Articles | Volume 30, issue 2
https://doi.org/10.5194/npg-30-183-2023
https://doi.org/10.5194/npg-30-183-2023
Research article
 | 
22 Jun 2023
Research article |  | 22 Jun 2023

Reducing manipulations in a control simulation experiment based on instability vectors with the Lorenz-63 model

Mao Ouyang, Keita Tokuda, and Shunji Kotsuki

Related authors

Estimating global precipitation fields by interpolating rain gauge observations using the local ensemble transform Kalman filter and reanalysis precipitation
Yuka Muto and Shunji Kotsuki
Hydrol. Earth Syst. Sci., 28, 5401–5417, https://doi.org/10.5194/hess-28-5401-2024,https://doi.org/10.5194/hess-28-5401-2024, 2024
Short summary
Evaluation of Effectiveness of Intervention Strategy in Control Simulation Experiment through Comparison with Model Predictive Control
Rikuto Nagai, Yang Bai, Masaki Ogura, Shunji Kotsuki, and Naoki Wakamiya
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2024-26,https://doi.org/10.5194/npg-2024-26, 2024
Preprint under review for NPG
Short summary
Ensemble data assimilation to diagnose AI-based weather prediction model: A case with ClimaX version 0.3.1
Shunji Kotsuki, Kenta Shiraishi, and Atsushi Okazaki
EGUsphere, https://doi.org/10.48550/arXiv.2407.17781,https://doi.org/10.48550/arXiv.2407.17781, 2024
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Leading the Lorenz 63 system toward the prescribed regime by model predictive control coupled with data assimilation
Fumitoshi Kawasaki and Shunji Kotsuki
Nonlin. Processes Geophys., 31, 319–333, https://doi.org/10.5194/npg-31-319-2024,https://doi.org/10.5194/npg-31-319-2024, 2024
Short summary
Convex optimization of initial perturbations toward quantitative weather control
Toshiyuki Ohtsuka, Atsushi Okazaki, Masaki Ogura, and Shunji Kotsuki
EGUsphere, https://doi.org/10.48550/arXiv.2405.19546,https://doi.org/10.48550/arXiv.2405.19546, 2024
Preprint withdrawn
Short summary

Related subject area

Subject: Predictability, probabilistic forecasts, data assimilation, inverse problems | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere | Techniques: Simulation
A comparison of two nonlinear data assimilation methods
Vivian A. Montiforte, Hans E. Ngodock, and Innocent Souopgui
Nonlin. Processes Geophys., 31, 463–476, https://doi.org/10.5194/npg-31-463-2024,https://doi.org/10.5194/npg-31-463-2024, 2024
Short summary
Leading the Lorenz 63 system toward the prescribed regime by model predictive control coupled with data assimilation
Fumitoshi Kawasaki and Shunji Kotsuki
Nonlin. Processes Geophys., 31, 319–333, https://doi.org/10.5194/npg-31-319-2024,https://doi.org/10.5194/npg-31-319-2024, 2024
Short summary
Quantum data assimilation: a new approach to solving data assimilation on quantum annealers
Shunji Kotsuki, Fumitoshi Kawasaki, and Masanao Ohashi
Nonlin. Processes Geophys., 31, 237–245, https://doi.org/10.5194/npg-31-237-2024,https://doi.org/10.5194/npg-31-237-2024, 2024
Short summary
Comparative study of strongly and weakly coupled data assimilation with a global land–atmosphere coupled model
Kenta Kurosawa, Shunji Kotsuki, and Takemasa Miyoshi
Nonlin. Processes Geophys., 30, 457–479, https://doi.org/10.5194/npg-30-457-2023,https://doi.org/10.5194/npg-30-457-2023, 2023
Short summary
Control simulation experiments of extreme events with the Lorenz-96 model
Qiwen Sun, Takemasa Miyoshi, and Serge Richard
Nonlin. Processes Geophys., 30, 117–128, https://doi.org/10.5194/npg-30-117-2023,https://doi.org/10.5194/npg-30-117-2023, 2023
Short summary

Cited articles

Bishop, C. H., Etherton, B. J., and Majumdar, S. J.: Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects, Mon. Weather Rev., 129, 420–436, https://doi.org/10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2, 2001. a
Corazza, M., Kalnay, E., Patil, D. J., Yang, S.-C., Morss, R., Cai, M., Szunyogh, I., Hunt, B. R., and Yorke, J. A.: Use of the breeding technique to estimate the structure of the analysis “errors of the day”, Nonlin. Processes Geophys., 10, 233–243, https://doi.org/10.5194/npg-10-233-2003, 2003. a, b
Diaconescu, E. P. and Laprise, R.: Singular vectors in atmospheric sciences: A review, Earth-Sci. Rev., 113, 161–175, https://doi.org/10.1016/j.earscirev.2012.05.005, 2012. a, b
Egolf, D. A., Melnikov, I. V., Pesch, W., and Ecke, R. E.: Mechanisms of extensive spatiotemporal chaos in Rayleigh–Bénard convection, Nature, 404, 733–736, https://doi.org/10.1038/35008013, 2000. a
Evans, E., Bhatti, N., Kinney, J., Pann, L., Peña, M., Yang, S.-C., and Kalnay, E.: RISE: Undergraduates find that regime changes in Lorenz's model are predictable, B. Am. Meteorol. Soc., 85, 2004. a, b, c, d
Download
Short summary
This research found that weather control would change the chaotic behavior of an atmospheric model. We proposed to introduce chaos theory in the weather control. Experimental results demonstrated that the proposed approach reduced the manipulations, including the control times and magnitudes, which throw light on the weather control in a real atmospheric model.