Articles | Volume 31, issue 1
https://doi.org/10.5194/npg-31-45-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.Sensitivity of the polar boundary layer to transient phenomena
Related authors
Related subject area
Subject: Bifurcation, dynamical systems, chaos, phase transition, nonlinear waves, pattern formation | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere | Techniques: Theory
Energy transfer from internal solitary waves to turbulence via high-frequency internal waves: seismic observations in the northern South China Sea
Solving a North-type energy balance model using boundary integral methods
Review article: Interdisciplinary perspectives on climate sciences – highlighting past and current scientific achievements
Variational techniques for a one-dimensional energy balance model
Nonlin. Processes Geophys., 31, 477–495,
2024Nonlin. Processes Geophys. Discuss.,
2024Revised manuscript accepted for NPG
Nonlin. Processes Geophys., 31, 185–193,
2024Nonlin. Processes Geophys., 31, 137–150,
2024Cited articles
Abraham, C. and Monahan, A. H.: Climatological Features of the Weakly and Very Stably Stratified Nocturnal Boundary Layers. Part II: Regime Occupation and Transition Statistics and the Influence of External Drivers, J. Atmos. Sci., 76, 3485–3504, https://doi.org/10.1175/JAS-D-19-0078.1, 2019. a
Abraham, C., Holdsworth, A. M., and Monahan, A. H.: A prototype stochastic parameterization of regime behaviour in the stably stratified atmospheric boundary layer, Nonlin. Processes Geophys., 26, 401–427, https://doi.org/10.5194/npg-26-401-2019, 2019. a
Aburn, M. J.: Critical fluctuations and coupling of stochastic neural mass models, PhD thesis, School of Mathematics and Physics, The University of Queensland, https://doi.org/10.14264/uql.2017.148, 2017. a
Acevedo, O. C., Maroneze, R., Costa, F. D., Puhales, F. S., Degrazia, G. A., Nogueira Martins, L. G., Soares de Oliveira, P. E., and Mortarini, L.: The nocturnal boundary layer transition from weakly to very stable. Part I: Observations, Q. J. Roy. Meteor. Soc., 145, 3577–3592, https://doi.org/10.1002/qj.3642, 2019. a
Ansorge, C. and Mellado, J. P.: Global Intermittency and Collapsing Turbulence in the Stratified Planetary Boundary Layer, Bound.-Lay. Meteorol., 153, 89–116, https://doi.org/10.1007/s10546-014-9941-3, 2014. a