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Abstract. Many geophysical time series possess nonlinear
characteristics that reflect the underlying physics of the phe-
nomena the time series describe. The nonlinear character of
times series can change with time, so it is important to quan-
tify time series nonlinearity without assuming stationarity. A
common way of quantifying the time evolution of time se-
ries nonlinearity is to compute sliding skewness time series,
but it is shown here that such an approach can be misleading
when time series contain periodicities. To remedy this defi-
ciency of skewness, a new waveform skewness index is pro-
posed for quantifying local nonlinearities embedded in time
series. A waveform skewness spectrum is proposed for de-
termining the frequency components that are contributing to
time series waveform skewness. The new methods are ap-
plied to the El Niño–Southern Oscillation (ENSO) and the
Indian monsoon to test a recently proposed hypothesis that
states that changes in the ENSO–Indian monsoon relation-
ship are related to ENSO nonlinearity. We show that the
ENSO–Indian rainfall relationship weakens during time pe-
riods of high ENSO waveform skewness. The results from
two different analyses suggest that the breakdown of the
ENSO–Indian monsoon relationship during time periods of
high ENSO waveform skewness is related to the more fre-
quent occurrence of strong central Pacific El Niño events,
supporting arguments that changes in the ENSO–Indian rain-
fall relationship are not solely related to noise.

1 Introduction

Many geophysical time series such as the solar cycle
(Rusu, 2007), Quasi-biennial Oscillation (QBO; Hamilton
and Hsieh, 2002; Lu et al., 2009), and El Niño–Southern Os-
cillation (ENSO; Timmermann, 2003) are nonlinear. From
a time series analysis perspective, the nonlinearities in the
time series manifest as the tendency for the time series to
rise more quickly than they fall or as the propensity for pos-
itive deviations above a horizonal axis (zero axis in the case
of zero-mean time series) to be greater than negative devi-
ations below the same horizonal axis. Understanding these
nonlinear time series features is important because the non-
linear characteristics of the time series reflect the underlying
physics of the phenomena in question. In the case of ENSO,
the tendency for El Niño events to be stronger than La Niña
events (i.e., ENSO asymmetry) is related to the propagation
characteristics of equatorial Pacific SST anomalies and non-
linear dynamical heating (NDH; An and Jin, 2004; Santoso
et al., 2013), where strong El Niño events are associated with
eastward-propagating SST anomalies and enhanced NDH.
On the other hand, weak ENSO events are associated with
westward-propagating SST anomalies and minimal NDH.
Understanding ENSO nonlinearity is also important because
it is related to ENSO diversity (Duan et al., 2017) and the
associated diversity of teleconnection responses.

Another reason why quantifying time series nonlinearity
is important is that changing time series nonlinear character-
istics is related to fluctuating time-domain correlations be-
tween two time series. As shown by Schulte et al. (2020),
the well-documented weakening ENSO–Indian monsoon re-
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lationship (Kumar et al., 2006) around the 1970s could be
related to the transition of ENSO from a linear regime to
a more nonlinear regime. More specifically, they showed
that the ENSO–Indian monsoon relationship weakens dur-
ing time periods when ENSO evolves more nonlinearly be-
cause ENSO nonlinearity contributes to the occurrence of
distinct ENSO flavors (Johnson, 2013) that differentially in-
fluence the Indian summer monsoon (Fan et al., 2017). Thus,
it may not be a coincidence that ENSO transitioned to a
nonlinear regime (An, 2004; An and Jin 2004; An, 2009)
around the same time the ENSO–Indian monsoon began to
weaken in the 1970s (Kumar et al., 1999). The results from
that study oppose those of other studies that suggest that
changes in the ENSO–Indian monsoon relationship are re-
lated to noise (Gershunov et al., 2001), statistical undersam-
pling (Cash et al., 2017), the Indian Ocean Dipole (Ashok et
al., 2001, 2004), and Atlantic SSTs (Kucharski et al., 2007,
2009; Chen et al., 2010). Other recent works indicate that the
ENSO–Indian monsoon relationship may be influenced by
volcanic radiative forcing (Maraun and Kurths, 2005; Singh
et al., 2020). Maraun and Kurths (2005) found that distinct
epochs of phase coherence between ENSO and the Indian
monsoon may be related to volcanic radiative forcing be-
cause the identified epochs did not arise from stochastic fluc-
tuations. In a more recent study, Singh et al. (2020) found
that large volcanic eruptions alter the angular frequency of
ENSO and consequently enhance the phase coherence be-
tween ENSO and the Indian monsoon. Given the ongoing
debate about why the ENSO–Indian monsoon relationship
changes, an additional study that examines the possible rela-
tionship between ENSO nonlinearity and the ENSO–Indian
monsoon relationship is warranted.

Recognizing the importance of understanding nonlinear
time series characteristics, many researchers have quanti-
fied the nonlinearity of ENSO using a variety of approaches.
Commonly, traditional skewness is used to measure ENSO
nonlinearity (Burgers and Stephenson, 1999) because it cap-
tures the propensity for El Niño events to be stronger than La
Niña events (An and Jin, 2004; An, 2004). One drawback of
this skewness metric, however, is that it measures the skew-
ness of a distribution of ENSO index values and does not
measure the skewness of specific El Niño or La Niña events.
Another metric called the maximum potential intensity index
proposed by An and Jin (2004) is a proxy for event skew-
ness but with two caveats. The first caveat is that the index
only quantifies the amplitude of an event and therefore can-
not distinguish two events that have the same amplitude but
differing nonlinear characteristics. The second caveat is that
the index can only be applied to ENSO and not to arbitrary
geophysical time series. Given these deficiencies, there is a
clear need to construct a quantity that can measure the skew-
ness of individual time series events regardless of the chosen
study topic.

Another approach to quantifying time series nonlinearity
is Fourier or wavelet-based higher-order spectral analysis.

Using these methods, the cycle geometry of time series and
the frequency components contributing to time-domain non-
linearity can be quantified. For example, Schulte et al. (2020)
used the methods to show how the nonlinear character of
ENSO has evolved from 1871 to 2016, with ENSO being
especially nonlinear in recent decades. In an earlier study,
Timmermann (2003) applied Fourier-based bispectral meth-
ods to identify quadratically phase-dependent oscillators em-
bedded in ENSO time series. In another study, Pires and Han-
nachi (2021) evaluated the nonlinearity of ENSO by examin-
ing the standardized difference between the bispectrum of the
Niño 3.4 index and the bispectrum of a linear non-Gaussian
process that was fitted to the Niño 3.4 index and coerced
to have same bispectral properties and skewness of ENSO.
They found that interacting Fourier components of the Niño
3.4 index on typical ENSO timescales of 2 to 7 years con-
tribute to the overall skewness of the Niño 3.4 index. While
these approaches can quantify time series nonlinearity, they
cannot measure the nonlinearity of individual time series
events like the other methods mentioned above. These lim-
itations further highlight the need to develop a method that
can quantify time series event skewness.

In this study, we develop a nonlinear index that can be
used to measure the nonlinearity of specific events embed-
ded in arbitrary time series. More specifically, the three ob-
jectives of the paper are as follows. (1) Create a waveform
skewness index to quantify local nonlinearity of time series.
(2) Demonstrate the importance of the index through the ap-
plication of the waveform skewness index to ENSO time se-
ries. (3) Test the hypothesis that ENSO nonlinearity is re-
lated to the weakening ENSO–Indian monsoon relationship,
contributing to the current debate regarding the mechanism
behind the ENSO–Indian monsoon relationship changes.

2 Data

The Niño 1+2, Niño 3, Niño 3.4, and Niño 4 indices
(available at https://www.esrl.noaa.gov/psd/gcos_wgsp/
Timeseries/, last access: 15 March 2019) were used to
measure the strength and evolution of ENSO from 1871 to
2016. These indices were calculated using the Hadley Centre
Global Sea Ice and Sea Surface Temperature (HadISST1;
Rayner et al., 2003) data product. The seasonal cycles were
removed from the time series by subtracting the 1871–2016
monthly means from the corresponding monthly values.
After removing the seasonal cycle, the time series were
standardized by dividing them by their respective standard
deviations. In addition to the full time series, two seasonal
time series were also considered. The first season considered
was the June–July (JJ) season, which was referred to as the
early monsoon season. The second season considered was
the August–September (AS) season or late monsoon season.
The JJ Niño 3 (Niño 1+2, Niño 3.4, etc.) times series was
created by simply averaging the June and July Niño 3 (Niño
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1+2, Niño 3.4, etc.) indices, and the AS was created by
averaging the August and September Niño 3 (Niño 1+2,
Niño 3.4, etc.) indices.

Also considered in this study was the trans-Niño index
(TNI; Trenberth and Stephenaik, 2001), which quantifies the
SST gradient across the equatorial Pacific. The TNI was
used in this study because the trans-Niño pattern has been
implicated as an SST pattern contributing to changes in
the ENSO–AIR (All-India rainfall) relationship (Kumar et
al., 2006). We defined the trans-Niño index as the standard-
ized Niño 4 minus the standardized Niño 1+2 index, con-
trasting with the original definition in which a 5-month run-
ning mean was applied to the difference between the Niño
4 and Niño 1+2 indices. Our choice to forgo the smooth-
ing step was made because seasonal time series in this study
were based on 2-month seasons, and a 5-month running mean
would render it difficult to extrapolate seasonal relationships.

The AIR (Parthasarathy et al., 1994) time series was used
to characterize changes in the Indian summer monsoon sys-
tem. The AIR time series was created by averaging repre-
sentative rain gauges at various locations across India. To re-
move the annual cycle, the AIR time series was converted
into anomaly time series by subtracting the 1871–2016 long-
term mean for each month from the individual monthly
values. The AIR anomaly (AIR hereafter) time series was
subsequently standardized by dividing it by its 1871–2016
standard deviation. An early (JJ) monsoon season and late
monsoon (August–September) season time series were con-
structed in the same way as they were created for the ENSO
time series.

3 Methods

3.1 Waveform skewness

The focus of this study was quadratic phase nonlinearities
that give rise to time series skewness. Quadratic nonlineari-
ties were associated with quadratic phase dependence among
oscillators with periods P1, P2, and P3 and phases φ1, φ2, and
φ3 satisfying

1
P3
=

1
P1
+

1
P2

(1)

and

φ3 = φ1+ φ2. (2)

The type of waveform resulting from quadratic nonlineari-
ties can be measured using the biphase (King, 1996; Schulte,
2016; Maccarone, 2013), which is defined as

ψ = φ3−φ1+φ2. (3)

A biphase of zero means that the quadratic nonlinearity re-
sults in positively skewed waveforms whose positive devia-
tions from a horizonal axis are larger than the negative ones.

Figure 1. (a) The time series X1(t) and (b) X2(t) for different val-
ues of P1.

On the other hand, waveforms associated with −180 biphase
are characterized by larger negative deviations than positive
ones. The biphase can also have values of −90 and 90, rep-
resenting situations in which a time series rises faster than it
falls (Schulte, 2016). This situation is not considered in this
study because ENSO skewness is the focus of the paper.

The biphase is closely linked to the skewness of a distri-
bution, which was computed using

skewness=
1
N

∑N
i=1(xi − x)

3

S3 , (4)

where S is the standard deviation of a time series
x1,x2, . . .,xN with mean x. Positive (negative) skewness
meant that the right (left) tail of the time series distribution
was longer than the left (right) one, reflecting the tendency
for positive (negative) time series events (i.e., anomalies) to
be more intense than negative (positive) ones.

To measure the time evolution of skewness, we first parti-
tioned a time series into overlapping segments and then com-
puted the skewness for each individual segment. The segment
length used in the calculations had to be chosen in advance,
meaning that the results of the analysis depended on the cho-
sen segment length. To see the segment length dependence,
a sliding skewness analysis was applied to

X1(t)= Acos
(

2π
P1
t

)
, (5)

where A is amplitude and P1 = 8, 16, 32 is period (Fig. 1a).
In this situation, an appropriate measure of quadratic non-

linearity was constrained to be zero and constant because the
cosine function is linear and stationary. Yet Fig. 2a shows
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that skewness is a function of time and P1 for a fixed seg-
ment length. In some cases, the skewness fluctuates between
negative and positive values, which would suggest a change
in the biphase even though the time series is stationary. It
also appears that the cosine function with P1 = 16 tends to
have greater skewness than the other cosine functions even
though the cosine function is linear regardless of the period.
These results imply that fluctuations in skewness could be er-
roneously deemed changes in time series nonlinearity in the
presence of periodicities, especially for time series with low-
frequency variability. In particular, we found that the impact
of the periodicities is only strong when the chosen segment
length is less than or close to the Fourier period so that com-
puting sliding skewness of time series with low-frequency
variability requires longer segment lengths to produce con-
stant zero skewness for a stationary and linear time series.
Thus, when comparing time series, it could be difficult to
know whether one time series is truly more nonlinear than
another.

It was also found that periodicities will also impact how
one can interpret the skewness of truly nonlinear time series.
For example, we considered the nonlinear time series given
by

X2(t)= cos
(

2π
P1
t +φ1

)
+ γ (t)cos

(
2π
P3
t +φ3

)
, (6)

where 2P3 = P1, φ1 = 0, and φ3 = 2φ1 so that sum rules (1)
and (2) are satisfied. The quantity γ (t)was called a nonlinear
coefficient because, as γ (t) approached unity, positive devi-
ations from the mean became progressively larger than nega-
tive deviations (Schulte, 2016). In this example (Example 2),
γ (t)= 0.8, meaning that the degree of nonlinearity was con-
stant. We considered the situations when P1 = 32, P1 = 16,
and P1 = 8 to understand how skewness is impacted by peri-
odicities of varying frequencies.

As shown in Fig. 1b, the quadratically phase-coupled os-
cillators composing X2(t) give rise to positively skewed
waveforms whose positive excursions are larger than the ad-
jacent negative ones. Although this time series is station-
ary and nonlinear, its skewness is a function of time and P1
(Fig. 2b), implying that skewness is not always a consistent
measure of quadratic nonlinearity. At some time points, the
skewness associated with the case P1 = 32 is close to zero,
giving the false impression that X2(t) is linear during some
time periods.

3.2 Waveform skewness

The deficiencies of traditional skewness motivated the con-
struction of a new waveform skewness index that was more
weakly influenced by periodicities. The construction of the
waveform skewness index was also motivated by Fig. 1b
that shows how positive deviations are larger than nega-
tive ones in the case of zero biphase. The waveform skew-
ness index was constructed as follows. First standardized

anomaly time series were decomposed into positive and neg-
ative events using an event decomposition approach (Schulte
and Lee, 2019), where positive (negative) events are contigu-
ous strings of positive (negative) anomalies. The peak inten-
sity of a positive (negative) event was defined as the max-
imum (minimum) value obtained by the data points associ-
ated with the event. The waveform skewness of a positive
time series event with peak intensity I p was then defined as

sp = I
p
+

(
I a

n + I
s
n
)

2
, (7)

where I a
n is the peak intensity of the antecedent negative

event, and I s
n is the peak intensity of the subsequent nega-

tive event. The waveform skewness index for negative events
was calculated by multiplying a times series by −1, comput-
ing the waveform skewness indices of all fictitious positive
events, and multiplying the resulting waveform skewness in-
dices by −1.

Using the waveform skewness index, a waveform skew-
ness time series was created by assigning to each time point
the waveform skewness of the event to which the time point
belongs. Performing this step for positive and negative events
resulted in a waveform skewness time series whose length
was nearly equal to that of the original time series, where
the length inequality occurred because the waveform skew-
ness index of events at the end of the time series could not
be computed. By construction, the waveform skewness index
measured time series asymmetry with respect to a horizonal
axis at a moment in time.

The waveform time series is a transformed version of the
original time series that need not be correlated with the orig-
inal time series. Indeed, we found that on average a realiza-
tion of a white noise process and its waveform skewness time
series have a 0.4 correlation (not shown), meaning much of
the information of the original time series is lost. For lin-
ear time series and nonlinear time series, waveform skewness
can have no correlation with the original time series because
waveform skewness could be constant even though the cor-
responding time series fluctuates (see below).

Although large negative or positive values of the waveform
index were suggestive of time series nonlinearity, it is impor-
tant to note that the waveform index could also be large for
linear stochastic processes driven by non-Gaussian noise or
even Gaussian white noise. For these reasons, we also eval-
uated the statistical significance of the waveform skewness
(see below).

Unlike traditional skewness, the sliding waveform skew-
ness time series for the linear cosine time series shown in
Fig. 1a is zero and independent of time (Fig. 2a). The wave-
form skewness of zero is consistent with how the time series
is stationary and linear so that the waveform skewness in-
dex is a more appropriate measure of quadratic nonlinearity
in this situation. Similarly, the sliding waveform skewness
time series corresponding to the nonlinear time series shown
in Fig. 1b are nearly constant and always positive (Fig. 2b),
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Figure 2. Sliding skewness and waveform time series associated with (a)X1(t) and (b)X2(t) for different values of P1. The segment lengths
used to create the sliding skewness and waveform skewness time series were equal to 20 data points.

reflecting the constant biphase of 0 and the constant degree
of nonlinearity. The index appears to be slightly dependent
on the period of the cosine function, though the dependence
is not as strong as it is for traditional skewness. Thus, the
waveform skewness index is a more theoretically consistent
measure of quadratic nonlinearity given that these nonlinear-
ities are less impacted by periodicities. Away from the edges
of the time series, the sliding waveform skewness is not im-
pacted by the chosen segment length (not shown), contrasting
with sliding skewness time series whose depiction of nonlin-
earity depends on what segment length is chosen.

Despite these benefits of waveform skewness, the wave-
form skewness index at individual time points is highly in-
fluenced by noise because waveform skewness is only a
function of three peak values. The sensitivity of waveform
skewness to noise was confirmed by generating nonlinear
time series like X2(t) and subjecting them to different levels
of noise (see the Supplement). It was found that signal-to-
noise ratios around 2.5 are needed to distinguish the wave-
form skewness of an underlying signal from background
noise even for highly nonlinear time series (γ (t)= 0.85). For
this reason, it is recommended that one examines the wave-
form skewness at an individual time point in the context of

surrounding waveform skewness. Time periods with stable
waveform skewness are time periods where true nonlinearity
may be present. Alternatively, one could filter time series us-
ing wavelet analysis and compute the waveform skewness of
combined frequency components, as shown below.

3.3 Waveform skewness spectrum

Although the waveform skewness index measures local non-
linearity, it cannot determine the frequency components of
the time series that are contributing to the time-domain wave-
form skewness. This frequency information is important be-
cause the frequency components determine how often posi-
tively or negatively skewed events will occur, as Fig. 1b sug-
gests.

To determine the frequency components that are con-
tributing to waveform skewness, we computed the waveform
skewness of nonlinear modes embedded in time series, re-
sulting in a waveform skewness spectrum. Following Schulte
et al. (2020), a nonlinear mode was defined as the sum

Xnonlinear =XP1 +XP2 +XP3 (8)

if all the periods are unequal and as the sum

Xnonlinear =XP1 +XP3 (9)
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if P1 = P2, where it was assumed that the sum rules in
Eqs. (1) and (2) are satisfied. Each XPi was constructed us-
ing the three-step wavelet method implemented by Schulte
et al. (2020). The first step of the wavelet method involved
the wavelet transformation of X(t) that produced an array of
wavelet coefficients containing time-frequency information
about X(t). In the second step, all wavelet coefficients ex-
cept those at P1, P2, and P3 were set to zero. Computing the
waveform transformation of the resulting wave coefficients
yielded Xnonlinear (Step 3). For X2(t) shown in Fig. 1b, the
nonlinear mode is the sum of the two cosines.

After the computation of all possible nonlinear modes, the
global waveform skewness of X(t) was computed as

S (P1,P2)=

∑
S
P1,P2
p +

∑
S
P1,P2
n

Np+Nn
, (10)

where SP1,P2
p was a waveform skewness index of a positive

Xnonlinear event, SP1,P2
n was a waveform skewness index of a

negative Xnonlinear event, and the sum was computed across
allNp positive events andNn negative events associated with
Xnonlinear. Repeating the calculations for all nonlinear modes
resulted in the global waveform skewness spectrum.

The global waveform skewness represented the average
waveform skewness index of a nonlinear mode. A positive
value meant that a nonlinear mode was positively skewed,
and a negative value indicated that a nonlinear mode was
negatively skewed. In other words, positive (negative) val-
ues implied that the nonlinear mode was contributing to the
positive (negative) waveform skewness of X(t).

It was found that even realizations of a red-noise process
had large global waveform skewness even though they are
linear. Thus, it was necessary to implement statistical sig-
nificance tests. The statistical significance of global wave-
form skewness was assessed using a two-sided t test, where
the null hypothesis was that the global waveform skewness
is equal to zero. Because global waveform skewness is the
average waveform skewness associated with individual time
series events, auto-correlation did not pose a challenge for
statistical significance testing.

The global waveform skewness spectrum is like the auto-
bicoherence spectrum used by Schulte et al. (2020) but with
a few notable differences. Unlike auto-bicoherence, high val-
ues of global waveform skewness will only occur for skewed
waveforms defined with respect to a horizontal axis. On the
other hand, auto-bicoherence can be high (close to 1) even if
there is no skewness because the method detects waveforms
that are asymmetric with respect to vertical and horizonal
axes.

The second difference is that statistical significance of
global waveform skewness can be assessed using a two-
sided t test, whereas Monte Carlo methods are required for
auto-bicoherence (Schulte, 2016), rendering statistical sig-
nificance testing of auto-bicoherence slow and inefficient.
Another notable difference is that time evolution of wave-

form skewness (i.e., local waveform skewness) correspond-
ing to (P1, P2) is easier to compute than the time evolu-
tion of local auto-bicoherence. In local auto-bicoherence cal-
culations, a smoothing operator is needed to create a time
series that measures the degree of quadratic phase depen-
dence (Schulte, 2016). The smoothing operation depends on
wavelet scale, and there are three possible scales to choose
from for a given nonlinear mode. Thus, the degree of nonlin-
earity will change based on the chosen scale. This problem
is avoided in local waveform skewness calculations because
the calculation of waveform skewness is done in the time do-
main. This problem is also avoided with traditional skewness,
but traditional skewness calculations are influenced by peri-
odicities, which is problematic because statistically signifi-
cant nonlinear modes contain phase-locked periodic compo-
nents that allow the biphase to be relatively stable (i.e., high
auto-bicoherence).

To better understand what the global wavelet waveform
spectrum measures, we considered the nonlinear and nonsta-
tionary time series given by

X3(t)=
X2(t)

σ2
+
W(t)

nσw
, (11)

where σ2 is the standard deviation of X2(t), W(t) is a real-
ization of a white noise process with standard deviation σw,
and n is a real number representing the signal-to-noise ratio.
Unlike in Example 2, we let

γ (t)=

(
t

100

)2

, (12)

so that the nonlinearity of X3(t) increased in time. In this
case, n= 0.8, φ1 = 0, P1 = 32, and P3 = 16 (Fig. 3a). The
global waveform skewness spectrum for this time series was
then compared to the corresponding auto-bicoherence spec-
trum, which was obtained using the Morlet wavelet with an-
gular frequency equal to 6. The auto-bicoherence varied from
0 to 1, where a value of 1 indicated the strongest possible de-
gree of phase dependence among oscillators satisfying the
sum rules in Eqs. (1) and (2). The readers are referred to
Schulte (2016) and Schulte et al. (2020) for more details.

As shown in Fig. 4a, the global waveform skewness is sta-
tistically significant around the point (32, 32), which indi-
cates that there is quadratic phase dependence between os-
cillators with periods of P1 = 32 and P3 = 16. These statisti-
cally significant global waveform skewness values are pos-
itive, so that the quadratic phase dependence is contribut-
ing to the positive skewness of X3(t) seen in Fig. 3a. The
auto-bicoherence spectrum shown in Fig. 4b also confirms
that oscillators are contributing to the nonlinearity of X3(t).
There are other points in the auto-bicoherence spectrum that
are associated with statistical significance, but those points
are associated with Type-1 errors. Furthermore, the corre-
sponding points in the waveform spectrum are not associated
with statistical significance, reducing confidence that the cor-
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Figure 3. (a) The time series X3(t) and (b) its waveform skewness
time series associated with the point (32, 32) in the waveform spec-
trum.

Figure 4. (a) The waveform skewness and (b) auto-bicoherence
spectra associated with X3(t). Contours enclose regions of 5 % sta-
tistical significance.

responding nonlinear modes are distinguishable from back-
ground noise.

The local waveform skewness time series corresponding to
X

32,32
nonlinear indicates that the skewness of the nonlinear mode

generally increases with time (Fig. 3b), consistent with how
the nonlinear coefficient increases with time. Thus, the non-

linear mode is contributing to the positive waveform skew-
ness of X3(t) to an increasing degree.

The above experiment shows that phase synchronization
among frequency modes produces positive waveform skew-
ness. In another example shown in the Supplement, we
showed that large waveform skewness can also arise if there
is covariance between amplitude and phase, a finding con-
sistent with how nonlinearity can arise from such covariance
(Pires and Hannachi, 2021).

4 Applications to ENSO and the Indian monsoon

4.1 ENSO indices and their skewness

As shown in Fig. 5, the ENSO time series comprise fluctua-
tions of various magnitudes. For both the Niño 1+2 and Niño
3 indices, the most intense warm events are the 1982/1983
(Quinn et al., 1987) and 1997/1998 (McPhaden, 1999; Slingo
and Annamalai, 2000) El Niño events. Surrounding many of
the Niño 1+2 and Niño 3 warm events are cold events of
lesser magnitude, reflecting the nonlinear character of ENSO
(Timmermann, 2003). Other strong warm events are seen to
have occurred around 1878 and 1889, but a relatively strong
cold event appears after the 1889 event for the Niño 3 index,
suggesting that this event is not as skewed as the 1982/1983,
1997/1998, and 2015/2016 events.

The waveform skewness time series associated with the
ENSO time series better illustrate the temporal changes in
nonlinearity. As shown in Fig. 5c, the two most skewed Niño
1+2 events are the 1982/1983 and 1997/1998 El Niño events.
In contrast, the Niño 3 index time series comprises three
strongly positive skewed events located around 1982/1983,
1997/1998, and 2015/2016 (Fig. 5d). The occurrence of these
skewed events is consistent with how ENSO began to evolve
more nonlinearly after the 1970s (Santoso et al., 2013). De-
spite the high intensity of the 1889 Niño 3 warm event
(Fig. 5b), its waveform skewness is low, implying that there
is no one-to-one relationship between event intensity and
waveform skewness.

The transition of ENSO from a linear regime to a non-
linear one is evident from an inspection of the (standardized)
sliding skewness and sliding waveform skewness time series.
As shown in Figs. 6 and 7, the skewness and waveform skew-
ness of the Niño 3 and Niño 1+2 indices are strongly positive
around the 1980s and 1990s. The 10-year sliding skewness
and waveform skewness time series also depict an abrupt de-
cline in ENSO nonlinearity after the 1990s. For both ENSO
indices, this decline is seen in the 20-year sliding waveform
skewness time series (Figs. 7a and b) but not in the 20-year
sliding skewness time series, suggesting more uncertainty in
the extent of ENSO nonlinearity after the 1990s. However,
Schulte et al. (2020) found the auto-bicoherence of the ENSO
indices to decline after a peak in auto-bicoherence around the
1980s and 1990s so that the increase skewness could reflect
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Figure 5. The standardized (a) Niño 1+2 and (b) Niño 3 indices together with the waveform skewness time series of the (c) Niño 1+2 and
(d) Niño 3 indices.

Figure 6. 10-year sliding skewness and waveform skewness time
series corresponding to the (a) Niño 1+2 and (b) Niño 3 indices.

the inability of skewness to always capture quadratic nonlin-
earities (Sect. 3).

The 1940s and 1950s appear to correspond to relatively
low skewness and waveform skewness. In fact, the 10-year
sliding skewness and waveform skewness time series asso-
ciated with the Niño 1+2 index are negative around 1940
(Fig. 6a). The Niño 3 index is also associated with negative
waveform skewness, but the negative waveform skewness oc-
curs around the 1950s and 1960s, a time when strong warm
Niño 3 events are absent (Fig. 5b). Prior to the 1940s, there

Figure 7. 20-year sliding skewness and waveform skewness time
series corresponding to the (a) Niño 1+2 and (b) Niño 3 indices.

is uncertainty regarding the nonlinearity of ENSO given the
differences in the sliding skewness and waveform skewness
time series. For example, the 10-year sliding skewness time
series suggests that the Niño 1+2 index is nonlinear in the
1880s (Fig. 6a), whereas the 10-year sliding waveform skew-
ness time series suggests that the Niño 1+2 index is linear
during that time.

The waveform and auto-bicoherence spectra indicate that
the nonlinearity of both ENSO indices is mainly the result
of quadratic phase dependence among oscillators, with pe-
riods ranging from 24 to 64 months (Fig. 8). For example,
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Figure 8. The waveform skewness spectra corresponding to the
(a) Niño 1+2 and (b) Niño 3 indices. The corresponding auto-
bicoherence spectra of the (c) Niño 1+2 and (d) Niño 3 indices.
Contours enclose regions of 5 % statistical significance.

a statistically significant peak is located at (60, 60) in both
spectra for the Niño 3 and Niño 1+2 indices, indicating that
phase dependence between modes with periods of 30 and
60 months is contributing to the skewness and waveform
skewness seen in Figs. 6 and 7. The inferred cyclic behav-
ior of this nonlinear mode implies a tendency for positively
skewed ENSO events to occur every 60 months. For the Niño
1+2 index, there is also a statistically significant peak at (62,
44), which means that phase-dependent oscillators with pe-
riods of 26, 44, and 62 months are contributing to Niño 1+2
index skewness seen in Figs. 6a and 7a. It is worth noting
that our findings are consistent with the Pires and Hannachi
(2021) bispectral peaks in the 24- to 64-month period bands,
supporting the idea the waveform skewness is a reliable esti-
mator of nonlinearity.

4.2 ENSO relationship with AIR anomalies

As shown in Fig. 9, the relationship between seasonally av-
eraged Niño 3 time series and AIR anomalies fluctuates on
interdecadal timescales. The 20-year sliding intervals, which
are nearly equal in length to the 21-year sliding intervals
used in previous studies (Yun and Timmermann, 2018), es-
pecially highlight the interdecadal variability. The 10-year
sliding analysis emphasizes the shorter timescale variations.
Choosing other interval lengths produced curves with the
general features of those depicted in Fig. 9.

From 1871 to 1970, the Niño 3–AIR relationship for the
JJ and AS seasons is negative, consistent with the well-
established idea that El Niño events are associated with In-
dian monsoon failures. However, after 1970, the AS Niño 3–
AIR relationship weakens and becomes nearly positive. The
weakening is not seen for the season JJ, which suggests that

Figure 9. Sliding correlation between the Niño 3 index and the AIR
anomalies for the JJ (blue curve) and AS (orange curve) seasons.
The horizonal dashed line represents the 5 % significance bound.

the processes influencing the AS Niño 3–AIR relationship
are different from those influencing the relationship in the JJ
season.

A comparison of Figs. 7b and 9 reveals that the weak-
est AS Niño 3–AIR correlation coincides with the greatest
AS Niño 3 waveform skewness. Moreover, the AS relation-
ship is seen to weaken when the Niño 3 waveform skewness
increases after the 1970s but strengthens when the Niño 3
waveform skewness declines around the 1990s. These results
support the idea that Niño 3 waveform skewness could be re-
lated to the weakening AS Niño 3–AIR relationship. Similar
arguments hold for the Niño 1+2–AIR relationship.

4.3 ENSO waveform skewness and the ENSO–Indian
monsoon relationship

To gain confidence that the sliding time series shown in
Figs. 7 and 9 are related, the sliding Niño 3 and Niño 1+2
waveform skewness time series were correlated with the
ENSO–AIR sliding correlation time series. The sliding sea-
sonal waveform time series were obtained from the raw JJ
and AS waveform time series associated with the Niño 3
and Niño 1+2 indices (Fig. S1 in the Supplement). In gen-
eral, the seasonal waveform skewness time series (Fig. S2)
were found to be like the ones associated with the full ENSO
time series, but the seasonal waveform time series were eas-
ier to compare with the sliding correlation time series com-
puted for the JJ and AS seasons. For comparison, the AS (JJ)
sliding correlation time series were correlated with the sea-
sonal skewness time series computed from the AS (JJ) Niño
3 and Niño 1+2 time series (not shown). The correlation be-
tween the sliding skewness and sliding correlation time se-
ries was calculated using different window lengths. Statis-
tical significance was assessed using Monte Carlo methods
(Appendix A).

As shown in Fig. 10a, there is a positive correlation be-
tween time series for AS Niño 1+2 skewness and waveform
skewness and the AS Niño 3–AIR sliding correlation time
series. The AS Niño 1+2 skewness relationship with the AS
Niño 1+2–AIR sliding correlation time series is statistically
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Figure 10. (a) Correlation between time series for Niño 1+2 skew-
ness and waveform skewness and the sliding correlation time se-
ries calculated between the Niño 1+2 index and AIR anomalies.
(b) Correlation between time series for Niño 3 skewness and wave-
form skewness and the sliding correlation time series calculated be-
tween the Niño 3 index and AIR anomalies. (c) Correlation between
time series for Niño 3 skewness and waveform skewness and the
sliding correlation time series calculated between the Niño 1+2 in-
dex and AIR anomalies.

significant at the 5 % level for most segment lengths, whereas
the corresponding relationship with Niño 1+2 waveform
skewness is only statistically at the 5 % level for segment
lengths ranging from 20 to 25 years. On the other hand, the
Niño 3 waveform skewness time series and the Niño 3–AIR
sliding correlation time series are correlated with 5 % sig-
nificance for most segment lengths (Fig. 10b). As shown in
Fig. 10c, Niño 3 waveform skewness and skewness are more
strongly related to changes in the AS Niño 1+2–AIR rela-
tionship than they are to changes in the AS Niño 3–AIR re-
lationship. The positive correlations seen in Fig. 10 support
the hypothesis that ENSO nonlinearity is related to changes
in the ENSO–AIR relationship (Schulte et al., 2020).

Repeating the analysis for the JJ season revealed weaker
relationships between ENSO nonlinearity and the AIR–
ENSO relationship. Nevertheless, positive correlations were

identified, which agrees with the idea that time periods of
greater ENSO nonlinearity coincide with a weaker ENSO–
AIR relationship, as originally suggested by Schulte et
al. (2020). Furthermore, the stronger association for the AS
season could explain why the Niño 3–AIR relationship weak-
ens after the 1970s while the strength of the JJ relationship is
more stable (Fig. 9).

4.4 ENSO skewness and ENSO flavors

A possible explanation for the relationships between ENSO
nonlinearity and the strength of the ENSO–AIR relationship
was determined by compositing AS ENSO indices and AIR
anomalies based on AS ENSO waveform skewness bins (Ap-
pendix B). For example, we identified the years for which the
AS waveform skewness was greater than the 95th percentile
and computed the mean AS AIR anomaly for those years.

Figure 11a indicates that the intensity of Niño 3 anoma-
lies is related to Niño 3 waveform skewness. For waveform
skewness values less than 0.25, negative Niño 3 indices are
preferred, whereas positive indices are preferred for wave-
form skewness values greater than 0.25. These results high-
light the strong linear relationship between the Niño 3 index
and Niño 3 waveform skewness. A similar analysis using the
Niño 1+2 index also identified a linear relationship between
the Niño 1+2 index and Niño 1+2 waveform skewness, fur-
ther supporting a relationship between ENSO nonlinearity
and ENSO intensity.

Consistent with a linear negative correlation between AIR
and the Niño 3 index, AIR anomalies are preferentially
positive for Niño 3 waveform skewness values less than 0
and negative for waveform skewness values greater than 0
(Fig. 11b). For the JJ season, the relationship appears to
be generally linear, but the relationship between AS Niño 3
waveform skewness and AS AIR anomalies is slightly more
complicated. For waveform skewness values ranging from
−0.5 to 0.75, the composite mean AIR anomalies rapidly
decrease in accordance with the tendency for greater Niño
3 indices to be associated with higher waveform skewness
values. However, above a waveform skewness value of 0.75,
AIR anomalies no longer decrease with increasing waveform
skewness despite the increase in the composite mean Niño 3
indices. This nonlinear relationship also exists between Niño
1+2 waveform skewness and AIR anomalies (not shown) so
that our results imply that the linear relationship between
ENSO and AIR anomalies degrades for high ENSO wave-
form skewness, agreeing with the findings from the correla-
tion analysis presented in Sect. 4.3.

To diagnose why the Niño 3–AIR relationship breaks
down for high Niño 3 waveform skewness, we composited
the magnitude of the TNI index based on Niño 3 waveform
skewness. In this analysis, statistical significance of the com-
posite means was assessed relative to the smallest composite
mean TNI magnitude (Appendix B).
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Figure 11. Composite mean (a) Niño 3 index, (b) AIR anomaly,
and (c) TNI magnitude as a function of Niño 3 waveform skewness.
Dots indicate statistical significance at the 5 % level.

The results shown in Fig. 11c indicate that there is a
propensity for the TNI magnitude to increase with increas-
ing Niño 3 waveform skewness. For both seasons, the mag-
nitude of the TNI appears to be preferentially small for Niño
3 waveform skewness, ranging from −0.75 to 0. The JJ TNI
magnitude tends to be large (> 0.7) for Niño 3 waveform
skewness above 0.25, and the AS TNI magnitude tends to be
greater than 0.7 for waveform skewness values greater than
0.5. Interestingly, we did not find such a relationship between
the magnitude of Niño 3 anomalies and the TNI magnitude
(not shown) in AS, suggesting that Niño 3 waveform skew-
ness provides new information about the changing ENSO–
Indian monsoon relationship not contained in the actual Niño
3 index.

A similar analysis conducted between Niño 1+2 wave-
form skewness and TNI magnitude did not reveal any rela-
tionship between them (not shown). However, the composite
analysis assumes a simultaneous relationship between wave-
form skewness and the TNI magnitude that seems unlikely
to exist given that most skewed Niño 1+2 events coincide
with the strongest canonical El Niño events (Fig. 5a). Thus,

Figure 12. Correlation between waveform skewness and TNI mag-
nitude.

Figure 13. Correlation between skewness and TNI magnitude.

we correlated sliding ENSO waveform skewness and skew-
ness time series with sliding TNI magnitude time series to
determine whether time periods of high ENSO nonlinearity
coincide with time periods of high TNI magnitude.

As shown in Fig. 12, there is a statistically significant re-
lationship between the waveform skewness of the Niño 1+2
and Niño 3 indices and the intensity of the TNI. The results
indicate that time periods of enhanced ENSO nonlinearity
occur with time periods of more intense TNI events. A simi-
lar relationship also exists between ENSO skewness and TNI
magnitude (Fig. 13), though the relationship between Niño 3
skewness and TNI magnitude is not statistically significant at
the 10 % level.

5 Discussion/conclusion

A new waveform skewness index was developed based on
principles from nonlinear time series analysis. The wave-
form skewness allowed the waveform skewness of individ-
ual time series events to be quantified. Using statistical sig-
nificance tests and waveform spectra, waveform skewness
distinguishable from background noise could be identified.
Practical applications of the waveform skewness index to
ENSO time series highlighted its importance to geophysics.
The practical applications led to the identification of numer-
ous positively skewed ENSO events that generally coincide
with the strongest El Niño events on record. The analysis
also revealed that ENSO cycles between periods of high and

https://doi.org/10.5194/npg-29-1-2022 Nonlin. Processes Geophys., 29, 1–15, 2022



12 J. Schulte et al.: ENSO waveform skewness and the Indian monsoon

low waveform skewness, with the 1950s being a time period
when waveform skewness was relatively low. In contrast, af-
ter the 1970s, the waveform skewness of ENSO increased
dramatically to a maximum around the 1990s. The fluctua-
tion of waveform skewness is generally consistent with prior
work identifying interdecadal changes in ENSO skewness
and a prominent regime shift in the 1970s (An, 2009).

We found that Niño 3 waveform skewness is related to
the Niño 3–AIR and Niño 1+2–AIR relationships, especially
during the AS season. The covariation is such that when
the Niño 3 index is strongly and positively skewed, the cor-
relation between the Niño 3 index and AIR anomalies is
weaker than the correlation during low waveform skewness
time periods. Although greater Niño 3 waveform skewness
is positively and linearly correlated with the Niño 3 index,
a composite analysis reveals that the relationship between
Niño 3 waveform skewness and AIR anomalies is nonlin-
ear. This nonlinear relationship is such that composite mean
AIR anomalies do not intensify as Niño 3 waveform skew-
ness increases from a moderately high value to a very high
value, implying a breakdown of the Niño 3–AIR relation-
ship because the Niño 3 increases with increasing waveform
skewness.

A possible explanation for the breakdown of the Niño 3–
AIR relationship during time periods of high Niño 3 wave-
form skewness is the presence of central equatorial Pacific
El Niño events during high waveform skewness time peri-
ods. More specifically, the largest TNI values tend to occur
during time periods of high ENSO skewness and waveform
skewness. We interpret these findings as a failure of the Niño
1+2 and Niño 3 indices to distinguish different ENSO fla-
vors. For example, the Niño 1+ 2 index can be negative dur-
ing canonical La Niña events and positive TNI events. As a
result, two similar Niño 1+2 indices can be associated with
a monsoon surplus promoting La Niña event and a drought-
producing positive TNI phase or central Pacific El Niño event
(Kumar et al., 2006). As a result of the competing influences
of ENSO flavors, the relationship between ENSO and AIR
anomalies weakens. According to our results, the mechanism
is stronger during time periods of high ENSO nonlinearity
because greater ENSO nonlinearity is associated with more
intense TNI events that more strongly influence the relation-
ship between standard ENSO indices and AIR.

Our findings support the hypothesis proposed by Schulte et
al. (2020) that states that the ENSO–AIR relationship weak-
ens during time periods of high ENSO nonlinearity because
the skewness of AIR anomalies is weakly correlated with
ENSO skewness. However, our results indicate that the asso-
ciation between ENSO waveform skewness and the ENSO–
AIR relationship mainly exists during the AS season. Nev-
ertheless, our findings together with those from Schulte et
al. (2020) support the idea that the occurrences of ENSO fla-
vors are related to the nonlinearity of ENSO.

While some studies suggest that changes in the ENSO–
Indian monsoon relationship are related to statistical under-

sampling and stochastic processes (Gershunov et al., 2001;
Cash et al., 2017; Yun and Timmermann, 2018), we found
robust evidence that changes in the Niño 3 skewness–rainfall
anomaly and Niño 3 peak intensity–rainfall anomaly rela-
tionships are related to Niño 3 waveform skewness. Thus,
changes in the ENSO–Indian monsoon teleconnection may
be predictable to the extent that ENSO flavors can be fore-
cast. Our results agree with previous work showing a link
between ENSO flavors and the Indian monsoon (Kumar et
al., 1999; Fan et al., 2017) and suggest that ENSO-based
forecast should not only include ENSO intensity informa-
tion, but also information about ENSO flavor. However, our
results indicate that the ENSO flavor information may only
be useful for Indian monsoon prediction during August and
September.

Although we found evidence that the AIR–ENSO relation-
ship changes are related to ENSO nonlinearity, there are two
limitations of the present study that are worth noting. The
first limitation is that the spatial variability of ENSO tele-
connections was not considered. As ENSO teleconnections
vary spatially (Roy et al., 2017), future work could include
understanding how ENSO nonlinearity impacts the relation-
ship between Indian rainfall and ENSO across subregions of
the Indian subcontinent. Such an analysis could help improve
the current understanding of how ENSO teleconnections vary
spatially. The second drawback of the current study is that
linear correlation analyses were used to relate ENSO to AIR
despite how other methods for quantifying time series rela-
tionships exist. For example, transfer entropy and mutual in-
formation (Song et al., 2012) may be a more suitable method
for quantifying ENSO–AIR relationships. Future work could
include applying these methods to ideal and geophysical time
series to assess how nonstationarities in skewness can impact
relationships calculated using those methods.

Although the study focused on ENSO waveform skew-
ness, the generality of the waveform skewness index means
that it can be applied to arbitrary time series. For example, the
index could be readily applied to other nonlinear geophysi-
cal time series such as the QBO and solar cycle, possibly im-
proving the current understanding of the physics driving the
nonlinearity of those time series. Furthermore, because the
waveform skewness index is derived using an event decom-
position approach, lag composites could be made to iden-
tify physical processes associated with the development and
decay of nonlinear events. Another application of the wave-
form skewness index could be in model evaluation, because
assessing the ability of a numerical model to capture time
series waveform skewness could provide insight into model
deficiencies. The waveform skewness index provides new fu-
ture directions for research focused on understanding nonlin-
ear climate phenomena, numerical model performance, and
nonlinear time series in general.
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Appendix A

The statistical significance of the correlation coefficients was
estimated using Monte Carlo methods as follows. Firstly, we
generated 1000 pairs of red-noise process realizations such
that the first member of the pair had a lag-1 auto-correlation
coefficient equal to the full (non-averaged) input ENSO time
series (e.g., Niño 3 index), and the second member had a
lag-1 auto-correlation coefficient equal to that of the full in-
put AIR time series. Thus, the first (second) members of all
pairs were considered fictitious ENSO (AIR) time series. The
lengths of the realizations were also equal to that of the full
input AIR and ENSO time series. In the second step, the
waveform skewness time series associated with the fictitious
ENSO time series were computed and converted into sea-
sonally averaged fictitious ENSO waveform skewness time
series. These fictitious seasonally averaged waveform skew-
ness time series were constructed by identifying the first 12
data points of the full fictitious ENSO time series as the data
for the first year, the next 12 points as the data for the sec-
ond year, and so on. Naturally, the sixth, seventh, eighth, and
ninth data points of the fictitious years were the data for June,
July, August, and September, respectively. Fictitious season-
ally averaged ENSO and AIR time series were created by
applying the same averaging approach to all fictitious ENSO
and AIR time series.

After creating all the fictitious time series, the sliding cor-
relation between the fictitious seasonally averaged ENSO
and AIR time series was then computed for each pair of re-
alizations. Finally, the fictitious seasonally averaged sliding
ENSO waveform skewness and sliding correlation time se-
ries were correlated for each pair, resulting in a null distribu-
tion of correlation coefficients. The absolute value of the cor-
relation coefficients was computed and the 90th percentile of
the resulting distribution was calculated to estimate the crit-
ical level of the test corresponding to the 10 % significance
level. The Monte Carlo method was implemented for each
segment length separately because the critical level of the
test was found to depend on the chosen segment length.

Appendix B

Composite analyses were used to determine the relationship
between Niño 3 waveform skewness and anomalies for AIR
and SST. The composite analysis was conducted by first cre-
ating Niño 3 waveform skewness bins by calculating per-
centiles of a distribution comprising the waveform skewness
values associated with the seasonally averaged (JJ or AS)
Niño 3 waveform skewness. The lower and upper bounds of
the first bins were the minimum waveform skewness value
and the 20th percentile of the distribution, respectively. Sim-
ilarly, the second bin had lower and upper bounds equal to
the 5th and 25th percentiles of the waveform skewness value
distribution. More generally, for n > 1, the nth bin had lower
and upper bounds equal to the (5n−5)th and (5n+15)th per-
centiles of the waveform skewness value distribution. After
creating the bins, all seasonally averaged Niño 3 and AIR
anomalies associated with Niño 3 waveform skewness val-
ues falling into a bin were averaged, allowing us to deter-
mine how AIR and Niño 3 index anomalies are related to
Niño 3 waveform skewness. The statistical significance of
the composite means was evaluated using a two-sample t test
applied at the 10 % significance level. The null hypothesis in
this case was that mean was equal to zero. The composite
analysis was performed using AIR, Niño 3 anomalies, and
Niño 3 waveform skewness associated with the JJ and AS
seasons separately so that a composite mean AIR anomaly
for the AS (JJ) season represented the average AS (JJ) AIR
anomaly expected for a specific AS (JJ) Niño 3 waveform
skewness range.

Another composite analysis was also conducted in which
the magnitude of the JJ or AS TNI was composited based on
its associated JJ or AS Niño 3 waveform skewness. In this
case, the statistical significance was assessed using the null
hypothesis that the composite mean is equal to the smallest
computed composite mean for the season in question. Thus,
we determined whether the composite means for bins with
larger TNI magnitudes are significantly different from the bin
with the smallest TNI magnitude.
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