Articles | Volume 32, issue 2
https://doi.org/10.5194/npg-32-107-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/npg-32-107-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Negative differential resistance, instability, and critical transition in lightning leader
College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou, 730070, China
Chao Xin
College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou, 730070, China
Liwen Xu
College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou, 730070, China
Ping Yuan
College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou, 730070, China
Yijun Zhang
Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences, Fudan University, Shanghai, 200438, China
Mingli Chen
Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
Related authors
No articles found.
Chuanhong Zhao, Yijun Zhang, Huiyan Zhai, Zhe Li, Dong Zheng, Xueyan Peng, Wen Yao, Sai Du, and Yuanmou Du
Atmos. Chem. Phys., 25, 13453–13473, https://doi.org/10.5194/acp-25-13453-2025, https://doi.org/10.5194/acp-25-13453-2025, 2025
Short summary
Short summary
Lightning activity is highly related to the signatures of polarimetric radar on the basis of cloud electrification physics. However, few studies have focused on bridging the polarimetric structure and lightning activity during the cloud life cycle. Here, we evaluated the sequence and interactions of polarimetric parameters for indicating lightning activity from the perspective of the cloud life cycle, and the cloud microphysics of the polarimetric structure were explored.
Chuanhong Zhao, Yijun Zhang, Dong Zheng, Haoran Li, Sai Du, Xueyan Peng, Xiantong Liu, Pengguo Zhao, Jiafeng Zheng, and Juan Shi
Atmos. Chem. Phys., 24, 11637–11651, https://doi.org/10.5194/acp-24-11637-2024, https://doi.org/10.5194/acp-24-11637-2024, 2024
Short summary
Short summary
Understanding lightning activity is important for meteorology and atmospheric chemistry. However, the occurrence of lightning activity in clouds is uncertain. In this study, we quantified the difference between isolated thunderstorms and non-thunderstorms. We showed that lightning activity was more likely to occur with more graupel volume and/or riming. A deeper ZDR column was associated with lightning occurrence. This information can aid in a deeper understanding of lighting physics.
Cited articles
Agop, M., Nica, P., Niculescu, O., and Dimitriu, D.-G.: Experimental and Theoretical Investigations of the Negative Differential Resistance in a Discharge, Plasma, 81, 064502, https://doi.org/10.1143/JPSJ.81.064502, 2012.
Andreev, A. G., Bazelyan, E. M., Bulatov, M. U., Kuzhekin, I. P., Makalsky, L. M., Sukharevskij, D. I., and Syssoev, V. S.: Experimental study of the positive leader velocity as a function of the current in the initial and final-jump phases of a spark discharge, Plasma Phys. Rep., 34, 609–615, https://doi.org/10.1134/S1063780X0807009X, 2008.
Bazelyan, E., Sysoev, V., and Andreev, M.: Numerical simulations of spark channels propagating along the ground surface: Comparison with high-current experiment, Plasma Phys. Rep., 35, 702–707, https://doi.org/10.1134/S1063780X0908011X, 2009.
Bazelyan, E. M. and Raizer, Y. P.: Lightning Physics and Lightning Protection. IOP Publishing, Bristol, 27–221, https://doi.org/10.1201/9780367801533, 2000.
Bazelyan, E. M., Aleksandrov, N. L., Raizer, Y. P., and Konchakov, A. M.: The effect of air density on atmospheric electric fields required for lightning initiation from a long airborne object, Atmos. Res., 86, 126–138, https://doi.org/10.1016/j.atmosres.2007.03.007, 2007.
Bazelyan, E. M., Raizer, Y. P., and Aleksandrov, N. L.: Corona initiated from grounded objects under thunderstorm conditions and its influence on lightning attachment, Plasma Sour. Sci. Technol., 17, 024015, https://doi.org/10.1088/0963-0252/17/2/024015, 2008.
Becerra, M. and Cooray, V.: A simplified physical model to determine the lightning upward connecting leader inception, IEEE T. Power Deliv., 21, 897–908, https://doi.org/10.1109/TPWRD.2005.858774, 2006.
Bosch, R. A. and Merlino, R. L.: Sudden Jumps, Hysteresis, and Negative Resistance in an Argon Plasma Discharge. I. Discharges with No Magnetic Field, Beitr. Plasmaphys., 26, 1–12, https://doi.org/10.1002/ctpp.19860260102, 1986.
Bulatov, A. A., Iudin, D. I., and Sysoev, A. A.: Self-Organizing Transport Model of a Spark Discharge in a Thunderstorm Cloud, Radiophys. Quant. El., 63, 124–141, https://doi.org/10.1007/s11141-020-10041-z, 2020.
da Silva, C. L., Sonnenfeld, R. G., Edens, H. E., Krehbiel, P. R., Quick, M. G., and Koshak, W. J.: The plasma nature of lightning channels and the resulting nonlinear resistance, J. Geophys. Res.-Atmos., 124, 9442–9463, https://doi.org/10.1029/2019JD030693, 2019.
da Silva, C. L., Winn, W. P., Taylor, M. C., Aulich, G. D., Hunyady, S. J., Eack, K. B., Edens, H. E., Sonnenfeld, R. G., Krehbiel, P. R., Eastvedt, E. M., and Trueblood, J. J.: Polarity asymmetries in rocket-triggered lightning, Geophys. Res. Lett., 50, e2023GL105041, https://doi.org/10.1029/2023GL105041, 2023.
Douglas-Hamilton, D. H. and Mani, S. A.: Attachment instability in an externally ionized discharge, J. Appl. Phys., 45, 4406, https://doi.org/10.1063/1.1663065, 1974.
Gou, X., Chen, M., Du, Y., and Dong, W.: Fractal dynamics analysis of the VHF radiation pulses during initial breakdown process of lightning, Geophys. Res. Lett., 37, L11808, https://doi.org/10.1029/2010GL043178, 2010.
Gou, X., Chen, M., and Zhang, G.: Time correlations of lightning flash sequences in thunderstorms revealed by fractal analysis, J. Geophys. Res.-Atmos., 123, 1351–1362, https://doi.org/10.1002/2017JD027206, 2018a.
Gou, X. Q., Zhang, Y. J., Li, Y. J., and Chen, M. L.: Theory and observation of bidirectional leader of lightning: Polarity asymmetry, instability, and intermittency, Acta Phys. Sin., 67, 205201, https://doi.org/10.7498/aps.67.20181079, 2018b.
Gou, X., Xin, C., Xu, L., Yuan, P., Zhang, Y., and Chen, M.: Negative Differential Resistance, Instability, and Critical Transition in Lightning Leader (MATLAB Code, Data, and Figures), Zenodo [data set], https://doi.org/10.5281/zenodo.14917985, 2025.
Hare, B. M., Scholten, O., Dwyer, J., Trinh, T. N. G., Buitink, S., ter Veen, S., Bonardi, A., Corstanje, A., Falcke, H., Hörandel, J. R., Huege, T., Mitra, P., Mulrey, K., Nelles, A., Rachen, J. P., Rossetto, L., Schellart, 1 P., Winchen, T., Anderson, J., Avruch, I. M., Bentum, M. J., Blaauw, R., Broderick, J. W., Brouw, W. N., Brüggen, M., Butcher, H. R., Ciardi, B., Fallows, R. A., de eus, E., Duscha, S., Eislöffel, J., Garrett, M. A., Grießmeier, J. M., Gunst, A. W., van Haarlem, M. P., Hessels, J. W. T., Hoeft, M., van der Horst, A. J., Iacobelli, M., Koopmans, L. V. E., Krankowski, A., Maat, P., Norden, M. J., Paas, H., Pandey-Pommier, M., Pandey, V. N., Pekal, R., Pizzo, R., Reich, W., Rothkaehl, H., Röttgering, H. J. A., Rowlinson, A., Schwarz, D. J., Shulevski, A., Sluman, J., Smirnov, O., Soida, M., Tagger, M., Toribio, M. C., van Ardenne, A., Wijers, R. A. M. J., van Weeren, R. J., Wucknitz, O., Zarka, P., and Zucca, P.: Needle-like structures discovered on positively charged lightning branches, Nature, 568, 360–363, https://doi.org/10.1038/s41586-019-1086-6, 2019.
Hare, B. M., Scholten, O., Dwyer, J., Strepka, C., Buitink, S., Corstanje, A., Falcke, H., Hörandel, J. R., Huege, T., Krampah, G. K., Mitra, P., Mulrey, K., Nelles, A., Pandya, H., Rachen, J. P., Thoudam, S., Trinh, T. N. G., ter Veen, S., and Winchen, T.: Needle propagation and twinkling characteristics, J. Geophys. Res.-Atmos., 126, e2020JD034252, https://doi.org/10.1029/2020JD034252, 2021.
Heckman, S.: Why does a lightning flash have multiple strokes?, PhD thesis, Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, https://dspace.mit.edu/bitstream/handle/1721.1/17300/26622951-MIT.pdf?sequence=2 (last access: 25 April 2025), 1992.
Huang, S., Chen, W., Pei, Z., Fu, Z., Wang, L., He, T., Li, Z., Gu, J., Bian, K., Xiang, N., and Wang, Y.: The discharge preceding the intense reillumination in positive leader steps under the slow varying ambient electric field, Geophys. Res. Lett., 47, e2019GL086183, https://doi.org/10.1029/2019GL086183, 2020.
Hutzler, B. and Hutzler, D.: A model of breakdown in large air gaps, Bulletin de la DER d'EDF, serie B, 4, 11–39, 1982.
Iudin, D.: Lightning as an Asymmetric Branching Network, Atmos. Res., 256, 105560, https://doi.org/10.1016/j.atmosres.2021.105560, 2021.
Iudin, D. I. and Syssoev, A. A.: Hot Plasma Channel Network Formation in Thunderclouds, J. Atmos. Solar-Terr. Phy., 240, 105944, https://doi.org/10.1016/j.jastp.2022.105944, 2022.
Iudin, D. I., Sysoev, A. A., and Rakov, V.: Problems of Lightning Initiation and Development, Radiophys. Quant. El., 64, 780–803, https://doi.org/10.1007/s11141-022-10178-z, 2022.
Jensen, D., Shao, X. M., and Sonnenfeld, R.: Insights into Lightning K-Leader Initiation and Development from Three Dimensional Broadband Interferometric Observations, ESS Open Archive, https://doi.org/10.22541/essoar.168275995.55801872/v2, 2023.
Kekez, M. and Savic, P.: Correlation leader velocity for current varying from 90 mA to 2 kA, in: 4-th Inter. Symp. On High Voltage Engineering, 5–9 September 1993, Athens, N 45.04, 1983.
King, L. A., The voltage gradient of the free burning arc in air or nitrogen, Ionization Phenomena in Gases, in: Volume I; Proceedings of the Fifth International Conference held 28 August–1 September 1961, Hedited by: Maecker, H., North-Holland Publishing o., Amsterdam, p. 871, https://ui.adsabs.harvard.edu/abs/1962ipg1.conf..871K/abstract (last access: 25 April 2025), 1962.
Kostinskiy, A. Y., Syssoev, V. S., Bogatov, N. A., Mareev, E. A., Andreev, M. G., Bulatov, M. U., Sukharevsky, D. I., and Rakov, V. A.: Abrupt elongation (stepping) of negative and positive leaders culminating in an intense corona streamer burst: Observations in long sparks and implications for lightning, J. Geophys. Res.-Atmos., 123, 5360–5375, https://doi.org/10.1029/2017JD027997, 2018.
Krehbiel, P. R., Brook, M., and McCrory, R. A.: An analysis of the charge structure of lightning discharges to ground, J. Geophys. Res., 84, 2432–2456, https://doi.org/10.1029/JC084iC05p02432, 1979.
Lapierre, J. L., Sonnenfeld, R. G., Stock, M., Krehbiel, P. R., Edens, H. E., and Jensen, D.: Expanding on the relationship between continuing current and in-cloud leader growth, J. Geophys. Res.-Atmos., 122, 4150–4164, https://doi.org/10.1002/2016JD026189, 2017.
Lalande, P., Bondiou-Clergerie, A., Bacchiega, G., and Gallimberti, I.: Observations and modeling of lightning leaders, Comptes Rendus Physique, 3, 1375–1392, https://doi.org/10.1016/S1631-0705(02)01413-5, 2002.
Larsson, A., Delannoy, A., and Lalande, P.: Voltage drop along a lightning channel during strikes to aircraft, Atmos. Res., 76, 377–385, https://doi.org/10.1016/j.atmosres.2004.11.032, 2005.
Lozneanu, E., Popescu, V., and Sanduloviciu, M.: Negative differential resistance related to self-organization phenomena in a dc gas discharge, J. Appl. Phys., 92, 1195–1199, https://doi.org/10.1063/1.1487456, 2002.
Luque, A., Stenbaek-Nielsen, H. C., McHarg, M. G., and Haaland, R. K.: Sprite beads and glows arising from the attachment instability in streamer channels, J. Geophys. Res.-Space, 121, 2431–2449, https://doi.org/10.1002/2015JA022234, 2016.
Malagón-Romero, A. F.: Numerical investigation on the advance of leader channels in lightning and long sparks, Universidad de Granada, http://hdl.handle.net/10481/67863 (last access: 25 April 2025), 2021.
Malagón-Romero, A. and Luque, A.: Spontaneous emergence of space stems ahead of negative leaders in lightning and long sparks, Geophys. Res. Lett., 46, 4029–4038, https://doi.org/10.1029/2019GL082063, 2019.
Manea, L., Nejneru, C., Mătăsaru, D., Axinte, C., and Agop, M.: Dynamics Behaviors of a Laser Produced Plasma: Theoretical Approach, J. Mod. Phys., 4, 1013–1021, https://doi.org/10.4236/jmp.2013.47136, 2013.
Mazur, V.: Principles of Lightning Physics, IOP Publishing, Bristol, 1–183, https://doi.org/10.1088/978-0-7503-1152-6, 2016a.
Mazur, V.: The physical concept of recoil leader formation, J. Electrostat., 82, 79–87, https://doi.org/10.1016/j.elstat.2016.05.003, 2016b.
Mazur, V. and Ruhnke, L. H.: The physical processes of current cutoff in lightning leaders, J. Geophys. Res.-Atmos., 119, 2796–2810, https://doi.org/10.1002/2013JD020494, 2014.
Popov, N. A.: Study of the formation and propagation of a leader channel in air, Plasma Phys. Rep., 35, 785–793, https://doi.org/10.1134/S1063780X09090074, 2009.
Pu, Y. and Cummer, S. A.: Needles and lightning leader dynamics imaged with 100–200 MHz broadband VHF interferometry, Geophys. Res. Lett., 46, 13556–13563, https://doi.org/10.1029/2019GL085635, 2019.
Raizer, Y. P. and Mokrov, M. S.: Physical mechanisms of self-organization and formation of current patterns in gas discharges of the Townsend and glow types, Phys. Plasmas, 20, 101604, https://doi.org/10.1063/1.4823460, 2013.
Scheffer, M.: Critical Transitions in Nature and Society, in: Vol. 16, Princeton University Press, https://doi.org/10.2307/j.ctv173f1g1, 2009.
Scheffer, M. and Carpenter, S. R.: Catastrophic regime shifts in ecosystems: linking theory to observation, Trends Ecol. Evol., 18, 648–656, https://doi.org/10.1016/j.tree.2003.09.002, 2003.
Scholten, O., Hare, B., Dwyer, J., Liu, N., Sterpka, C., Mulrey, K., and TerVeen, S.: Searching for intra-cloud positive leaders in VHF, Research Square, https://doi.org/10.21203/rs.3.rs-2631381/v1, 2023.
Sigmond, R. S.: The residual streamer channel: Return strokes and secondary streamers, J. Appl. Phys., 56, 1355–1370, https://doi.org/10.1063/1.334126, 1984.
Sterpka, C., Dwyer, J., Liu, N., Hare, B. M., Scholten, O., Buitink, S., and Nelles, A.: The Spontaneous Nature of Lightning Initiation Revealed, Geophys. Res. Lett., 48, e2021GL095511, https://doi.org/10.1029/2021GL095511, 2021.
Stock, M., Tilles, J., Taylor, G. B., Dowell, J., and Liu, N.: Lightning Interferometry with the Long Wavelength Array, Remote Sens., 15, 3657, https://doi.org/10.3390/rs15143657, 2023.
Stock, M. G., Akita, M., Krehbiel, P. R., Rison, W., Edens, H. E., Kawasaki, Z., and Stanley, M. A.: Continuous broadband digital interferometry of lightning using a generalized across-correlation algorithm, J. Geophys. Res.-Atmos., 119, 3134–3165, https://doi.org/10.1002/2013JD020217, 2014.
Syssoev, A. A. and Iudin, D. I.: Numerical Simulation of Electric Field Distribution inside Streamer Zones of Positive and Negative Lightning Leaders, Atmos. Res., 295, 107021, https://doi.org/10.1016/j.atmosres.2023.107021, 2023.
Syssoev, A. A., Iudin, D. I., Iudin, F. D., Klimashov, V. Y., and Emelyanov, A. A.: Relay charge transport in thunderclouds and its role in lightning initiation, Sci. Rep., 12, 1–21, https://doi.org/10.1038/s41598-022-10722-x, 2022.
Syssoev, V. S. and Shcherbakov, Y. V.: Electrical Strength of Ultra-Long Air Gaps, SAE Technical Paper 2001-01-2898, SAE Mobilus, https://doi.org/10.4271/2001-01-2898, 2001.
Tanaka, S.-I., Sunabe, K.-Y., and Goda, Y.: Internal voltage gradient and behavior of column on long-gap DC free arc, Elect. Eng. Jpn., 144, 8–16, https://doi.org/10.1002/eej.10300, 2003.
Tran, M. D. and Rakov, V. A.: Initiation and propagation of cloud-to-ground lightning observed with a high-speed video camera, Sci. Rep., 6, 39521, https://doi.org/10.1038/srep39521, 2016.
Van der Velde, O. A. and Montanya, J.: Asymmetries in bidirectional leader development of lightning flashes, J. Geophys. Res.-Atmos., 118, 13504–13519, https://doi.org/10.1002/2013JD020257, 2013.
Wang, X., Wang, D., He, J., and Takagi, N.: A comparative study on the discontinuous luminosities of two upward lightning leaders with opposite polarities, J. Geophys. Res.-Atmos., 125, e2020JD032533, https://doi.org/10.1029/2020JD032533, 2020.
Williams, E. and Heckman, S.: Polarity asymmetry in lightning leaders: The evolution of ideas on lightning behavior from strikes to aircraft, Aerospace Lab. J., 5, 1–8, 2012.
Williams, E. and Montanya, J.: A closer look at lightning reveals needle-like structures, Nature, 568, 319–320, https://doi.org/10.1038/d41586-019-01178-7, 2019.
Williams, E. R.: Problems in Lightning Physics – the Role of Polarity Asymmetry, Plasma Sour. Sci. Technol., 15, S91–S108, https://doi.org/10.1088/0963-0252/15/2/S12, 2006.
Short summary
We investigate the stability characteristics of lightning discharge channels through their differential resistance properties. Our analysis reveals that lightning channels exhibit bistable behavior, transitioning between low- and high-conductivity states depending on channel length and electric-field conditions. This work provides new insights into lightning channel dynamics and could contribute to improved lightning protection strategies.
We investigate the stability characteristics of lightning discharge channels through their...