG
system’s domain �, Charó et al. (2020) applied BraMAH
to 8528 fluid particles in a four-dimensional reconstructed
phase space. Only five distinct topological classes emerge,
and their characteristic cell complexes are plotted in Fig. 13.

From left to right, Class I corresponds to a strip, Class II
to a torus and Class III to a branched manifold with three 1-

holes – i.e., with a Betti number β1 = 3 – and a torsion that
is indicated by the orientability chain. The remaining com-
plexes are of Class IV, with the topology of a Klein bottle,
and of Class V, which is a very peculiar kind of torus that in-
volves a torsion and a weak boundary. Each topological class
is assigned a color (class I: green; class II: magenta; class III:
blue; class IV: red; class V: orange) used in Fig. 14 to tag the
particles in motion and thus identify distinct particle sets that
stay coherent while moving and being distorted. The fron-
tiers between differently colored regions will be called sep-
arators. Such flow separators are associated with LCSs that
are known to separate dynamically distinct regions in fluid
flows (Kelley et al., 2013).

The presence of the Klein bottle as Class IV among the
five classes in Fig. 13 stresses the importance of being able
to work in a sufficiently high-dimensional phase space that
guarantees an autonomous setting: as mentioned in Sect. 3.1
before, the Klein bottle cannot be immersed in three dimen-
sions without self-intersections.

Charó et al. (2021a) further emphasized that BraMAH can
identify and describe LCSs in a fluid flow from a sparse set of
particles and achieve this without inspecting relative particle
positions. The method differs from previous ones because it
describes transport by how particles behave without looking
at where they go. Such a dynamical analysis ends up pointing
to finite-time coherent sets, thanks to the property that parti-
cles sharing equivalent dynamics tend to stay together. The
same authors have also successfully used BraMAH to study
numerically generated fluid particle behavior in the wake be-
hind a rotary oscillating cylinder (Charó et al., 2021a).

The BraMAH applications reviewed in this subsection
demonstrate substantial progress in Lagrangian analysis, by
providing a method that enables one to identify coherent sets
without previous knowledge of the flow field. This particular
set of results also shows methodological progress in chaos
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Figure 13. The analysis of a set of 8528 particles advected by the DDG flow field yields five topological classes. These five classes are
obtained by applying BraMAH to four-dimensional point clouds; the plots in the figure are three-dimensional projections of representative
cell complexes for each of the five classes. Four of them involve quasi-periodic particle motion, and only one of them, which is represented
by the third cell complex, points to a branched manifold that refers to the so-called chaotic sea (colored in blue in Fig. 14 below). The 1-cells,
i.e., the lines that are highlighted in color, indicate the generators of the homology groupH1 of holes in each cell complex. From Charó et al.
(2021a) with permission from Cambridge University Press.

Figure 14. Coloring of 8528 particles in motion in a DDG field, with colors corresponding to the topological structure of the particle
trajectories in phase space. The boundaries between distinct colors are fairly well defined, displaying the existence of transport barriers that
separate non-mixing regions, like the green, orange, red or magenta, vs. the chaotic sea (blue). A direct correspondence is found between the
regions identified by the topological BraMAH analysis and those observed dynamically using a Poincaré section, as in Charó et al. (2019,
Fig. 5), or a finite-time Lyapunov exponent study, as in You and Leung (2014, Fig. 12). From Charó et al. (2021a) with permission from
Cambridge University Press.

topology, since it appears that BraMAH can help describe
the topological structure of non-dissipative, Hamiltonian sys-
tems. Recall, as a stepping stone in this direction, the anal-
ogy between the non-divergence of a fluid flow in physical
space, like the DDG model, and the Hamiltonian character

of a dynamical system’s flow conserving volume in phase
space, like the equations of celestial mechanics (Poincaré,
1892, 1893, 1899; Arnold et al., 2007).
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3.3 Templexes for dynamical systems

Structures in phase space are special because they are not
just spatial objects: they are associated with a semi-flow on
them, which is sometimes represented by arrows. A cell com-
plex can effectively encapsulate the properties of a branched
manifold in standard space, but it will not convey the fact
that, when the cells in a complex represent a semi-flow on
a spatial object, they can be traversed in an arbitrary order
only at the expense of forgetting about the semi-flow. In other
words, time is absent from the description. Including the ar-
row of time in the description calls for a more refined math-
ematical object, in which the topological properties of a flow
in phase space come to light through the combined analysis
of both the spatial structure of the underlying branched man-
ifold and of the semi-flow upon it.

Charó et al. (2022) introduced such a novel type of mathe-
matical object and called it a templex, a word obtained from
the contraction between “template” and “complex”. A tem-
plate in dynamical systems theory is a synonym for a knot
holder (Birman and Williams, 1983a; Tufillaro et al., 1992;
Ghrist et al., 1997). Since Mindlin and Gilmore (1992), tem-
plates have been used to describe three-dimensional flows
from experimental data in many fields: to study a three-
species food chain model in ecology (Letellier and Aziz-
Alaoui, 2002), to forecast the time series of sunspot num-
bers (Aguirre et al., 2008), or to better understand delayed
interactions between cancer cells and the micro-environment
(Ghosh et al., 2017). Albeit limited to three dimensions, a
template provides a description of an attractor at a level of
detail that homologies alone cannot achieve.

The Rössler (1976) model,

ẋ =−y− z, (28a)
ẏ = x+ ay, (28b)
ż= b+ z(x− c), (28c)

provides a simple example. Changing two of the parame-
ter values in the governing Eqs. (28b) and (28c), one can
produce two distinct chaotic attractors, shown in Fig. 15: in
panel a, the spiral case, with (a = 0.343295, b = 2, c = 4),
and in panel b, the funnel case, with (a = 0.492, b = 2, c−
4). As discussed by Charó et al. (2022), these two structures
can be approximated by cell complexes that are homologi-
cally equivalent. But templates are able to discriminate be-
tween the two cases using the concept of strip.

For strongly dissipative systems, like the Rössler attrac-
tor, the number of monotone branches of the first-return map
provides the number of strips required to construct the corre-
sponding template. Strips are cylinders, in topological terms,
but one must beware that the meaning of strip in a template is
not introduced to refer to a topological class but to discrim-
inate between the different paths followed by the flow along
the branched manifold. A strip is typically defined between a
splitting chart and a joining chart, in which the strips are split

and joined, respectively. Thus, in the template terminology,
the spiral attractor has two strips, while the funnel attractor
has three strips, as shown in Fig. 16a and b, respectively.

Strips in a template are associated with a tearing of the
flow. They are sometimes split in a fictitious manner, intro-
ducing false holes into the branched manifold, even if these
strips are not necessarily delimited by boundaries or asso-
ciated with holes in the sense of homologies. Their number
can be obtained, for strongly dissipative systems, by com-
puting the number of monotone branches of the first return
map. But where are these strips in a cell complex? As men-
tioned above, they cannot be directly identified with holes in
the latter. Can they be identified all the same from some other
properties of the cell complex? The short answer is yes but
not without the information that is contained in the flow on
the cell complex rather than just in the cell complex itself.

The templex thus combines all the essential information
that is relevant to the topology of the branched manifold and
to the flow on it. The flow on the cell complex is represented
by a directed graph (digraph) (e.g., Bang-Jensen and Gutin,
2008), whose nodes are the highest-dimensional cells and
whose edges, or arcs, are provided by the cell connections
that are consistent with the flow. In a templex, the cell com-
plex and the digraph are interrelated. Computations carried
out on the two complementary objects yield a description of
the branched manifold and of the permitted nonequivalent
paths around it.

Algebraic computations on a templex provide, on the one
hand, the already known properties of the cell complex
– such as the homology groups, torsion groups and weak
boundaries – that describe the branched manifold; on the
other hand, they provide the properties of the flow on this
structure. The topology of a templex is described in terms of
a set of sub-templexes that will be called stripexes, since they
play the same role as strips in a template. This is no longer
done at the price of introducing false holes or boundaries to
separate the strips. It is achieved through a set of well-defined
operations that include flow-orienting the cell complex; min-
imizing the cell structure at the joining loci, where the tear-
ing of the flow takes place, to obtain a generating templex;
calculating the cycles of the digraph; and checking for lo-
cal twists, since uneven torsions in a strip correspond to a
local twist in a stripex. The reader is referred to the steps
in Charó et al. (2022) for further details. This dissection of
the cell complex into stripexes provides the information that
enables one to distinguish the topological properties of the
two Rössler attractors from each other. In order to see how,
consider Fig. 17, which illustrates the templexes for the two
types of Rössler (1976) attractor.

The cell complex of a templex can be seen as a dynamic
kirigami or cutout paper model, made of pieces that fit to-
gether; in this case, the pieces are polygons. Note that points
or segments with the same label must be glued together when
constructing the paper model. The digraph can be seen as a
map of the flow-compatible connections between the pieces.
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Figure 15. Solution trajectories for (a) the spiral-type (a = 0.343295, b = 2, c = 4) and (b) the funnel-type (a = 0.492, b = 2, c = 4)
attractors of the Rössler (1976) model.

Figure 16. Templates for the (a) spiral-type and (b) funnel-type
attractors for the Rössler (1976) model. Reproduced from Letellier
et al. (1995) with the permission of AIP Publishing.

Combining the cell complex and the digraph, we can define
and algebraically compute the stripexes. For details on this
procedure, the reader is again referred to Charó et al. (2022).
The stripexes for the spiral attractor are given by two paths
along the cell complex, indicated by the two cycles below,
the first of which is twisted.

γ1→ γ2→ γ4→ γ6→ γ1, (29a)
γ1→ γ2→ γ3→ γ5→ γ1. (29b)

There are three stripexes for the funnel attractor, as shown
below, and only the middle one presents a local twist:

γ ′1→ γ ′2→ γ ′3→ γ ′6→ γ ′1, (30a)
γ ′1→ γ ′2→ γ ′3→ γ ′5→ γ ′1, (30b)
γ ′1→ γ ′2→ γ ′3→ γ ′6→ γ ′1. (30c)

The description in terms of stripexes provided by the two
templexes in Eqs. (29a), (29b), and (30a)–(30c) is equivalent

to the strips in the templates of the spiral and the funnel case
of the Rössler (1976) attractor, as shown in Fig. 16. Let us
recall that templates are knot holders and can therefore only
be obtained for three-dimensional flows, while templexes can
be computed for four- or higher-dimensional dynamical sys-
tems, as shown in Charó et al. (2022, Sect. IV).

3.4 Algebraic topology and noise-driven chaos

BraMAH and the associated templexes, as presented so far,
provide a topological description that holds within an au-
tonomous and deterministic framework. As discussed in
Sect. 2.2 regarding dynamical systems theory for the cli-
mate sciences, the question that naturally arises, though, is
whether we can take one step beyond, namely extend the
topological perspective to NDSs and RDSs, which provide
the appropriate mathematical framework to tackle the ef-
fects of time-dependent forcing on intrinsic climate variabil-
ity (Ghil, 2019; Ghil and Lucarini, 2020; Tél et al., 2020).
Of the two forms of time-dependent forcing, it is the ran-
dom one that is more challenging. Moreover, the topological
characterization of noise-driven chaos is crucial in the un-
derstanding of complex systems in general, where part of the
dynamics remains unresolved and is modeled as noise.

An example involving not only deterministic time depen-
dence but also random forcing was presented in Eq. (25a)–
(25c) and Fig. 8 of Sect. 2.2. In the stochastically perturbed
(Lorenz, 1963a) model’s random attractor, termed LORA
(Chekroun et al., 2011), the stretching and folding mecha-
nisms shape the flow in phase space yielding a time-evolving
branched manifold, which must be analyzed accordingly.
Nothing prevents one from applying BraMAH to successive
point clouds, each of which corresponds to a single snapshot,
and comparing the topological properties of these instanta-
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Figure 17. Templexes for (a) the spiral and for (b) the funnel attractors corresponding to the structures in phase space shown in Fig. 15a
and b, respectively. Cell complexes (above) are shown as planar diagrams, with the convention that points (0-cells) and segments (1-cells)
with identical labels must be glued to each other. The digraphs provide the allowed connections between the polygons (2-cells) labeled γi for
the spiral case and γ ′

i
for the funnel case, with i ∈ N. The two cell complexes are homologically equivalent. Reproduced from Charó et al.

(2022) with the permission of AIP Publishing.

neous cell complexes, as done for the first time by Charó
et al. (2021b).

Such an analysis was performed by Charó et al. (2021b)
for a fixed realization of the driving noise dη at different in-
stants in time. In order to construct the cell complexes, these
authors first sieved the LORA point clouds to retain the most
populated regions in phase space. The deterministic concept
of branched manifold (Williams, 1974) was extended to the
stochastic framework by redefining it locally as an integer-
dimensional set in phase space that robustly supports the
point cloud associated with the system’s invariant measure at
each time instant. The numerical results show that BraMAH
captures LORA’s time-evolving homologies (Charó et al.,
2021b), as shown here in Fig. 18. The topologies differ from
the deterministic Lorenz model’s strange attractor, and the
noise-driven model’s branched manifold exhibits sharp topo-
logical changes in time.

The stochastic branched manifold, characterized by a
single-cell complex for each snapshot, does not contain any
information about the future or the past of the invariant mea-
sure. The flow in a cell complex representing the invariant
measure on a random attractor can no longer be represented
within that cell complex, as done when using a determin-

istic templex, like the one described in Sect. 3.3 for the
Rössler (1976) model. Incorporating time into this formal-
ism requires establishing a link between the cell complexes
of distinct snapshots.

But how can one track changes between different cell com-
plexes without using specific individual cells? Let us recall
that the number of cells and their distribution in a cell com-
plex are arbitrary and that homology groups are conceived so
as to cancel out the extraneous information in the cells and to
only retain the essential properties of the topological space.
Homologies will thus provide the key to connect a cell com-
plex of a random attractor at a given instant to a cell complex
corresponding to another instant. For a random attractor, we
will endow a set of cell complexes with a digraph that does
not connect cells within a single complex, as in Fig. 17, but
holes of cell complexes at distinct instants of time. This is
the key idea that led Charó et al. (2023) to construct their
random templexes.

Tracking holes requires some caveats, though. Homology
groups and the associated Betti numbers are independent of
the particular set of cells forming a cell complex. Hence, the
holes or generators of a homology group can be expressed
in terms of one of several representative cycles that need not
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Figure 18. Three LORA snapshots with the noise variance σ = 0.3 and cloud size N0 = 108. Sieved point clouds (a–c) and cell com-
plexes (d–f): (a, d) t = 40.09, (b, e) t = 40.18 and (c, f) t = 40.27. The cell complexes are not homologically equivalent from one snapshot
to another: their Betti numbers are β1 = 3,10 and 4 for t = 40.09,40.18 and 40.27, while the Betti number for the deterministic strange at-
tractor in Fig. 11 is β1 = 2, stemming from the two holes around the two convective fixed points on either “wing” of the butterfly. Reproduced
from Charó et al. (2021b) with the permission of AIP Publishing.

strictly follow the boundary of the holes, as shown in Fig. 19.
A representative cycle may wander around a hole, without
tightly encircling the empty space. Still, the boundaries of the
holes can be retrieved algebraically, from the cell complex it-
self, as shown by Charó et al. (2023). We can thus define a
random templex as an indexed family of BraMAH cell com-
plexes hanging together by a digraph. In this digraph, each
node is a minimal hole of a given cell complex and the edges
denote the connections between minimal holes occurring at
successive time instants.

What does the random templex, thus defined, encode? In
the life of a random attractor, there may be time intervals
within which the branched manifold evolves geometrically
but maintains its homological properties. Topology can be
said to change when the holes that are being tracked from
one snapshot to the next are created or destroyed. Some of
them can be found to split or merge. Such changes are asso-
ciated with what we call hereafter a topological tipping point
(TTP) (Charó et al., 2021b, 2023). Since the Betti numbers
are integers, any changes in them must be sudden. In fact,
these sudden changes could already be noticed visually in the
LORA video published by Chekroun et al. (2011) at https:
//vimeo.com/240039610 (last access: 27 September 2023).

To confirm this further, Charó et al. (2021b, Fig. 4) showed
that the time intervals over which the Betti numbers changed
drastically were quite short, i.e., no longer than δt = 0.09, as

reproduced in Fig. 18 herein. This time interval is very short
indeed, compared to the characteristic time to switch wings
for a trajectory of the deterministic Lorenz (1963a) model,
which is of the order of units.

Charó et al. (2023, Fig. 5) further showed that the nu-
merically observed intervals over which the set of minimal
1-holes change can be even shorter, with δt ≤ 0.065. More
interestingly, these authors demonstrated that TTPs can be
identified and classified using the digraph of a random tem-
plex.

Figure 20 here shows the “story” of two holes in a finite
time window Tw = 40.065≤ t ≤ 40.110 of LORA’s life in
the form of two tree plots; the two holes, 73 and 74, lie on
opposite wings of the LORA butterfly at the window’s initial
time. For the sake of simplicity, we kept only two of the 15
connected components of the complete finite-time random
templex of LORA for Tw; see Charó et al. (2023, Fig. 6) for
the complete picture. Square nodes correspond either to an
initial or to a final node for a given time window. A splitting
TTP occurs where two or more edges emerge and a merging
node receives two or more edges. Similarly, there is a cre-
ation or annihilation TTP where an initial or a terminal node
in a connected component of the digraph does not correspond
to the boundaries of the time window: square nodes cannot
be TTPs since the preceding or following instant in time is
outside the inspected time window.
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Figure 19. Cell complex of the deterministic Lorenz (1963a) model’s attractor, as shown in Fig. 11a here. Emphasized in color in this figure
are (a) the holes obtained in the homology computation and (b) the tight or minimal holes. From Charó et al. (2023) under CC-BY license.

Figure 20. A “day in the life” of two mutually symmetric holes of LORA for a fixed noise realization and noise intensity σ = 0.3. The time
window is Tw = [40.065,40.11]. The nodes are highlighted in different colors according to the type of event: creation in green, destruction
in black, splitting in red and merging in blue.

The indices in Fig. 20 label a hole at a certain instant.
Tracking enables one to connect, for instance, hole 73 with
91, which will split into holes 108 and 109; this is why
hole 91 is colored in red. A symmetric splitting event can
be found on the other wing of the animated butterfly, where
hole 74 becomes hole 96, which splits into holes 112 and
116. All these holes can be located in phase space using the
coordinates of each hole’s barycenter. Plotting the position
of the barycenters of all the holes present in the analysis
in phase space, we obtain a constellation set, as shown in
Fig. 21. Each constellation contains the immersed nodes and
edges forming a connected component in the digraph and
transforms the tree plots into actual paths in phase space. In
other words, embedding the digraph of the random templex
into phase space, one can represent parsimoniously the evo-
lution of LORA’s topology over a given time interval. Such

a representation might provide access to a more detailed de-
scription of the flow dynamics in a random attractor.

4 Concluding remarks

The purpose of this paper was to provide an account of
the convergence between two strains of Henri Poincaré’s
heritage – dynamical systems theory (Poincaré, 1892,
1893, 1899, 2017) and algebraic topology (Poincaré, 1895;
Siersma, 2012) – and their joint applications to the climate
sciences.

4.1 Summary

In Sect. 1, we provided a bird’s eye view of the evolution of
these two strains of research since the mid-20th century and
how they started to be applied to issues related to fluid flows
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Figure 21. A particular constellation out of the set that represents
the essence of the evolution of LORA’s 1-holes within a time win-
dow Tw = [40.065,40.11]. The plot shows the embedding into the
Lorenz (1963a) model’s phase space of a connected component in
the digraph of LORA’s random templex by using the coordinates
of the barycenters of the nodes. Regular nodes in a constellation
are marked by open stars, while nodes associated with TTPs – such
as splitting or merging of holes – are marked by filled stars. From
Charó et al. (2023) under CC-BY license.

at both engineering and planetary scales. Sections 2 and 3 de-
veloped next in greater detail (a) the concepts and methods
associated with dynamical systems and their applications to
the climate sciences and (b) those associated with algebraic
topology and their applications first to engineering fluid dy-
namics and then to the climate sciences. Note that the pio-
neering references mentioned in Sects. 1.1 and 2 date back
to the early 1960s, while those of Sects. 1.2 and 3 start in the
early 1980s. It is clear that, on the whole, algebraic topology
started playing a noticeable role in the climate sciences about
2 decades later than dynamical systems theory.

Section 2.1 covered autonomous dynamical systems, in
which neither the forcing nor the coefficients depend explic-
itly on time. A very extensive and thorough mathematical
theory exists and certain aspects of it are well known to a
substantial fraction of climate scientists; see, for instance,
Ghil and Childress (1987) and Dijkstra (2013). The contents
of this section emphasized elementary bifurcations – saddle–
node and fold, pitchfork, and Hopf, summarized in Fig. 4
– ending with bifurcation trees and routes to deterministic
chaos.

The material in Sect. 2.2 refers to systems with explicit
time dependence in the forcing or the coefficients, and it is
much newer. The theory of NDSs and RDSs only started in
the 1960s – with George Sell, followed by Ed Ott and col-
leagues and by Ludwig Arnold, Hans Crauel and Franco Ein-
audi (Sell, 1971; Romeiras et al., 1990; Crauel and Flandoli,
1994; Arnold, 1998; Caraballo and Han, 2017; Kloeden and
Yang, 2020) – and its applications to the climate sciences

started merely 15 years ago (Ghil et al., 2008; Chekroun
et al., 2011; Tél et al., 2020).

We first explained in this section the essential differ-
ence between forward and pullback attraction, i.e., between
convergence in time of single-parameter and two-parameter
semigroups of solutions to the governing equations. Simple
examples of pullback attractors (PBAs) were given to famil-
iarize newcomers with the appropriate concepts and meth-
ods; see again Figs. 5 and 6. The sequence of examples was
concluded with the striking random attractor of the stochas-
tically perturbed Lorenz model, as introduced and studied by
Chekroun et al. (2011); see Figs. 7 and 8. Finally, tipping
points were introduced as the proper generalization to NDSs
and RDSs of the elementary bifurcations for autonomous
systems described in Sect. 2.1 (Fig. 9).

In Sect. 3, we presented topological methods in a dy-
namical systems perspective. We reviewed the advantages of
working with homology theory in order to overcome the lim-
itation of a three-dimensional space imposed by using knot
theory, since knots simply disentangle in higher dimensions.
In Sect. 3.1, we showed that homologies provide a knotless
method and that a BraMAH cell complex can be used to de-
scribe the spatial structure of a flow in phase space by us-
ing homology group generators, weak boundaries and tor-
sion groups (Fig. 11). We described an application of these
concepts and methods to Lagrangian analysis in Sect. 3.2,
by showing how to define and detect localized coherent sets
(LCSs) for fluid flows in physical space; see again Figs. 12–
14.

In Sect. 3.3, we dealt with the fact that BraMAH alone
does not provide a robust skeleton of the flow in phase space
on its branched manifold, even for an autonomous, determin-
istic system. To obtain such a robust and parsimonious flow
description in phase space, we introduced a directed graph
(digraph), whose nodes are the cells, while the edges point
from one cell to another, in a way that is consistent with the
flow on the branched manifold. The mathematical object that
combines such a digraph with the underlying cell complex is
called a templex. Homologically equivalent attractors – such
as the spiral and funnel versions of the Rössler (1976) attrac-
tor – can be distinguished using a templex, given its digraph’s
properties; see Figs. 15–17.

Finally, in Sect. 3.4, we discussed how a digraph, and
hence a templex, can be generalized from the autonomous
and deterministic version of Sect. 3.3 to non-autonomous and
random dynamical systems; see Figs. 18–20. To define a ran-
dom templex, one needs to shift the perspective from defin-
ing a digraph on the single-cell complex of an autonomous
system to an indexed family of cell complexes at successive
instants in time and the vertices pointing from one cell at time
t = tj to the corresponding one at time t = tj+1.

The fact that the change in the set of minimal holes of a
cell complex at t = tj to the next one is sudden allowed us to
rigorously define topological tipping points (TTPs) as hap-
pening at an instant at which such a sudden change occurs.
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It is these TTPs that are a matter of particular interest for
future work in the overlap of the two fields that we consid-
ered in this review, namely dynamical systems and algebraic
topology.

4.2 Perspectives

As usual, when stumbling upon some striking findings, there
are two kinds of paths that one might wish to pursue: (i) more
general or stronger theoretical results and (ii) interesting ap-
plications. Clearly we have some rather striking findings,
and we will outline some intriguing paths to pursue, of both
kinds, as well as connections between the two kinds of paths.

TTPs in the templex of an NDS or RDS are obviously con-
nected with a lot more detailed information in phase space
about the system under investigation than one might suspect
from the usual kinds of bifurcation-induced, noise-induced
and rate-induced transitions – or B tipping, N tipping and R
tipping – discussed by Ashwin et al. (2012) and mentioned
here toward the end of Sect. 2.2. But what does that say about
changes in the flow in physical space? Could this localization
in phase space say something about the association with lo-
calized sudden changes in the flow in physical space, i.e.,
with the “tipping elements” of Lenton et al. (2008)? The use
of systematically derived reduced-order models (Kondrashov
et al., 2015, 2018; Gutiérrez et al., 2021), for which both
TTPs and the better understood dynamical tipping points can
be computed fairly easily, could help clarify such relation-
ships and the associated precursors of critical transitions.

An interesting example, among many, of localized changes
in Earth’s physical space is that of persistent anomalies (Dole
and Gordon, 1983) or flow regimes (Legras and Ghil, 1985;
Ghil and Childress, 1987, Chap. 6) or weather regimes (Han-
nachi et al., 2017). Strommen et al. (2023) have recently ap-
plied a multiparameter PH method (Carlsson and Zomoro-
dian, 2007; Vipond et al., 2021) to decide more objectively
the much debated existence of distinct regimes in the large-
scale atmosphere’s phase space (Ghil and Robertson, 2002;
Hannachi et al., 2017; Robertson and Vitart, 2018). Their
findings certainly strengthen the affirmative reply to the
quandary. Before proceeding to the next quandary, though,
let us consider briefly the issues that are still open in apply-
ing this approach to regime identification.

In applying the multiparameter PH method to the classical
(Lorenz, 1963a) convection model, Strommen et al. (2023)
essentially equate the existence of distinct regimes to the
existence of two holes in its branched manifold. Doing so,
however, is not quite enough. To explain why, we revisit the
example of the Rössler attractor discussed in our Sect. 3.3.
This attractor’s spiral form, shown in Fig. 15a, has a single
hole, but it has two strips: one strip related to the system’s
slow branch and the other strip to its fast branch. These two
branches, however, are not separated by a hole in the sense of
homology groups, and this is why homologies alone cannot
distinguish between them. Instead, the templex introduced in

Figure 22. Schematic overview of atmospheric LFV mechanisms.
From Ghil et al. (2018) with the permission of Elsevier.

the same subsection captures these two ways of circulating
around the attractor in terms of two stripexes, despite the fact
that the branched manifold is single-holed.

The existence of multiple regimes in a dynamical system is
certainly associated with its attractor’s nontrivial topological
structure, as Strommen et al. (2023) state, but this nontrivial
topology is not necessarily captured by homologies alone.
As explained throughout this work, the templex – with its
stripexes and digraph – contributes additional tools to accu-
rately describe the phase-space topology of a flow and of its
single or multiple regimes.

Ghil and Robertson (2002), however, asked a more subtle
question: is the so-called low-frequency variability (LFV) of
the atmosphere – which is closely related to the rapidly grow-
ing interest in subseasonal-to-seasonal (S2S) predictability
(e.g., Robertson and Vitart, 2018) – oscillatory, i.e., wavelike,
or episodic and intermittent, i.e., particle-like. These authors,
with an obvious nod to the classical problem of quantum me-
chanics, formulated the question as “waves” vs. “particles”.
Two decades later, this question is still far from settled, as
discussed quite recently by Ghil et al. (2018) and by Ghil
and Lucarini (2020).

Which type of phenomena dominate atmospheric LFV?
There are two apparently contradictory descriptions: oscilla-
tory, wavelike flow features or geographically fixed, particle-
like, episodic flow features; e.g., blocking of the westerlies
(particle-like) or intraseasonal oscillations (wavelike), with
periodicities of 40–50 d (Ghil et al., 2018). In fact, these
two are by now accompanied by several more key dynam-
ical mechanisms of midlatitude LFV variability, summarized
in Fig. 22.

The simplest approach to persistent anomalies in midlat-
itude atmospheric flows on 10–100 d timescales is to re-
gard them as due to the slowing down of Rossby waves or
to their linear interference (Lindzen et al., 1982; Lindzen,
1986). This approach is illustrated in the sketch labeled c
within the figure: zonal flow Z and blocked flow B are sim-
ply slow phases of a harmonic oscillation, like the neigh-
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borhood of t = π/2 or t = 3π/2 for a sine wave sin(t); or
else they are due to an interference like that occurring for a
sum Asin(t)+B sin(3t) near t = (2k+1)π/2. A more versa-
tile, quasi-linear version of this approach is to study long-
lived resonant wave triads between a topographic Rossby
wave and two free Rossby waves (Egger, 1978; Trevisan and
Buzzi, 1980; Ghil and Childress, 1987, Sect. 6.2). Neither
version of this approach, though, explains the anomalies’ or-
ganizing into distinct flow regimes.

Rossby et al. (1939) initiated a different, genuinely non-
linear approach by raising the possibility of multiple equilib-
ria as an explanation of preferred atmospheric flow patterns.
These authors drew an analogy between such equilibria and
hydraulic jumps and formulated simple models in which sim-
ilar transitions between faster and slower atmospheric flows
could occur. This multiple-equilibrium approach was then
pursued quite aggressively in the 1980s (Charney and De-
Vore, 1979; Charney et al., 1981; Legras and Ghil, 1985;
Ghil and Childress, 1987, Sect. 6.3–6.6), and it is illustrated
in Fig. 22 by the sketch labeled a: one version of the sketch
illustrates models that concentrated on the B–Z dichotomy
(Charney and DeVore, 1979; Charney et al., 1981; Benzi
et al., 1986) and the other on models (e.g., Legras and Ghil,
1985) that allowed for the presence of additional clusters,
like those found by Kimoto and Ghil (1993a) or Smyth et al.
(1999), viz. opposite phases of the North Atlantic Oscillation
(NAO) and the Pacific North American (PNA) anomalies –
dubbed RNA for Reverse PNA and BNAO for Blocked NAO
in sketch a of Fig. 22. The LFV dynamics in this approach
are given by the preferred transition paths of a Markov chain
between two or more regimes.

A third approach is associated with the idea of oscilla-
tory instabilities of one or more of the multiple fixed points
that can play the role of regime centroids. Thus, Legras and
Ghil (1985) found a 40 d oscillation arising by Hopf bifurca-
tion off their blocked regime B, as illustrated in sketch b of
the figure. An ambiguity arises, though, between this point
of view and a complementary possibility, namely that the
regimes are just slow phases of such an oscillation, caused
itself by the interaction of the midlatitude jet with topogra-
phy. Thus, Kimoto and Ghil (1993b) found, in their observa-
tional data, closed paths within a Markov chain whose states
resemble well-known phases of an intraseasonal oscillation.
Kondrashov et al. (2004) confirmed the likelihood of such a
scenario in the intermediate-complexity model of Marshall
and Molteni (1993). Furthermore, multiple regimes and in-
traseasonal oscillations can coexist in a two-layer model on
the sphere within the scenario of “chaotic itinerancy” (Itoh
and Kimoto, 1996, 1997).

Finally, sketch d in the figure refers to the role of stochas-
tic processes in LFV variability and S2S prediction, whether
it be noise that is white in time, as in Hasselmann (1976)
or in linear inverse models (Penland, 1989, 1996; Penland
and Ghil, 1993; Penland and Sardeshmukh, 1995), or red in
time, as in empirical model reduction and multilayer stochas-

tic models (Kravtsov et al., 2005, 2009; Kondrashov et al.,
2013, 2015; Gutiérrez et al., 2021), or even non-Gaussian
(Sardeshmukh and Penland, 2015). Stochastic processes may
enter into models situated on various rungs of the model-
ing hierarchy, from the simplest conceptual models to high-
resolution global climate models. In the latter, they may en-
ter via stochastic parametrizations of subgrid-scale processes
(e.g., Palmer and Williams, 2009, and references therein),
while in the former they may enter via stochastic forcing,
whether additive or multiplicative, Gaussian or not (e.g.,
Kondrashov et al., 2015; Gutiérrez et al., 2021, and refer-
ences therein). Dorrington and Palmer (2023) recently drew
attention to yet another mechanism of interaction between
stochastic forcing and nonlinear regime dynamics that might
modify the picture.

How might topological data analysis contribute to clar-
ify this thicket of apparently contradictory descriptions of
LFV? One hint is found in the work of Lucarini and Grit-
sun (2020), who showed that blocking can be studied by ex-
tracting from the complex high-dimensional dynamics of a
model its essential building blocks, given by truly nonlinear
modes. In this work, they abandoned the classic identifica-
tion of weather regimes with fixed points, as in Charney and
DeVore (1979), and directly considered the chaotic nature of
the atmosphere, using the unstable periodic orbits (UPOs)
that are a key component of the Gilmore (1998) topological
analysis of the chaos program.

This UPO-based approach did confirm certain theoretical
results of Legras and Ghil (1985) and the laboratory find-
ings of Weeks et al. (1997) – about the relative stability and
persistence of blocked and zonal flows – as well as provid-
ing further insights into the waves-versus-particles quandary
(Ghil et al., 2018). UPOs can be very useful in characteriz-
ing a chaotic system, since the information about them can be
obtained in a finite time, which is particularly useful in non-
stationary systems, and because a single UPO can already
provide substantial information (Amon and Lefranc, 2004).
Still, Lucarini and Gritsun (2020) found it quite hard to carry
out the necessary computations of very numerous UPOs even
for the relatively simple Marshall and Molteni (1993) model.

As explained here in Sects. 1.2 and 3.1, BraMAH is cru-
cially inspired by the Gilmore (1998) program. Yet it is more
powerful than the knots-and-braids methodology, which is
limited by the dimensionality of the phase spaces that it can
be applied to. Likewise, it is more computationally efficient
than the UPO methodology, and, as shown at the beginning
of this subsection, it provides considerably more information
than the PH methodology for chaotic dynamics.

It is thus conceivable, although it remains to be demon-
strated, that the additional tools brought to the table by the
mathematical object we called templex – namely the digraph
and stripexes – could help explore, in a highly simplified set-
ting, issues like the existence and multiplicity of regimes,
as well as of the presence of oscillatory features in the dy-
namics. As explained in the Rössler (1976) attractor context,
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stripexes can greatly help, beyond counting holes, to deter-
mine regime multiplicity.

Finally, as stated at the end of Sect. 3.4, minimal or tight
holes in the cell complex of a random templex can be lo-
cated in phase space using the coordinates of each hole’s
barycenter. Plotting the position of the barycenters of all the
holes present in the analysis in phase space yields a constel-
lation set as shown in Fig. 21. The topology of this constel-
lation set deserves further exploration. It might lead, quite
conceivably, to the generalization of a stripex for a random
templex and therefore to the extraction of the nonequivalent
paths that a nonlinear system follows when driven by multi-
plicative noise. Random stripexes should provide us with the
stretching, squeezing, folding and tearing mechanisms that
knead, mold and alter the topological structure of a noise-
driven flow in phase space.

The extension of the templex from autonomous and de-
terministic systems (Charó et al., 2022) to non-autonomous
and stochastic ones (Charó et al., 2023) opens the way to
the exploration of key aspects of the LFV quandaries asso-
ciated with Fig. 22. More broadly, it can facilitate explor-
ing a plethora of climate problems that are strongly affected
by time-dependent forcing, such as anthropogenic green-
house gas and aerosol emissions, and stochastic components,
such as cloud microprocesses. One can imagine, for instance,
applying methods from network theory (Bang-Jensen and
Gutin, 2008; Coluzzi et al., 2011; Colon and Ghil, 2017) to
investigate the presence of cyclicity in a given model’s or
dataset’s digraph as well as issues of multimodality or multi-
stability.

More broadly, complex networks (Zou et al., 2019) have
found numerous applications in the climate sciences in recent
years and could provide other links between topology and
the multivariate time series analysis of nonlinear phenomena.
The field of complex networks shares many of the challenges
that are faced by the topology of chaos. Algebraic topology
is not mentioned in the Zou et al. (2019) paper, but there have
been some papers applying PH methods to complex networks
(De Silva and Ghrist, 2007; Horak et al., 2009; Petri et al.,
2013). The network approach is used to reconstruct the phase
space, which is a preliminary and certainly necessary step for
the analysis of the topological structure of flows from data.

The PH framework to obtain families of nested cell com-
plexes from point clouds has only been mentioned in passing
in this review article for the sake of brevity; it should be taken
into account, though, as an important of branch of computa-
tional topology that is continuously providing us with solu-
tions to algorithmic problems being faced in chaos topology
and the climate sciences. So far, the complex network com-
munity seems to be lacking a dual object such as the templex
to deal with nonstationarity. Finding such an object that cap-
tures the spatial structure and is, in addition, endowed with
another object that captures the flow structure on the spatial
object appears to be a worthwhile challenge.
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