Articles | Volume 26, issue 3
https://doi.org/10.5194/npg-26-291-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.Mahalanobis distance-based recognition of changes in the dynamics of a seismic process
Related authors
Related subject area
Subject: Time series, machine learning, networks, stochastic processes, extreme events | Topic: Solid earth, continental surface, biogeochemistry
Extraction of periodic signals in Global Navigation Satellite System (GNSS) vertical coordinate time series using the adaptive ensemble empirical modal decomposition method
Multifractal structure and Gutenberg-Richter parameter associated with volcanic emissions of high energy in Colima, México (years 2013–2015)
Stability and uncertainty assessment of geoelectrical resistivity model parameters: a new hybrid metaheuristic algorithm and posterior probability density function approach
Application of Lévy processes in modelling (geodetic) time series with mixed spectra
Seismic section image detail enhancement method based on bilateral texture filtering and adaptive enhancement of texture details
Nonlin. Processes Geophys., 31, 99–113,
2024Nonlin. Processes Geophys. Discuss.,
2024Revised manuscript accepted for NPG
Nonlin. Processes Geophys., 31, 7–24,
2024Nonlin. Processes Geophys., 28, 121–134,
2021Nonlin. Processes Geophys., 27, 253–260,
2020Cited articles
Abe, S. and Suzuki, N.: Scale-free network of earthquakes, Europhys. Lett.,
65, 581–586, https://doi.org/10.1209/epl/i2003-10108-1, 2004.
Baiesi, M. and Paczuski, M.: Scale-free networks of earthquakes and
aftershocks, Phys. Rev. E, 69, 066106, https://doi.org/10.1103/PhysRevE.69.066106, 2004.
Bak, P., Christensen, K., Danon, L., and Scanlon, T.: Unified scaling law
for earthquakes, Phys. Rev. Lett., 88, 178501, https://doi.org/10.1103/PhysRevLett.88.178501, 2002.
Białecki, M. and Czechowski, Z.: On a simple stochastic cellular automaton
with avalanches: Simulation and analytical results, in: Synchronization and
triggering: From fracture to earthquake processes, chap. 5, edited by: De
Rubeis, V., Czechowski, Z., and Teisseyre, R., Springer, 63–75, 2010.
Bowman, D. D. and Sammis, C. G.: Intermittent criticality and the
Gutenberg-Richter distribution, Pure Appl. Geophys., 161, 1945–1956,
https://doi.org/10.1007/s00024-004-2541-z, 2004.