Articles | Volume 26, issue 4
https://doi.org/10.5194/npg-26-457-2019
https://doi.org/10.5194/npg-26-457-2019
Research article
 | 
16 Dec 2019
Research article |  | 16 Dec 2019

On fluctuating momentum exchange in idealised models of air–sea interaction

Achim Wirth

Related authors

On the hydrostatic approximation in rotating stratified flow
Achim Wirth
Nonlin. Processes Geophys., 32, 261–280, https://doi.org/10.5194/npg-32-261-2025,https://doi.org/10.5194/npg-32-261-2025, 2025
Short summary
Comparing an idealized deterministic-stochastic model (SUP model, version 1) of the tide-and-wind driven sea surface currents in the Gulf of Trieste to HF Radar observations
Sofia Flora, Laura Ursella, and Achim Wirth
EGUsphere, https://doi.org/10.5194/egusphere-2024-3391,https://doi.org/10.5194/egusphere-2024-3391, 2025
Short summary
Tipping of the double-diffusive regime in the southern Adriatic Pit in 2017 in connection with record high-salinity values
Felipe L. L. Amorim, Julien Le Meur, Achim Wirth, and Vanessa Cardin
Ocean Sci., 20, 463–474, https://doi.org/10.5194/os-20-463-2024,https://doi.org/10.5194/os-20-463-2024, 2024
Short summary
Superstatistical analysis of sea surface currents in the Gulf of Trieste, measured by high-frequency radar, and its relation to wind regimes using the maximum-entropy principle
Sofia Flora, Laura Ursella, and Achim Wirth
Nonlin. Processes Geophys., 30, 515–525, https://doi.org/10.5194/npg-30-515-2023,https://doi.org/10.5194/npg-30-515-2023, 2023
Short summary
Empirical evidence of a fluctuation theorem for the wind mechanical power input into the ocean
Achim Wirth and Bertrand Chapron
Nonlin. Processes Geophys., 28, 371–378, https://doi.org/10.5194/npg-28-371-2021,https://doi.org/10.5194/npg-28-371-2021, 2021
Short summary

Related subject area

Subject: Time series, machine learning, networks, stochastic processes, extreme events | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere | Techniques: Theory
Superstatistical analysis of sea surface currents in the Gulf of Trieste, measured by high-frequency radar, and its relation to wind regimes using the maximum-entropy principle
Sofia Flora, Laura Ursella, and Achim Wirth
Nonlin. Processes Geophys., 30, 515–525, https://doi.org/10.5194/npg-30-515-2023,https://doi.org/10.5194/npg-30-515-2023, 2023
Short summary
Physically constrained covariance inflation from location uncertainty
Yicun Zhen, Valentin Resseguier, and Bertrand Chapron
Nonlin. Processes Geophys., 30, 237–251, https://doi.org/10.5194/npg-30-237-2023,https://doi.org/10.5194/npg-30-237-2023, 2023
Short summary
Rain process models and convergence to point processes
Scott Hottovy and Samuel N. Stechmann
Nonlin. Processes Geophys., 30, 85–100, https://doi.org/10.5194/npg-30-85-2023,https://doi.org/10.5194/npg-30-85-2023, 2023
Short summary
A waveform skewness index for measuring time series nonlinearity and its applications to the ENSO–Indian monsoon relationship
Justin Schulte, Frederick Policelli, and Benjamin Zaitchik
Nonlin. Processes Geophys., 29, 1–15, https://doi.org/10.5194/npg-29-1-2022,https://doi.org/10.5194/npg-29-1-2022, 2022
Short summary
Empirical evidence of a fluctuation theorem for the wind mechanical power input into the ocean
Achim Wirth and Bertrand Chapron
Nonlin. Processes Geophys., 28, 371–378, https://doi.org/10.5194/npg-28-371-2021,https://doi.org/10.5194/npg-28-371-2021, 2021
Short summary

Cited articles

Alexander, M. A., Bladé, I., Newman, M., Lanzante, J. R., Lau, N.-C., and Scott, J. D.: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans, J. Climate, 15, 2205–2231, 2002. a
Balakrishnan, V.: Fluctuation-dissipation theorems from the generalised Langevin equation, Pramana, 12, 301–315, 1979. a, b
Barrat, J.-L. and Hansen, J.-P.: Basic concepts for simple and complex liquids, Cambridge University Press, New York, 2003. a, b, c, d
Bjerknes, J.: Atlantic air-sea interaction, in: Advances in geophysics, vol. 10, 1–82, Elsevier, the Netherlands, https://doi.org/10.1016/S0065-2687(08)60005-9, 1964. a
Boffetta, G. and Ecke, R. E.: Two-dimensional turbulence, Ann. Rev. Fluid Mech., 44, 427–451, 2012. a
Short summary
The conspicuous feature of the atmosphere–ocean system is the large difference in the masses of the two media. In this respect there is a strong analogy to Brownian motion, with light and fast molecules colliding with heavy and slow Brownian particles. I apply the tools of non-equilibrium statistical mechanics for studying Brownian motion to air–sea interaction.
Share