Articles | Volume 29, issue 1
Nonlin. Processes Geophys., 29, 1–15, 2022
Nonlin. Processes Geophys., 29, 1–15, 2022
Research article
10 Jan 2022
Research article | 10 Jan 2022

A waveform skewness index for measuring time series nonlinearity and its applications to the ENSO–Indian monsoon relationship

Justin Schulte et al.

Related authors

Towards effective drought monitoring in the Middle East and North Africa (MENA) region: implications from assimilating leaf area index and soil moisture into the Noah-MP land surface model for Morocco
Wanshu Nie, Sujay V. Kumar, Kristi R. Arsenault, Christa D. Peters-Lidard, Iliana E. Mladenova, Karim Bergaoui, Abheera Hazra, Benjamin F. Zaitchik, Sarith P. Mahanama, Rachael McDonnell, David M. Mocko, and Mahdi Navari
Hydrol. Earth Syst. Sci., 26, 2365–2386,,, 2022
Short summary
Flash drought onset over the contiguous United States: sensitivity of inventories and trends to quantitative definitions
Mahmoud Osman, Benjamin F. Zaitchik, Hamada S. Badr, Jordan I. Christian, Tsegaye Tadesse, Jason A. Otkin, and Martha C. Anderson
Hydrol. Earth Syst. Sci., 25, 565–581,,, 2021
Short summary
Developing a hydrological monitoring and sub-seasonal to seasonal forecasting system for South and Southeast Asian river basins
Yifan Zhou, Benjamin F. Zaitchik, Sujay V. Kumar, Kristi R. Arsenault, Mir A. Matin, Faisal M. Qamer, Ryan A. Zamora, and Kiran Shakya
Hydrol. Earth Syst. Sci., 25, 41–61,,, 2021
Short summary
A skewed perspective of the Indian rainfall–El Niño–Southern Oscillation (ENSO) relationship
Justin Schulte, Frederick Policielli, and Benjamin Zaitchik
Hydrol. Earth Syst. Sci., 24, 5473–5489,,, 2020
Short summary
Improving early warning of drought-driven food insecurity in southern Africa using operational hydrological monitoring and forecasting products
Shraddhanand Shukla, Kristi R. Arsenault, Abheera Hazra, Christa Peters-Lidard, Randal D. Koster, Frank Davenport, Tamuka Magadzire, Chris Funk, Sujay Kumar, Amy McNally, Augusto Getirana, Greg Husak, Ben Zaitchik, Jim Verdin, Faka Dieudonne Nsadisa, and Inbal Becker-Reshef
Nat. Hazards Earth Syst. Sci., 20, 1187–1201,,, 2020
Short summary

Related subject area

Subject: Time series, machine learning, networks, stochastic processes, extreme events | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere | Techniques: Theory
Empirical evidence of a fluctuation theorem for the wind mechanical power input into the ocean
Achim Wirth and Bertrand Chapron
Nonlin. Processes Geophys., 28, 371–378,,, 2021
Short summary
Recurrence analysis of extreme event-like data
Abhirup Banerjee, Bedartha Goswami, Yoshito Hirata, Deniz Eroglu, Bruno Merz, Jürgen Kurths, and Norbert Marwan
Nonlin. Processes Geophys., 28, 213–229,,, 2021
Beyond univariate calibration: verifying spatial structure in ensembles of forecast fields
Josh Jacobson, William Kleiber, Michael Scheuerer, and Joseph Bellier
Nonlin. Processes Geophys., 27, 411–427,,, 2020
Short summary
Vertical profiles of wind gust statistics from a regional reanalysis using multivariate extreme value theory
Julian Steinheuer and Petra Friederichs
Nonlin. Processes Geophys., 27, 239–252,,, 2020
Short summary
On fluctuating momentum exchange in idealised models of air–sea interaction
Achim Wirth
Nonlin. Processes Geophys., 26, 457–477,,, 2019
Short summary

Cited articles

An, S.-I.: A review of interdecadal changes in the nonlinearity of the El Nino–Southern Oscillation. Theor. Appl. Climatol., 97, 29–40,, 2009. 
An, S.-I and Jin, F.-F.: Nonlinearity and asymmetry of ENSO, J. Climate, 17, 2399–2412,<2399:NAAOE>2.0.CO;2, 2004. 
An, S.-L.: Interdecadal changes in the El Niño-La Niña symmetry, Geophys. Res. Lett., 31, L23210,, 2004. 
Ashok, K., Guan, Z., Saji, N. H., and Yamagata, T.: Individual and combined influences of ENSO and the Indian Ocean dipole on the Indian summer monsoon, J. Climate, 17, 3141–3155, 2004. 
Ashok, K., Guan, Z., and Yamagata, T.: Impact on the Indian Ocean dipole on the relationship between the Indian monsoon rainfall and ENSO, Geophys. Res. Lett., 28, 4499–4502, 2001. 
Short summary
The skewness of a time series is commonly used to quantify the extent to which positive (negative) deviations from the mean are larger than negative (positive) ones. However, in some cases, traditional skewness may not provide reliable information about time series skewness, motivating the development of a waveform skewness index in this paper. The waveform skewness index is used to show that changes in the relationship strength between climate time series could arise from changes in skewness.