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Abstract. The dynamics of three local models, for momen-
tum transfer at the air—sea interface, is compared. The mod-
els differ by whether or not the ocean velocity is included
in the shear calculation applied to the ocean and the atmo-
sphere. All three cases are employed in climate or ocean sim-
ulations. Analytic calculations for the models with determin-
istic and random forcing (white and coloured) are presented.
The short-term behaviour is similar in all models, with only
small quantitative differences, while the long-term behaviour
differs qualitatively between the models. The fluctuation—
dissipation relation, which connects the fast atmospheric mo-
tion to the slow oceanic dynamics, is established for all mod-
els with random forcing. The fluctuation—dissipation theo-
rem, which compares the response to an external forcing to
internal fluctuations, is established for a white-noise forcing
and a coloured forcing when the phase space is augmented
by the forcing variable. Using results from numerical inte-
grations of stochastic differential equations, we show that the
fluctuation theorem, which compares the probability of posi-
tive to negative fluxes of the same magnitude, averaged over
time intervals of varying lengths, holds for the energy gained
by the ocean from the atmosphere.

1 Introduction

The exchange of momentum, heat, water and chemical fluxes
at the atmosphere—ocean interface is key to understanding the
dynamics of the atmosphere, the ocean and the climate, as
well as their response to changes in the forcing of the climate
system (Stocker et al., 2013; Csanady, 2001). The fluxes at
the interface are a result of a variety of physical processes
over a large range of scales in space, from the molecular scale

of spray dynamics (Veron, 2015), the scale of wave breaking
(Melville, 1996), the sub-meso scale of fronts (Small et al.,
2008), the synoptic scale of cyclones (Emanuel, 1986), the
basin scale (Bjerknes, 1964) to the global scale (Alexander
et al., 2002), and time, which interact in a non-linear way.
The impact of the exchange on the atmosphere and ocean
dynamics is usually described by local models, called bulk
formulas (Kondo, 1975; Fairall et al., 1996; Castellari et al.,
1998). They imitate the action of the non-explicitly resolved
dynamics on the explicitly resolved dynamics in models and
simulations of the atmosphere, ocean and climate dynamics.

In the present paper the exchange of momentum only is
considered. It is caused by shear which depends on the at-
mospheric wind and many other physical quantities, such as
the ocean velocity, the sea state and the density stratifica-
tion in the atmosphere and the ocean. In this work three dif-
ferent approaches for parameterising the shear at the air-sea
interface, which are all used in numerical simulations of at-
mosphere, ocean and climate dynamics, are compared. They
differ by the extent to which the ocean velocity is considered
in the calculation of the shear force at the air—sea interface.
In the first, the ocean velocity is ignored and shear is cal-
culated based on the atmospheric velocity only. Historically
this was done in all atmosphere, ocean and climate simula-
tions and is justified by the fact that atmospheric winds usu-
ally have higher speeds than ocean currents. In the second,
the ocean velocity is considered when the shear force ap-
plied to the ocean is calculated, but not to the atmosphere.
These two models are called “one-way” as the ocean dy-
namic does not act on the atmosphere; they are used, for ex-
ample, whenever the atmospheric forcing is known prior to
the integration of the ocean model, when an ocean-only sim-
ulation is performed. Only the third model is mechanically
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consistent, as the shear force, applied to the ocean and the at-
mosphere, is calculated based on the difference between the
atmospheric and oceanic velocity vectors and respects New-
ton’s laws. This model is called “two-way”.

The differences arising from including the ocean velocity
in the shear calculation have been found to be important in
observations (Renault et al., 2017; Zhai et al., 2012; Scott and
Xu, 2009) and numerical simulations (Duhaut and Straub,
2006; Rath et al., 2013). Most of the research concentrates
on quantitative differences, expecting that the discrepancy
can be compensated for by adjusting friction parameters.
We demonstrated in recent work using a 2-D model that the
third parameterisation together with a quadratic drag law can
lead to a generation of instability (Moulin and Wirth, 2014)
and new dynamical behaviour (Moulin and Wirth, 2016) that
is a co-organisation between the atmospheric and oceanic
variables that resemble a glass transition in condensed mat-
ter physics, emphasising that differences are qualitative, not
only quantitative.

As local bulk formulas are investigated, only the local
exchange between the atmosphere and the ocean is consid-
ered, neglecting the horizontal interaction within the atmo-
sphere and the ocean. Mathematically speaking the models
are 0-D one-component (OD1C) (see Sect. 2). In the present
work the calculation of the shear is performed using a linear
(Rayleigh) law. The differences between the three models al-
ready apply in their linear versions, where their discrepan-
cies can be established analytically. When within a hierarchy
of models a systematic liaison of the more involved models
to models that allow for an analytic solution can be estab-
lished, the scientific understanding of the process studied is
increased (Wirth, 2010).

The conspicuous feature of the atmosphere—ocean system
is the strong difference in mass (and also heat capacity, CO;
absorption) of the two media, leading to a strong difference
in the characteristic timescales for momentum (and also heat,
CO, storage). In this respect there is a strong analogy to
Brownian motion, with light and fast molecules colliding
with heavy and slow Brownian particles. The fluctuation—
dissipation relation (FDR) developed by Einstein (1906) rep-
resents the framework to describe such motion. He noted that
a Brownian particle in a fluid is subject to two processes, a
macroscopic friction and microscopic fluctuations, which are
related as they are both due to the surrounding fluid (see Ein-
stein, 1906, 1956; Perrin, 2014). The FDR describes the re-
lation between the two processes (Barrat and Hansen, 2003).
The FDR is applied to a large variety of linear and non-linear
problems in the field of non-equilibrium statistical mechan-
ics, also when the “Brownian particle” is some “slow” prop-
erty of a system. In air—sea interaction the friction at the inter-
face dissipates energy and introduces fluctuations in both me-
dia. Also in this case, dissipation and fluctuations are due to
the same process, and a relation between the two has to exist.
This relation, the FDR, is established for the three models,
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subject to white and coloured random forcing, in the present
work.

The major difference between Brownian motion and air—
sea interaction is that the former system is conservative,
while the latter is dissipative and forced from the exterior.
Mathematically speaking, in the former, the dynamics con-
serves the phase space volume, while in the latter it con-
tracts and the dynamics takes place on a (strange) attractor
of vanishing phase space volume. A key feature of Brown-
ian motion is the equipartition of energy between a Brow-
nian particle and a molecule (Einstein, 1906), but in the
case of air—sea interaction equipartition does not hold. Al-
though there are fundamental differences between conserva-
tive and dissipative-and-forced dynamics, many of the math-
ematical concepts developed can be extended from the for-
mer to the latter (Marconi et al., 2008). In a previous publica-
tion (Wirth, 2018) the FDR was derived for one model of the
atmosphere—ocean system, where the forcing on the atmo-
sphere was white-in-time. This FDR was then compared with
a 2-D numerical simulation of air—sea interaction, in which
the turbulent dynamics is present. The numerical simula-
tion was forced by maintaining one Fourier mode at a fixed
value. The application of the FDR to 2-D numerical simula-
tions of turbulent dynamics succeeded for the ocean dynam-
ics but failed for the atmosphere, as the former evolves on a
timescale much slower than the forcing, while the timescale
of the latter is equal to the forcing, which acts by restoring to
a constant velocity profile. That is, there was no separation
between the timescale of the forcing and the atmospheric dy-
namics. In the present work we consider models with an arbi-
trary forcing timescale and emphasise the differences of the
one-way approximations to the two-way model introduced in
Wirth (2018).

In the context of a purely 2-D dynamics, the energy dis-
sipation within the atmospheric and oceanic layers, due to
horizontal friction processes, decreases with an increasing
Reynolds number, due to the inverse cascade of energy in 2-D
turbulence (Boffetta and Ecke, 2012). This means that the en-
ergy dissipation is negligible in purely 2-D dynamics at high
resolution and that therefore no dissipation term parameter-
ising the horizontal friction within the layers is included in
our models. In the real ocean the internal energy dissipation
depends on a variety of processes, such as frontal dynamics,
tidal mixing, stratification and bottom friction (Ferrari and
Wunsch, 2009; Vallis, 2017).

Here, only linear models are considered, because the fo-
cus is on the analytic theory (where possible). The analytic
solution of a linear model gives the dependence on all param-
eters, while in a non-linear model the parameter dependence
has to be numerically evaluated for each parameter. Further-
more, in the linear models, solutions with different forcing
can be simply added up, but in their non-linear counterpart
this is no longer true. The prolongation to non-linear models
and their numerical solutions will be discussed elsewhere. It
is furthermore important to note that the major differences
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between the three models already emerge in their linear ver-
sions. Wirth (2018), by solving the Fokker—Planck equation,
shows that the second-order moments of the two-way non-
linear model can be reproduced by a two-way linear model
using an eddy-friction approach with an eddy coefficient that
is obtained analytically.

The present work compares the three different models of
air—sea transfer of momentum discussed above with four dif-
ferent drag forcings, a linear drag law with a constant or pe-
riodic (deterministic) forcing or a white or coloured random
forcing. This leads to 3 - (2 +2) = 12 different local configu-
rations which are discussed here. The models are introduced
in Sect. 2 and the solutions with different forcings are dis-
cussed in Sect. 3. The resulting FDRs for linear models with
stochastic forcing are given in Sect. 4. The results of the FDR
are used to establish in Sect. 5 the work done on the air—sea
system, the energy fluxes and the energy dissipation in the
different models. A special emphasis is put on the consis-
tency of the different models and their differences, quantita-
tive and qualitative, for short- and long-term integrations.

The fluctuation—dissipation theorem (FDT) (see Kubo,
1966; Barrat and Hansen, 2003; Marconi et al., 2008) is dis-
cussed in Sect. 6. It considers the relation between the in-
ternal fluctuations of a system to the response of an exter-
nal force. When it holds the average, response of the system
to an external force can be obtained by observing the aver-
age relaxation of spontaneous fluctuations. Today the FDT is
used in a large variety of statistical and dynamical systems,
i.e. climate dynamics. If it holds for our climate system, it
allows us to determine the response to perturbations, anthro-
pogenic or others by studying its natural variability (see e.g.
Cooper and Haynes, 2011). In the case of the linear models
discussed here the FDT can be established analytically us-
ing matrix calculus. Studying the FDT in air—sea interaction
is also interesting from a conceptual point of view as air—
sea interaction has a dynamics on dissimilar and interacting
timescales, a property found in many natural applications and
processes of the climate system.

The fluctuation theorems (FTs) (Gallavotti and Cohen,
1995a, b; Ciliberto et al., 2004) for the energy exchange be-
tween the atmosphere and the ocean are numerically evalu-
ated in Sect. 7. When the atmosphere is forced by a white
or coloured noise, the velocity fluctuations in the atmosphere
have a larger amplitude than in the ocean, and on average
the atmosphere does work on the ocean. Instantaneous en-
ergy fluxes can however also go in the opposite direction.
The probability of positive versus negative fluxes, averaged
over finite time intervals of varying length, are the subject
of the FT. The results are discussed in Sect. 8. The analytic
calculations are found in the vast Appendixes which form
the major part of the publication. They present a register of
calculations concerning local models of air—sea interaction.
These calculations are important as they expose the strengths
and weaknesses and the differences between the models.
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The use of stochastic models for air—sea interaction dates
back to the pioneering work of Frankignoul and Hasselmann
(1977). The stochastic formalism is extensively used in cli-
mate dynamics and discussions thereof can be found in a va-
riety of recent books on the subject: Von Storch and Zwiers
(2001), Palmer et al. (2010), Dijkstra (2013) and Franzke
et al. (2015). The approach followed in the present publica-
tion focuses on analytic calculations, with only a few excep-
tions, and discusses the FDR, the FDTs and FTs. Although
the names resemble each other, these are actually different
(but somehow related) concepts. To the best of my knowl-
edge, the FDR and FDT have so far not been discussed in the
context of air—sea interaction (with the exception of Wirth,
2018) and the FT has never been discussed in the context of
environmental dynamics.

2 Local models

The turbulent friction at the atmosphere—ocean interface is
commonly modelled by a quadratic friction law, where the
friction force is a drag coefficient times the product of the
shear speed and the shear velocity (see e.g. Stull, 2012). The
drag coefficient depends on a variety of physical quantities,
such as shear, stratification and sea state. In numerical sim-
ulations it also depends on numerical parameters, such as
spatial resolution in the atmosphere and the ocean and the
corresponding time steps. These parameters are mostly deter-
mined empirically. The linear version of the friction law with
a constant eddy coefficient allows for analytic solutions. It is
also sometimes used in numerical simulations of the climate
dynamics (see Stevens et al., 2002, for a detailed discussion
and justification on using the linear Rayleigh friction). The
friction coefficient represents an average (in time and space)
mimicking the real friction process. In the present work the
focus is on the quantitative and qualitative consequences of
including or not the ocean velocity in the shear calculation.
This can be studied by linear models, which allow for ana-
Iytic solutions.

The mathematical models discussed here are non-
dimensionalised. The mass of the atmosphere per unit area
is set to unity. The mass of the ocean per unit area is m times
the mass of the atmosphere; the total mass per unit area is
M =m+ 1. When the interactions of the atmospheric and
oceanic mixed layers are considered, m &~ O(10%). The three
linear models introduced above are discussed. These models
give rise to different configurations which differ by the forc-
ing. In the following equations S is the inverse of the friction
time in the ocean. When a linear model is used (S = const),
both horizontal directions are un-coupled and the problem
can be considered independently for each direction and re-
duces to a 1-D problem. Scalar variables are therefore em-
ployed for the atmospheric velocity, u,, and the ocean veloc-
ity, u,. Newton’s third law sets the inverse friction time for
the atmosphere to Sm. The forcing of the system is denoted
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F . In the first model, L1, the ocean velocity is not considered
in the calculation of the shear force at the interface, neither
in the dynamics of the atmosphere nor the ocean:

a,uE = —Smu{;l +F, (H

dust = Sult. )

Note that this model is inconsistent as the ocean is acceler-
ated in the direction of the atmospheric velocity even when
the ocean is moving in the same direction with a higher
speed. The model is justified by the observation that atmo-
spheric wind speeds are often much larger than ocean cur-
rents, and when the difference of the two is considered, the
latter can be neglected to first order in u,/u,. In the L1 model
the ocean velocities are not considered when the shear is cal-
culated; this was commonly done in ocean simulations in the
past.

In the second model, L2, the ocean velocity is considered
in the calculation of the shear force at the interface when the
ocean dynamics is considered, but not for the atmospheric
velocity:

Btuzl“z = —Smu{;z + F, 3)
du2 = (u{;z - ugZ) . “)

Note that this model is inconsistent, as interfacial friction
does not conserve total (atmosphere plus ocean) momentum.
This model neglects the action of ocean currents on the at-
mospheric dynamics; it (or its non-linear version) is used, for
example, in ocean modelling when ocean models are forced
by winds which are predefined or constant in time (Duhaut
and Straub, 2006). The L1 and L2 models are called “one-
way”.

In model L3 the ocean velocity is considered in the calcu-
lation of the shear force at the interface, when the atmosphere
and ocean dynamics is considered:

dul? = —Smuk3 —ul3) + F, (5)

dul® = sl —ul3). (©6)

This model obeys Newton’s laws. The inclusion of the ocean
velocity in models L2 and L3 on the right-hand sides of
Egs. (4) and (6) damps the ocean velocity and has recently
been referred to as the “eddy killing” term. It is found to have
a considerable effect on the ocean dynamics (see i.e. Renault
etal., 2017).

For each of the linear models four different kinds of forc-
ing are distinguished. The first is a constant forcing starting
at a time ¢ = 1. The solutions are discussed in the next sec-
tion and given in Appendix B1. These configurations are de-
noted LxK (x = 1,2, 3) for the three different rllodels men-
tioned above. The second is a periodic forcing F = cos(kt).
These models are denoted Lx P (x = 1,2, 3). The solutions
for the atmospheric and oceanic velocities as well as the
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second-order moments, obtained by averaging over one pe-
riod T = 27 /K, are discussed in the next section and given in
Appendix BS.

White-in-time random forcing F is also considered. These
models are denoted by LxW (x = 1, 2, 3); the atmosphere is
directly forced by the white noise, F' = F.

In the fourth series of configurations, called LxC (x =
1,2,3), the same models are forced using a coloured noise,
which is itself a solution of a Langevin equation:

O F =—uF +F. )

It is sometimes stated that without a clear-cut separation
between the relaxation timescale and the noise correlation
time, the process is non-Markovian. This problem is avoided
here by using a coloured noise (F has the finite correla-
tion time p~!), which is itself generated by a white noise
through a linear Langevin equation. Indeed, when F is white
in time, the variable F is an Ornstein—Uhlenbeck~process.
When the atmosphere—ocean system is forced by F* and the
three-variable system (F', u,,u,) is considered, the system
is a Markov process, while the problem is non-Markovain
in the two-variable system (u,, 1,). Augmenting the phase
space dimension to render a non-Markovian process Marko-
vian is a standard procedure.

3 Solutions of local models

In the local linear models all solutions are analytic, for all
types of forcing considered. These models are a firm testing
ground for all theories on air—sea interaction.

First, the unforced evolution of an initial state in the three
models is compared. For the consistent model L3, Eq. (A26)
shows that the total momentum in the system (u, + mu,) is
conserved, and the shear between the atmosphere and the
ocean |u, —u,| decays with a characteristic timescale of
(SM)~!. For the L1 model Eq. (A12) shows that the total
momentum is conserved and every perturbation in the atmo-
sphere decays with a characteristic timescale of (Sm)~! and
adds to the ocean m~! times the initial atmospheric pertur-
bation at the same characteristic timescale. Ultimately all the
momentum is in the ocean, which has no influence on the
atmosphere. In the L2 model the perturbations in the atmo-
sphere and the ocean decay and a spurious slow timescale
S~ (not present in the consistent L3 model) appears in the
ocean dynamics, as can be seen from Eq. (A19). Replacing
the L1 model by the L2 model is not always an improvement,
as it leads to a decay of all motion and introduces an artificial
timescale.

Second, the solutions of the different models, subject to
the same forcing, are compared. Only the atmosphere is sub-
ject to an external forcing. Two extreme cases can be distin-
guished. The first is the short-term response and the second is
the long-term evolution. To consider the first question, only
the Lx K configurations (see Appendix B1), in which a con-
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stant forcing is turned on at # = fy, have to be considered.
Every forcing can be decomposed into a sum (integral) over
(possibly infinitesimal) step functions. As the model is linear,
its dynamics is a sum (integral) over a (finite or infinite num-
ber) of solutions with a single (possibly infinitesimal) step.
From the Taylor-series expansion of the Lx K configurations
in Appendix B1, it emerges that the short time responses of
the L1 and L2 models are similar to the L3 model as the first
terms agree, for the atmosphere and the ocean and the two
consecutive terms have coefficients which differ by at most a
factor of the order of m/M ~ 1.

The long-term behaviours with constant forcing of the
atmosphere are however completely different (see Ap-
pendix B1). For the L3 model, both the atmospheric and
oceanic velocities are unbounded and increase at the same
rate. For the L1 model, the atmospheric velocity is bounded,
while the oceanic velocity is unbounded and increases at a
rate that is M/m = 1 higher as compared to the L3 model.
For the L2 model, both the atmospheric velocity and oceanic
velocity are bounded. So differences are not only quantita-
tive, but also qualitative, and the L1 model works better in
a coupled simulation, when the ocean dynamics is consid-
ered. This is important to note, as it is the ocean dynamics
community that favours a passage from the L1 to L2 param-
eterisation.

When the forcing applied to the atmosphere is periodic
(Fy = cos(kt); see Appendix BYS), all the solutions are peri-
odic. The ratios of the square amplitude of the ocean and the
atmospheric velocities and their normalised correlations are

o (ud)e
T ud)y ®
0= (Uako)r , 9)

(u3)z(u3)e

where averages are taken over one period T = 2 /«. In the
L3P model E = 52/(S? +«?) is always smaller than unity
and oceanic velocities approach the atmospheric velocities,
when the characteristic forcing timescale increases. The nor-
malised correlation is © = §/+/S2 +«2 = +/E. It shows that
the slower the forcing is, the higher the correlation is between
the atmospheric and oceanic velocities. For the L1P model,
E = 52 /k?, which approaches the consistent L3P model for
a high-frequency forcing only. Values larger than unity are
however non-physical, and so a forcing in which the oceanic
forcing time is larger than the oceanic friction time can not
be considered with this model. This is worrisome as a forcing
of the atmospheric system contains components of arbitrarily
long timescales. Furthermore, ® = 0, which means that the
phase shift between the atmosphere and ocean is 7t /2. For the
L2P model Z and ® are identical to the L3P model, and it is
clearly a better choice than the L1P model.

Some of the models with random forcing have a dynamics
which is not statistically stationary, and time averages depend
on the length of the averaging interval. Time averages are
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therefore replaced by ensemble averages, taken over an en-
semble (w € 2) of realisations of forcing functions F,,. They
are denoted by (.)q, where w is one realisation of the ensem-
ble space Q2. The parameter R measures the strength of the
delta-correlated fluctuating force; it is

R— / (F(0)F(¢'))qdr. (10)
0

The dynamics starts from rest at #y = 0, for convenience.

When the forcing is Gaussian in the LxW and LxC con-
figurations_the probability density functions (pdfs) of the
variables F, u,, and u, are centred Gaussians, the first-order
moments vanish and the pdfs are determined by their second-
order moments. Using stochastic calculus (see Appendix B9
and Wirth, 2018), the second-order moments are obtained an-
alytically. The differences among the results of the models
are, again, not only quantitative, but also qualitative. The to-
tal momentum, atmosphere plus ocean, performs a random
walk (see Appendix B9) in the L3W and L3C models, as
it is not subject to damping. Superposed on this motion is
the shear mode, which performs an Ornstein—Uhlenbeck pro-
cess (see Appendix B9). The L1 model has an atmospheric
mode which performs an Ornstein—Uhlenbeck process, and
the oceanic mode performs a random walk which is forced
by the atmospheric dynamics on which it does not retro-
act. In the L2 model a damping is added to the ocean mode
as compared to the L1 model, which leads to an Ornstein—
Uhlenbeck process in the ocean. In the L3 model the con-
stant growth rate is equal for all second-order moments (see
Appendix B10). In the L1 model the linear growth is only
present in the ocean, with a growth rate which is higher by a
factor (M/ m)? =~ 1 than for the L3 model. In the L2 model
all second-order moments are bounded. All the results from
analytical calculations are given in Appendix B10 and Ta-
bles 1 and 2. The differences between the models with white
and coloured noise (LxW and LxC) are only quantitative
and Tables 1 and 2 show that for short correlation times
(u > SM) the dynamics of the coloured-noise cases con-
verges to the corresponding white-noise cases.

It is important to note that some of these models do not
lead to a (statistically) stationary state, but that their ensem-
ble averages evolve in time. All the processes are, however,
of stationary increment; that is, the time increments of ran-
dom variables (u,, uq, F) and linear combinations are sta-
tionary ((x(t) — x(t + Ar))q depends on Ar but not on 7).
The dynamics is a sum of Ornstein—Uhlenbeck processes and
random walks, which are all of statistically stationary incre-
ment.

4 Fluctuation—dissipation relation

At the interface the ocean (Eqs. 2, 4 and 6) is subject to forc-
ing by the atmosphere, given by Su,, and (in the L2 and L3
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models) dissipation, given by —Su,. They both are due to
the same process and must therefore be related. In analogy to
Brownian motion I call this relation, when expressed by the
second-order moments, the oceanic FDR (see i.e. Barrat and
Hansen, 2003). The atmosphere (Eqgs. 1, 3 and 5) is subject
to outside forcing (given by F), dissipation given by —Smu,
and, in the L3 model, fluctuations by the ocean, given by
Smu,. The atmospheric FDR consists of the relation of the
three processes in the equation of the second-order moments.
Furthermore, the total momentum, atmosphere plus ocean, is
subject to external forcing but not to internal dissipation in
the case of the L1 and L3 models. In the L2 model, the total
momentum is influenced by the forcing and the ocean veloc-
ity. The latter is non-physical.

As an example the FDR in the configuration L3W is con-
sidered after the initial spin-up, that is, for r > (SM )_1. The
FDR is obtained by multiplying Eq. (5) by u,, Eq. (6) by
Uy, and ensemble averaging. The second-order moments are
given by the correlation matrix Eq. (B40), which leads to

Lo yg = SR (g =2y, A
2 a M? SM SM
fluctuation dissipation
R
+ K=3p (11)
forcing
%a,(ugm - % 2% + '"S—Mz—zt + siM - %, (12)
fluctuation  dissipation
lar(uermuz)sz _omRp M + R = r (13)
2 a © M? S - M

———
dissipation

forcing

For the atmosphere (Eq. 11), the fluctuation terms are due
to the atmosphere—ocean correlation; on average they drive
the atmospheric dynamics, as the ocean dynamics reduces
the friction on average. The dissipation terms are due to the
atmospheric auto-correlation. The forcing term drives the at-
mospheric dynamics and the whole system. The sum of the
fluctuating, the dissipation and the force leads to a constant-
in-time increase in the square velocity in the atmosphere.
Concerning the ocean (Eq. 12), the fluctuation terms
originate from the atmosphere—ocean correlation and they
drive the ocean dynamics, on average. The oceanic auto-
correlation leads to the dissipation terms. The first and third
terms due to the total-momentum mode in the atmosphere
and the ocean cancel, as the total-momentum mode per-
forms a random walk (Wiener process) with no shear asso-
ciated with it. The second and fourth terms are due to the
shear mode in the atmosphere and the ocean, respectively.
They lead to a statistically stationary dynamics, an Ornstein—
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Uhlenbeck process. The sum of the fluctuating force and the
dissipation leads to a constant-in-time increase in the square
velocity in the ocean which is equal to the increase in the
square velocity in the atmosphere. The atmospheric fluctua-
tions are the only forcing acting on the ocean. The total en-
ergy is forced by the exterior, and it is dissipated due to the
internal shear (Eq. 13).

Equations (11) and (12) show the equilibrium between the
fluctuation—dissipation, the forcing and the energy growth.
This is a double fluctuation—dissipation relation: the dissi-
pation and the fluctuation are related, firstly, by the equal
growth rate of their squares (2¢ terms cancel), and secondly
the constant terms add up to R/M?. Brownian motion leads
to an equipartition of energy between molecules and Brown-
ian particles, which in air—sea interaction is substituted by the
equal growth rate of the square velocities of the atmosphere,
the ocean and their co-variance.

When considering the second-order moments, the param-
eters in the linear model are given by

_ 31(”%)9
S = Sfato —udra (9
2_ .2
M= oo (15)

(Uauo — u%)Q .

It is straightforward to determine the FDR for LW1 and
LW2 using results from Appendix B10. In the L1 and L2
models the fluctuation is neglected in the atmosphere and
only the forcing and the dissipation terms are present. In the
L1 model the dissipation is neglected in the ocean and only
the fluctuation is present, and the ocean performs a random
walk. In the same way a FDR can be established for the con-
figurations with a forcing by a coloured noise (LxC) (see
Appendix B10). They show qualitatively the same behaviour
as the corresponding configurations forced by a white noise.

It is essential to note that in the linear models discussed
in this subsection the forcing can be a linear combination of
different forcings proposed with different periods and corre-
lation times. The second-order moments are the sum of the
individual second-order moments; that is, cross-correlations
of variables with different types of forcings vanish. When
the forcing is a combination of a random forcing and a pe-
riodic forcing, it is important to note that the periodic part
does not contribute to the (linear) growth rate, and it also
does not contribute to the difference in the correlation be-
tween the ocean variance and the ocean—atmosphere correla-
tion; both facts are related. The periodic part is however im-
portant when it comes to evaluating the difference between
the atmosphere variance and ocean variance. This is a possi-
ble explanation why the estimation of the friction parameter
was successful in Wirth (2018) but not the mass ratio be-
tween the atmosphere and the ocean. The latter compares the
atmosphere variance and ocean variance, while the former is
based on the difference of the ocean variance and the ocean—
atmosphere correlation only.
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5 Energetics

The fluxes of kinetic energy in the system are detailed in
Fig. 1. The forcing injects energy into the atmosphere; part of
it leads to an increase in the energy of the atmosphere P, and
a part is transferred to the atmosphere—ocean interface P,_;.
At the interface energy is transferred between the atmosphere
and the ocean and also dissipated Py;ssip. The energy flux to
the ocean P;_, leads to an energy increase P,. For all models
the dynamics in the system does not converge to a stationary
state, in which P, = P, =0.

When the forcing is periodic, averages over one period are
taken, and when the forcing is stochastic, ensemble averages
are performed. For convenience the same symbol (.) denotes
the averages when the forcing is periodic, (.) =(.);, and
when the forcing is stochastic, (.) = (.)q. The power injected
into the system is Pr = (u,F). The increases in energy in
the atmosphere P, = %Ek(ug) and the ocean P, = %B,(u%)
are obtained by first multiplying Eqgs. (1), (3), and (5) by u,
and Egs. (2), (4), and (6) by u, and then averaging. In the
consistent model L3, the auto-correlation of the atmosphere
and the ocean dissipate the energy in the atmosphere and the
ocean, respectively. In the L1 model the dissipation in the
ocean is omitted. By looking at the equations the important
role of the correlation between the atmospheric and oceanic
velocities (the fluctuation term) (u,u,) becomes clear. On av-
erage it is non-negative in all models and configurations. In
the consistent model L3 it has two effects; that is, it reduces
the energy dissipation in the atmosphere and injects the en-
ergy into the ocean. Both are equal, not only in magnitude,
but also in sign (+Sm(uau,)). In the L1 and L2 models the
reduction of the energy dissipation in the atmosphere, due to
ocean velocities, is omitted. Therefore, the L1 model suffers
from an increased energy dissipation in the atmosphere and
a reduced energy dissipation in the ocean, while in the L2
model only the first is present.

In all the models the fluxes are related by

Pyi = Pp— Py, (16)
Pio =P, a7
Pdissip:Pa—)i_Pi—>0:PF_Pa_P0~ (18)

The long-time averages are all non-negative for the L2 and
L3 models (see also the discussion of the fluctuation theo-
rem in Sect. 7). In the L1 model Pyissip < 0 when uou, > ui
which is of course non-physical. Equations (16)—(18) allow
us to calculate the remaining energy fluxes. Note that in L3,
Pissip = Sm{(ua — uo)z). Detailed results for all the energy
fluxes are given in Table 1. The efficiency of the power trans-
fer is the power gained by the ocean at the interface divided
by the power lost by the atmosphere at the interface:

n= P, —1_ Pdissip'

Pasi Pasi

The important question of the efficiency of the power trans-
fer in the air—sea system, its dependence on the parameters

19)

www.nonlin-processes-geophys.net/26/457/2019/

Pr

|

Atmosphere: P,

Pa—m’

Interface: Pqissip

Pz'—>o

Ocean: P,

Figure 1. Schematic of energy fluxes in the atmosphere—ocean sys-
tem.

and its representation in different models has, to the best of
my knowledge, never been addressed. Note that when no av-
eraging is performed, the instantaneous flux in a single ex-
periment is considered, 7 = u/u, in the L1 and L3 models,
while n = (1 —uo/ua)uo/uy for L2. When n > 1, the ocean
supplies energy to the atmosphere. When the constant forc-
ing is considered, the initial behaviour of the efficiency is
identical, to leading order, in the three models. The long-term
behaviours differ: in L1 1 grows linearly to infinity, in L2 it
converges to n = 0 and in L3 it converges to n = 1. A striking
feature, shown in Table 1, is that for the different models the
efficiency is of a different order in the mass ratio m, when
random forcings, white or coloured, are applied. So again,
the differences are not only quantitative, expressed by differ-
ent prefactors, but they are also clearly qualitative.

For the L3 model, the only model that respects New-
ton’s laws, all second-order moments have the same constant
growth rate, and so the differences of these second-order mo-
ments are constant in time. They are given in Table 2.

In a perfect gas in equilibrium with molecules of different
mass, the kinetic energy of each molecule, measured by the
temperature, is equal on average, and heat flows on average
from the hotter substance to the colder substance (second law
of thermodynamics). For the forced and dissipative air—sea
interaction of the L2 and L3 models, the energetic influence
of the interface on the ocean is Sm (uyuo — u(z)), which shows
that a necessary condition for the ocean to receive energy
at the interface is ug > u% This is also true when averages
are taken, (uﬁ) > (u%); it is a consequence of the Cauchy—
Schwarz inequality. This is reflected in the results presented
in Table 2: all entries of the third column giving (u2 — u2) for
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Table 1. Energy fluxes for ¢ > (SM y~1, =1, The last column is the efficiency in the system as it compares the energy growth in the system
to the energy injection. Note that for u > SM, LCx converges to LWx if R — Ru?.

Pdissip

PutPy Py+ Py

Exp. Pr Py/ PR Py i/ PF Pr Po/Pp Pr Pa/Pysi Paissip n
Sm Sm Sm
L1p K2+(Sm)? 0 21 (Sm)? HSm)? 0 0 0 0 0
Sm Sm Sm
L2p K2+(Sm)? 0 K2+(Sm)? K2+(Sm)? 0 0 0 0 0
Sm Sm Sm
PP e 0 FEOWE EEHT ‘ 0 0 0 0
m2—1 1 1 1 1
L1W R 0 ! m?2 m2 m?2 0 m2—1 m?2
L2W R 0 1 1 0 0 0 0
1 M?—1 1 1 1 1
L3w R M2 M? i W M M2-1 m M+
R w(m?—1)—Sm n+Sm n+Sm n+Sm n—Sm
Lic u(p+Sm) 0 I um? um? um? 0 w(m2—1)—Sm um?
R
12¢  ooian 0 1 1 0 0 0 0 0
L3C R(u+S) ut+SM w(M*~1)+SMm um m(u+SM) u+SM u+SM ut+SM u+SM
W2(u+SM)y  M2(u+S) M2(u+S) M(u+S) M2(u+S) Mu+S)  u(M2—1)+SMm wm wM+D+SM

the L2 and L3 models are positive. Due to the symmetry of
the L3 model it is evident that a necessary condition for the
atmosphere to receive energy at the interface is ug > u% It
is important to note that a less energetic forced atmosphere
can do work on the ocean (when m > 1). In the L1 model the

ocean receives energy whenever u, - u, > 0.

6 Fluctuation—dissipation theorem: response theory

The fluctuation—dissipation theorem (FDT) compares the re-
sponse of a system subject to an external perturbation to the
internal fluctuations of the system. This is related to On-
sager’s principle, which states that the system relaxes from
a forced state to the unforced dynamics in the same manner
as if the forced state were due to an internal fluctuation of
the system. The expressions FDT, Onsager’s principle and
response theory are often interchanged in applications. Pre-
cise definitions are given in Appendixes C1 and C2. Mathe-
matically speaking, if x(¢) is the state vector of the system,
the correlation matrix is C(t, At) = (x(¢t)x'(t + At)) and the
normalised correlation matrix is C(¢, At)C(¢,0)~!. The av-
erage decay of an initial perturbation X is given by the per-
turbation matrix, (x (t + At)) = x (¢, At)X, also called the re-
sponse operator. The FDT holds if

C(t, ADC(t,0)" " = x (1, A1). (20)

The processes considered here are of stationary increment
and the perturbation matrices are independent of the actual
time ¢, and so are the normalised correlation matrices (see
also Appendices A1-A3 and B10). The application of the
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FDT in the case of simple Langevin equations is discussed in
Appendix C1 for the white-noise forcing and in Appendix C2
for forcing with a coloured noise. The calculations concern-
ing the application of the FDT for the models considered
here are given in Appendix B9 Eq. (B37), which show that
the FDT applies in the models with white-noise forcing and
coloured-noise forcing when the phase space is augmented
by the variable F' representing the coloured-noise forcing.
Indeed, the FDT can be verified in these models by explicitly
calculating and comparing the matrices in Eq. (20). The nor-
malised correlation matrix with a white noise forcing, which
is equal to the perturbation matrix, is given for the L1 model
in Eq. (A12), for the L2 model in Eq. (A19) and for the
L3 model in Eq. (A26). The decay of an initial perturbation
was discussed in detail at the beginning of Sect. 3. In the
L1 model the ocean dynamics is undamped (see Eq. A12)
and performs a random walk. In the L3 model the total mo-
mentum is undamped (see Eq. A26) and performs a random
walk. The random walk has the martingale property; that is,
the expectation for future values is equal to the actual value.
This leads to an infinite memory in the process and infinite
long correlations (o1 (1) iotal (f + A1) = (ttioral (1)?) VAL >
0. Even in the case of the random walk, where the perturba-
tion (forced or internal) does not decay, the FDT applies, as
Eq. (20) is verified.

For the coloured-noise forcing the perturbation matrix in
the augmented phase space is given for the L1C model in
Eq. (B52), for the L2C model in Eq. (B63) and for the L3C
model in Eq. (B75). The failure of the FDT for a coloured-
noise forcing in a phase space consisting only of the veloci-
ties is due to the fact that the forcing has a finite correlation
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Table 2. Differences of second-order-moments of the velocity (normalised by 202 + (Sm)z) for L1P and L2P, by 2(/<2 +(SM )2) for L3P,
by R for LxW and by R/,u2 for LxC). Note that for u > SM, LxC converges to LxW.

Exp. (U2 — uquo) (uatto — u) (U2 —u) ((ua — uo)?)
52 52 52
L1P 1 - -2 -
I(2 K2 K2
L2p 8242 0 8242 8242
L3P 1 0 1 1
L1W ’;’7_21 t-dep. t-dep t-dep.
m m m
L2w SM? 0 SM? SM?
M+1 1 M+2 M
L3W SM? SM? SM? SM?
(m—D)pu—Sm _ _ -
L1C SmZ(usSM) t-dep. t-dep. t-dep.
2 2 2
L2C [ S— 0 "
SM(S+p)(Sm—+u) SM(S+p)(Sm—+u) SM(S+p)(Sm—+up)
L3C SM+M+1)u 1 2SM+(M+2) 1 Mu
SM2(SM+u) SM? SM2(SM+u) SM2(SM+u)

time, and so the future forcing is correlated with the actual
velocities and the correlations of the velocities are not the
same as described by the perturbation matrix. The decay of
a perturbation is therefore dependent on how the perturba-
tion was reached; that is, the system is not Markovian. This
is shown in Appendix C2 and discussed in detail by Balakr-
ishnan (1979).

The FDT relies strongly on Gaussian statistics (see e.g.
Cooper and Haynes, 2011) of the variables, which is assured
in linear models, but the statistics in non-linear models is
clearly non-Gaussian. As, to the best of my knowledge, no
analytic solution exists for the non-linear versions of the air—
sea interaction models, the FDT has to be explored by nu-
merical experiment. This will be done elsewhere.

7 Fluctuation theorem

The average states and fluxes in the different models inves-
tigated as a function of their parameters are given in Sect. 5.
The probability density functions of the variables represent-
ing the atmospheric and ocean velocities are centred Gaus-
sian variables, and therefore they are completely described
by their variance. Fluxes are products of Gaussian random
variables and are not Gaussian. The present section discusses
instantaneous deviations from the average values, the fluctu-
ations of the system and their persistence in time. To this
end the FT (Gallavotti and Cohen, 1995a, b; Ciliberto et al.,
2004) is discussed for the fluxes P,_,;., and Pi_q.,. The
FT expresses properties of these quantities evaluated along
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fluctuating trajectories (indexed by w € 2). The FT was dis-
covered by considering the entropy production in molecular
dynamics (Evans et al., 1993), which is positive on average,
according to the second law of thermodynamics. It states that
heat always flows spontaneously from hotter to colder bod-
ies. The FT specifies that this property is true on average but
that locally in-time-and-space counter fluxes are present. The
relation of the probability of positive versus negative fluxes
of a given magnitude and their persistence in time is the sub-
ject of the FT. In the previous section averages and moments
of variables were considered; the FT is concerned with the
pdf.

The concepts of the FT are applied to a variety of problems
and quantities and are also extended to deterministic dynam-
ical systems. In the present work the analysis of Ciliberto
et al. (2004), who tested the FT in two examples of turbulent
flows in laboratory experiments, is applied. In Sect. 5 it has
been shown that on average the atmosphere gains energy by
the random forcing and loses energy at the interface and that
the ocean gains energy at the interface. Also in the case of
air—sea interaction, instantaneous fluxes can go in the oppo-
site direction (Moulin and Wirth, 2016). The FT quantifies
the asymmetry of the pdf of averages of the fluxes with re-
spect to zero. It compares the probability of having a positive
event to the probability of having a negative event of the same
magnitude for averages of the fluxes over a time interval 7.
Do the symmetries implied by the FT apply to the momentum
fluxes Pa— ., and P;_, ., ? The fluxes are quadratic quanti-
ties and their statistics is therefore not Gaussian. Recently a
closed form of the probability density function f(Z) of the
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product of two correlated Gaussian variables Z = XY with
vanishing means and variances o2 and 0)2, and correlation p
has been obtained (Nadarajah and Pogény, 2016 and Gaunt,
2018) in terms of a modified Bessel function of the second
kind of order zero Ky (z) = fooo cos(zsinht)dt:

fl@)=

1 Jo¥s )
exp
J'[oxoy\/l—,o2 (Uxay(l —p?)

4
() o

The key quantity considered in the FT is the symmetry
function:

_ f@ N
@)= m(f(—z)) e e

For the product of two Gaussian variables Sz(z) = Bz is lin-
ear with 8 =2p/((1 — pz)axrry), where Eq. (21) was used.

The normalised time average over an interval t is denoted
by

T

T 1 / /
Z(1) :m/Z(H-r)dr. (23)
0
The FT holds when
S77(z) =012 (24)

in the limit of T — oo. The variable o is called the contrac-
tion rate (see Ciliberto et al., 2004); it depends on the prob-
lem considered.

The power the atmosphere loses at the interface Py—j.(
and the power the ocean receives from the atmosphere at
the interface Pi_, .., along a trajectory w € 2 are investi-
gated. Both differ by the work dissipated at the interface (see
Sect. 5). The ensemble averages of all these quantities are
positive, but negative fluxes exist, even when temporal aver-
ages over time intervals of length t are considered. The FT,
as expressed by Eq. (24), states that the probability of finding
a positive flux of magnitude z divided by the probability of
a negative flux with the same magnitude increases exponen-
tially with the value z and the averaging period t.

In the problem considered here the variable %T is ei-
ther the time-averaged work the atmosphere does on the
ocean P, . ,-;wr, divided by its ensemble average, or the
time-averaged work the ocean receives from the atmosphere
P,-Ho;wr, divided by its ensemble average. More precisely,
the random variables:

T Paai'a)(t)r

Zowl) = —2052"7  and
' <Pa—>i;w(t)>9

5 <7 Pl—)Oa)(t)r

Zow(l) = ——%2 25
O = wO)a *)
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for all the models are considered. Ensemble averages of the
fluxes can be obtained analytically for the linear models, but
I do not know their pdfs. These investigations are numerical
even for the linear models considered here.

First, the L3 model is discussed. It is important to note
that although (P,—;.,,(#))o and (Pi—.,(f))q are constant
in time (after an initial spin-up of O((SM )~ 1); see Wirth,
2018), the pdfs are not (see Fig. 2), which means that the en-
ergy transfers are non-stationary processes with a constant-
in-time average value. More precisely, the pdfs of the vari-
ables Za;wr and Zo;w(t)f depend on ¢ and 7, but (Za;w(t)T>Q
and (Zo;w(l)T>Q are independent of the time ¢ and the aver-
aging period 7.

The parameters used in the numerical calculations are
§ =1073 and m = 100. Details on solving numerically the
stochastic differential equations are given in Wirth (2018).
The numerical results presented in Fig. 2 show that the pdfs
of Za;a,(t)r and Zo;w(t)r for t = 300, and T = 0, 100 are non
Gaussian. The exponential scaling of the symmetry func-
tion for the ocean Sz—or (z) for t =300, and T =0, 100, 200
is clearly present in Fig. 3. This also means that zero is a
special value, which is already conspicuous in Fig. 2. The
scaling exponents for ¢ = 10, 20, 30 and 50 as a function of
T are given in Fig. 4, it can be verified that Eq. (24) holds,
when the absolute and the averaging time exceeds the char-
acteristic time #,7 > (SM)~! meaning that the FT applies
asymptotically, as in Ciliberto et al. (2004). The change of
slope for the different values of 7 is well fitted by a o oc 7!
law.

For the atmosphere the probability of having a negative
flux P,_.;(¢), that is the atmosphere receives energy at the
interface due to the ocean dynamics is small even in instan-
taneous pdfs. Negative events in an ensemble sizes of 3 x 107
were so few that the symmetry function could not be obtained
with a sufficient accuracy.

For calculations with the coloured noise model, the same
parameters as in the white-noise calculations are used, and
w=1072. In this case the forcing timescale 1 ~! is actu-
ally slower than the atmospheric friction timescale (Sm)~!
but faster than the oceanic friction timescale S~!. This mim-
ics the fact that the fast motion in the atmospheric boundary
layer is forced by the slower synoptic dynamics above. The
forcing time of the oceanic mixed layer is then determined
by the mass ratio m between the oceanic and atmospheric
layers; it is the slowest timescale. Results (not shown) from
the models with coloured noise agree qualitatively with the
white-noise forcing; that is, they indicate that the energy flux
to the ocean obeys a FT.

Numerical integration of the LI1W, L2W, L1C and L2C
models show that P;_,,., obeys the FT as in the L3 model.
The atmospheric flux P, ;(¢) is always positive in the L1
and L2 models so the FT can not be considered.
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2 : :

Figure 2. Probability density function of Z, /,, w(t)r att =300 and
7 =0, atmosphere full line, ocean dashed line, and for v = 100,
atmosphere dotted line, ocean dashed-dotted line. All are clearly
non-Gaussian.
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Figure 3. Lin—-log plot of (SZ—r)_1 for t =300, T = 0 full line, 10
dotted line, and 20 dashed line.

8 Discussion

When ocean velocities are not considered in the models of
air-sea interaction, the atmosphere loses, on average, more
energy and the ocean gains more energy, as compared to
when the ocean velocities are taken into account. Previous
publications on the comparison of different models of air—sea
interaction focus on quantitative differences. This is justified
when the short-term dynamics is considered, as shown above.
At longer timescales the differences are not only quantitative,
but also qualitative, as for some models stationary states in
the ocean, the atmosphere or in both are reached, while in
others this is not the case. An example is the “eddy-killing”
term (see Renault et al., 2017) that includes the ocean ve-
locity in the shear calculation. In the short term its impact
is small and can be parameterised by changing the friction
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Figure 4. Scaling exponents for r = 10 full line, 20 dotted line, 30
dashed line and 50 dashed-dotted line, as a function of 7 and their
linear fit (thin full lines); the slope is o

coefficient. In the long term it imposes a convergence to a
stationary state, when only implemented in the ocean; when
implemented in the atmosphere and the ocean, it leads to a
divergence in both layers, whereas neglecting it totally leads
to a divergence in the ocean only. In more involved models,
divergence is avoided by other processes such as non-linear
interactions, increased horizontal dissipation or data assim-
ilation, which drain energy in a different way. When these
processes supplant an incomplete representation of “eddy
killing”, the converged state will differ and so will the en-
ergy balance. This shows that we can not improve the L1 or
L2 model by adjusting the friction parameter to obtain the
behaviour of the consistent L3 model. The small differences
in the short-term behaviour and the qualitative differences in
the long-term behaviour between the models indicate that the
choice of the model might not matter when weather or ocean
forecasts are performed, but it might be crucial in climate
simulations.

The magnitude of the constant growth rate is the typical
growth rate of the ocean dynamics shortly after the turbu-
lent forcing by the atmosphere has started and before dissi-
pative processes develop to counterbalance it. It depends on
the strength of the atmospheric forcing, its coherence in time
and the thickness of the ocean (mixed) layer. Processes that
lead to a saturation of the growth are of varying nature, space
and time dependent, and typically non-linear and intermit-
tent.

The discussion of the FDT establishes when the response
to an external perturbation can be obtained from internal fluc-
tuations of the system. In the simple system discussed here
we can see analytically when it is verified and fails and how
the failure can be removed by extending the phase space.
Determining the response to a sudden change in the exter-
nal forcing is key in many applications, such as the response
of the atmospheric and oceanic planetary-boundary-layer dy-
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namics to a change in the synoptic weather condition. The
presented calculations can also be used to guide applications
of the FDT to systems with large, but not infinite, time sepa-
ration.

The FT concerns the transfer of energy between the at-
mosphere and the interface and the interface and the ocean
on different timescales. The temporal down-scaling is solved
when we can obtain the pdf of short-term averages from
the pdf of longer-term averages. The temporal up-scaling is
solved when we can obtain the pdf of long-term averages
from the pdf of short-term averages. The FT relates temporal
averages over different timescales and puts a large constraint
on the pdfs of the averaged energy transfers over different
timescales. The FT is key to understanding and modelling
the climate dynamics, as in all observations and models some
time-and-space averaging is present. It is not always clear
what the averaging period is associated with a variable in a
model. The FT gives us a hint of what to expect when pass-
ing, for example, from monthly averaged interaction/forcing
to daily or hourly averages. Considering a more fundamental
point of view, equilibrium statistical mechanics is based on
the pdfs of the canonical ensembles. For non-equilibrium en-
sembles no such reference pdf is known in general (Derrida,
2007). If a FT holds, it constrains “half” of the pdf, as prob-
abilities of positive and negative values are related. Statisti-
cal mechanics furthermore gives us the likeliness of extreme
events.

The major difference between a 2-D model and a local
model is that the former contains horizontal advection of mo-
mentum, while the latter does not. It is thus not clear which
variable of the 2-D model has to be considered using the in-
sight from the local models. Is it the local velocity or the ve-
locity advected by the total-momentum mode or by the ocean
dynamics, or do we have to consider coarse-grained variables
for which the importance of horizontal advection is reduced?
If this is the case, we have to define a coarse-graining scale
that is sufficient or optimal in some sense. The FT can guide
these choices.

The concepts presented here are not restricted to mo-
mentum transfer, but can also be employed to study heat
exchange between the atmosphere and the ocean or other
processes in the climate system with diverse characteristic
timescales. Ongoing research is directed towards considering
the concepts presented here in a hierarchy of models with in-
creasing complexity and in observations. This research is of
a different nature, numerical and observational, and will be
described elsewhere.

Code availability. The data used in Sect. 7 were produced by the
FORTRAN code available under open access under https://zenodo.
org/record/2530007 (last access: 2 January 2019) (Wirth, 2019).
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Appendix A: The models

In this section the solutions of linear models L1, L2 and L3
are solved using linear algebra. The linear differential equa-
tion

oru = —ou+ F(t) (Al)
with initial condition u(fg), has solutions:
u(t) =TI (o) + u(to)e® 0", (A2)

with the symbol:

t
! (o) = / D EYdr (A3)

0]
In the multidimensional case we have
B,u=—Pu+FF(t)=—ADA*1u+FF(t), (Ad)

where D is a diagonal (or Jacobi normal) matrix, F a constant
coefficient vector and F'(¢) a time-dependent scalar forcing.
The solution with initial condition u(fg) is

u(t) = AZ; (D)A™'F + AeP 0™ A~ u(ty). (A5)

Note that in all our applications ¢« and the eigenvalues of D
are positive or zero.

Al Model L1

The system is forced and damped and the atmospheric dy-
namics acts on the ocean without considering the ocean ve-
locity. A coupling which is still used in some climate models.

Oty = —Smuy + F, (A6)
oo = Suy + Fy (A7)
us\ _ [(—Sm 0\ (u, F,
()= (3" 9 G)+ (7) =
AM=-—Sm, e = <inl>, M =0, ex = ((1)) (A9)
_ -1 _ —Sm 0
P=ADA™" = ( s 0)

S [ G [ s
The solution is
(1) = azy o (5)
=4("5" )2 (7)
- <[—I,’0(Sﬁ(3(ir;?0(0)] /m I{:)(())) (?g) (Al1)
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In the absence of forcing, an initial perturbation at At =0,
(uy,uy), evolves as

P —SmAt —

u, (At)\ (e 0\ (u,
<u£(At)> = <l_emSmAt I\ ) (A12)
Note that the perturbation matrix above, x(Atf)=

Aexp(DAt)A™!, is independent of the time .

A2 Model L2

The system is forced with damping and the atmospheric dy-
namics forces the ocean, ocean velocity is taken into account
for the ocean dynamics but not in the atmospheric dynamics
(Newton’s third law is not respected).

Orlhy = —Smuy, + Fy (A13)
Ot = S(uy — uo) + Fy (Al14)
u,\ _ (—Sm 0 Uy F,
() =5 )@)+R) e
m—1 0
A =—8Sm, e; :( 1 ); =-S5, eo = (1> (A16)
. -1 _(-Sm 0\ (m-1 0
TN & AN L
—Sm 0\ [{(m-D"" 0
( 0 —S) <(m—1)—1 1)' (AI7)

The solution is
(1) = amconn (52)
() - (587 ) )
Tt
- ([_IfO(Sm) LO;ZIZ;)] Jm —1) Iﬂi&) (152) (A18)

In the absence of forcing, an initial perturbation at At =0,
(uy,uy), evolves as

Ltzf(Al) B e—SmAt 0 i,

u(})) (At) == e*SAin_f]meAt e—SAI ﬁo .
Note that the perturbation matrix above:
Aexp(DAt)A™!, is independent of the time 7.

(A19)

x(Ar) =

A3 Model L3

The atmosphere is forced with damping and the atmospheric
dynamics forces the ocean, the ocean velocity is taken into
account.

Ot = Sm(ug — uy) + Fy (A20)

Oiuo = Sy — uo) + Fo (A21)
g\ _ [(—Sm  Sm\ (ua F,

()= 2)0)-(R) o
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(A23)

AM=—SM, €1=<T1); Xy =0, 82=<i>.

The first eigenvector corresponds to the shear mode and the
second to the total-momentum mode.

_ 1 _(=Sm Sm\ (m 1

s (3 9= )
—SM 0 l 1 -1
0 o) mM\1 m)’

The solution is

(1) = Az (7).

w0\, (ThSM) 0\ L (F

<uo(l)>_A( 0 I}O(O)>A 1<F0>

1 (mZ{ (SM)+I; (0) —mI} (SM)+mZ](0))(F, (A25)
—T (SM)+ I (0)  Ti (SM)+mZi (0) J\F )

(A24)

M
In the absence of forcing, an initial perturbation at At =0,
(4, Uo), €volves as

(u,f(At)) 1 (1 + me—SMA!

ul(An) — M\ 1 —eSMA!

M m+e

_ o—SMAN (7
m(1 efSMAt )) (g:) . (A26)
Note that the perturbation matrix above:
Aexp(DAr)A™!, is independent of the time .

x(An) =

Appendix B: Experiments

In all experiments only the atmosphere is forced, F, =0.
Note that in the L3 model the atmosphere and the ocean are
treated similarly and they only differ by the mass ratio m.
The dynamics due to a forcing of the ocean can be repre-
sented by choosing m < 1 and interchanging the subscripts.
The dynamics of a forcing of the ocean and atmosphere can
be obtained by adding a model forced by the ocean and the
same model forced by the atmosphere due to the linearity of
the model.

B1 Constant forcing

In this Appendix F, = 1 and F, = 0. Put into Eq. (A3), this
leads to

7;,(0) =1 — 10, (B1)
I;O(oe) = é(l —exp(—a(t —1p))), if o #0. (B2)
The solutions for the different models are the following.

B2 Experiment L1K

ua (1) _ L 1 —exp(—=Sm(t — 1)) (B3)
uo(t) ) = sm \[Sm(t —to) — 1 +exp(=Sm(t —19))]/m ) -
The Taylor series expansion for small times (r —1#y) <
(Sm)~is

(ua(t)) _( t—tg— St — )2+ 2 (r — )3 — .

- \ 2 3,2
o) S =102 = St — 1) + S22 (1 —10)* — ...

) - (B4)
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Asymptotics for large times (f — 19) > (Sm) ™"

ua(t)\ _ =
(1) = (0™ 1 ). @9

B3 Experiment L2K

(uao)) _
uo(t) ) —
[1 —exp(—=Sm(t —t9))]/(Sm) (B6)
[1—exp(—=S(t —19)) — (1 —exp(—=Sm(t —19))/m] /(S(m — 1)) )

The Taylor-series expansion for small times (f —1fy) <K
(Sm)~1is

ua(t)\ _
uo(t) ) —

t—t9—SB(r—19)%+ —(j’gi (t—19)3—... . (B7)
S —10)2 = SM (g3 4 STbmil _ypd

Asymptotics for large times (f — 1p) > S~
ua<r)> (ﬁ)
— (7). (BS)
<uo(t ) Sm

B4 Experiment L3K

M

ua()) _ 1 (1 =19+ (1 —exp(—SM(t — 19)))m/(SM) (B9)
uo(t) t—ty— (1 —exp(=SM(t —19)))/(SM)

The Taylor-series expansion for small times (f —1fy) <K
(Sm)~1is

<Ma(f)> _
uo(t)) =

2
( t—tg— 3t —19)? + S2M (¢ — )3 — .
2 3402
St —10)? = 58t — 193 + S0 — 1)t — ...

) (B10)

Asymptotics for large times (t — #9) > (SM )~ L

<ua<r>>_ S i
uo(t) a %_#

BS Periodic forcing

(B11)

In this Appendix F, = cos(kt). Put into Eq. (A3), and start-
ing the integration at fp = —oo (ignoring transients), this
leads to

1
I' (@)= ) (k sin(«t) + acos(kt)). (B12)

B6 Experiment L1P

The solution is

ua(t)\ _ 1 (k sin(kt) + Sm cos(kt)) (B13)
uo(t) _(Sm)2+/c2 S/k(Smsin(xt) — k cos(kt)) |-
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The averages over one period Tt = 257 /k are denoted by (.);.
First-order moments all vanish, and for the second-order mo-
ments we get
B 1
T (Sm)?2 4«2’
S2
T ((Sm)2 k)
W) S?
(”%)t K2

(Uato)r = 0.

2(u2).

(B14)

B7 Experiment L2P

[k sin(kt) + Smcos(kt)] (B15)

Ua

~ Sm)? +«2

S
((Sm)2 +k2)(S2 +«2)
+(8%m — k?) cos(k1)]

[SMk sin(kt)

Uy =
(B16)

1
T (Sm)? 4«2
SZ

2(1,{2)7; = 2(143,140)1 = ((Sm)2+K2)(SZ+K2)

o

<u2)r s?

o

W), S2+«?

B8 Experiment L3P

1
uy(t) = M(Mz + muy)

1 24 8m
- [K +SM Ginter) + Sm cos(Kt):| ,
K

k24 (SM)?

1
uo(t) = M(M[ —ug)
S
S Msinger) —
2t (s M) Zaccosten]

which leads to

B17)

2(”3){ _ 1 K2+ §2
K2+ (SM)?2 k2
1 s?
T (SM)2 k2

) (B18)

20ul)r = 2(uato)

o

(B19)

<”g)r _ 52
U2y, k2452

(B20)

B9 Random walk and Ornstein—Uhlenbeck process

The following identities are used:

t

/ 8t —thdt' =1/2,

—00

(B21)
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ot
//B(t” —H)dt"dt =1t — 1, (B22)
o o
(Fo(®))a =0, (B23)
(F,(t"F,(t"))q=2Rs(1" —1). (B24)

In the sequel the subscript w is omitted. Below are the equa-
tions for a random walk ugr and an Ornstein—Uhlenbeck pro-
cess ug, the solution of a Langevin equation.

atMR =F
oiug = —Sup+ F

(B25)
(B26)
Solutions starting from rest at ty, ur (fo) = uo(fp) =0, are

t

ur(t) = / F(tHdt,

Iy
t

uo(t) = / SCDEEAr.

fo

(B27)

(B28)

It follows that (ur)o = (uo)q = 0. The second-order mo-
ments are (note that as the processes are Gaussian, first- and
second-order moments completely determine the stochastic
processes)

t t
W3 (1)) = / / (F()F (")) adt"dt
o o

=2R(t —t9) (B29)
t t
(ur (Do ())e = / / SO F (")) adt"dl
o Yo
= z?R(l — eS(tO*t)) (B30)
t
(ué(t))g — //eS(z’+z”721) (F(t/)F(t//))th//dt/
o to
= g(l — S0y, (B31)
t
T} (@) = / D E(dr (B32)

fo

(T @I () = 2R(t —to)e P2 if a+p =0 (B33)

2R
(1, (a)I,tO+At(,3)>Q = atp
(1 —exp(—(a+ )t — 10))e P if a+ B #£0. (B34)
Also note that in all cases:
(T} @I (B)) e = (I ()T} (B))ae P2 (B35)
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The correlation matrix (z-dependence is kept to deal with
non-stationary processes) is

Ct, Aty = (u(t+ A1) -u@®)lg
= A (D)AT'F - FT (AN T (D))o AT
=Ae P2 T (DYAT'F - FT(A~YTT! (D))oAT,

To ] (B 36)
where we used Egs. (A5) and (B35). Even so the matrix
F - FT is singular, this does not necessarily lead to a singular
correlation matrix, as (a)(b) # (ab). Calculations show that
the normalised correlation matrix C(¢, At)C(¢,0)~! is inde-
pendent of F, if none of the eigenvectors is orthogonal to F,
that is all eigenvectors are subject to the forcing. To see this
we transform to a coordinate system spanned by the eigen-
vectors; in this case P = D is diagonal and A is the identity
matrix. Then,

C(t, A)C(,0)7!
— A<IT+At(D)A—1F . FT(A—I)TIt (D))Q

0] 1o
(Z(D)A™'F - FT(A™H T} (D))" AT
= (Z;FA(D)F - F'T; (D))o (Z} (DYF - FT T} (D)) ™!
:e—DAt.

(B37)

To obtain the last equality above, we used Eq. (B36). The
normalised correlation matrix is equal to the perturbation ma-
trix and thus proves the FDT (see Sect. 6 and Appendixes C1
and C2).

B10 Experiment L1W

For the stochastic forcing straightforward calculations, based
on Egs. (A11), (B33) and (B34), and supposing that t — o >
S—1 that is, e =10) a~ (, leads to the correlation matrix:

(a0 + ADYa (o (it (t + A1)
can= ((uu(nu‘,(r FAng (gl + m)fé)

= <(ffjj§§ T ﬁiﬁ) a0, u0())a

T (sm 0 . Tt (Sm)+TL (0)
= —I"A"U(Sm)(JrI“)A’(O) ((1) 8) IIYL)(‘SM) = u)—m - )e
0 - 0 I,rn+Ar (0) 0 Iltu (0)

It (Sm)I,’*A‘ (sm) I{*A’ (sm) =TI}, (Sm+ I} (0)
= fo 0 o m
=( I' (Sm) —I;(;'A'(Sm)+1;ﬁ+m(0) (71,'“4‘ (Sm+ I O) (=] (Sm)+ T (0) e

(0] i
1o m m*

¥, s ) (B38)

Straightforward calculations show that C(Ar)C(0)~! is
equal to the perturbation matrix Eq. (A12) which proves the
FDT.

B11 Experiment L2W

For the stochastic forcing straightforward calculations, based
on Eqs. (A18), (B33) and (B34), lead to the correlation ma-
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trix:

{a(utat + AD)a o (Dt + AD)
clan= (<ua<r>u(,u FAna (un(Ouali+ Ar»g)

= <<Z3§§12§§> (). 0 (D))

I/'"*A’(Sm) 0 10\ (7t (5m) =TI, (Sm)+ I} (S)
= -~z em+ T ) 0 o)\7™ ] )

—1
1+ At i
m—1 II(» () 0 an %)
—I! (Sm)+I} (S)
B T (Sm) Ty (Sm) I (Sm) —o—
= , 71,'"’3‘(.s:n)+1,'0""'15) (71,'[;'3'(Sm)+IfJA'(S))(71,'U(SmH»I,’"(S)) e
Zi, (Sm) T m—1)?

(B39)

L,fimAI L" A
:R( RIS T N . )
Son T T T ) SM(m—])<e - =)

Straightforward calculations show that C(Af)C(0)~! is
equal to the perturbation matrix Eq. (A19) which proves the
FDT.

B12 Experiment L3W

For the stochastic forcing straightforward calculations, based
on Egs. (A25), (B33) and (B34), lead to the correlation ma-
trix:

c(an = ((Ha®ual +Ama  (uo(Dua(t + AD)g
T (ot + AD)g  (uo(ue(t + An)g

4 A
= <(f§:§§iA‘,§> (WD), o))
L mIpA (SM) + I 0)  —mZA (SM) +mZ A (0)) (10
M A\-ZPASM)+ I ) I (SM) +m I (0) 00

L ( mZl (SM)+ I}, ©0)  —Ti(SM)+T (0))):Z

— 1
i (7;7,1;“ (SM)+mZL©) T, (SM)+mIL (0)

_ e SMA (T (SMY(mTL (SM) + ! (0)  mZy, (SM)(=ZL (SM) + I}, (0)) )
M2 \=Ziy SM)mI (SM)+ L (0) =i (SM)(—Z!, (SM)+ T (0)) ) '?

to
iy T} () (mZL (SM) + I} (0)) It (0)(~Z}, (SM) + T}, (0)) )
M2 \Zy, (0)nTl (SM)+ ! (0)) I (O)(—Z! (SM)+T} (0) )’

o 1o

R e SMa mm+2) m 2 (m —1 11
:W( M <—m—2 —I>+m<m 71)#»2(1710)(1 ]>)'

o o

(B40)

Straightforward calculations show that C(AHCO) ! s
equal to the perturbation matrix Eq. (A26) which proves the
FDT.

B13 Experiment L1C

F=—uF+F (B41)
dtta = —Smug+ F (B42)
Ol = Su, (B43)
F —u 0 0\ /[F F
lua|=| 1 —Sm Offua|+]0 (B44)
Uo 0 s 0/ \u 0
pup — Sm)
A =—,e1 = —u ; Ay =—38m,
S
0 0
ex=|m|; A:3=0, e3=10 (B45)
—1 1
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—u 0 0
P=ADAT'=[ 1 —Sm 0
0 S 0
upuw—Sm) 0 O — 0 0
= - m 0 0 —-Sm O
S -1 1 0 0 0

[w(e—Sm1~t 0 0

m(w—Sm)I"' m=! 0 (B46)
[um]™! m~t 1
The solution is
F 1
(ua(t)> = AZ} (D)A™! (0) dr’
uo (1) 0
w0 0 1
=Al 0 ZiSm) 0 |a~! (0)
0 0 T (0) 0
i, (w)
= [=Z, ) + Zi, (Sm)] / (. — Sm) - (B47)
[SmZt, () — wThy (Sm) + (= Sm)ZL ()] / Tmps (i — Sm)]

From this follows (after dropping decaying exponentials):

R

2 _
(uyMa = Smu( + Sm) (B48)
~ R
(ua(OF (1)) = w(+ Sm) (B49)
) _ R(3Sm®+28Sm?u —2Smu® —3u3)
2R(t —
# (B50)
R
(ua(Duo(t)o = W (B51)

In the absence of forcing an initial perturbation at t =0,

(F,u,,u,), evolves as

~ —pt —
FP () et 0 0 i
P e Smr_e ut —Smt 0
W) | = e e | ®52)
M(I))(f) /L(]7e75m1)7Sm(|767M’) ]73—51111 1 ﬁo

pum(p—Sm) m

The perturbation matrix above is obtained by calculating
Aexp(Dt)A~!. Note that the lower-right 2 x 2 sub-matrix is
identical to Eq. (A12), a simple consequence of linearity.

B14 Experiment L2C

WF=—-puF+F (B53)

dug = —Smuy + F (B54)

0o = S(uy — ug) (B55)
F w0 0 F F

dluwal=11 =Sm 0 |lu|+]|0 (B56)
Uo 0 S -=5)\u 0
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(Sm — ) (S — p)

Al =—p,e1 = (§—w ; Ay =—Sm,
S
0 0
ex=|m—-1]; 3==5, e3=1{0 (B57)
-1 1
— 0 0
P=ADA™'=(1 —Sm 0
0 S —S
Sm—pwy(S—-wy 0 0\ /—p 0 0
= (S—nw) m—1 0 0 —-Sm O
S -1 1 0 0 -8
[(Sm —p)(S — w1~ 0 0
—[m =D Sm—w1™" m-D7" 0. (B58)
—[m=DES-wl™" m-D7" 1
The solution is
()0 ()
=4 (Z[“o(m z ([Tm) 0 )A" ((1)>
0 0 IO 0
I}, (1)
:( [ZL, o) — T, (Sm)] /(Sm — ) ) (B59)
[SGm = DIL () + (S — W Ty (Sm) = (Sm — W I ()] / [m — D(Sm — p)(S — )]

From this follows (after dropping decaying exponentials):

R

2 _
(uy(M)a = —;LSm(Sm 0 (B60)
~ R
(ua(OF (1)) = m (B61)
5 B B R(SM + 1)
(ug®))a = (ua(®uo(t) = mSHAGS + I Em IR (B62)

In the absence of forcing an initial perturbation at r =0,

(f, U,, Ug), evolves as
FP(n)
ul @) | =
ug (t)

e 0 0
—Smt _ ,—put
e e —Smt
e 0
n—Sm
(V/l*1)67“'+(S—u)efs"”—(Sm—#)e"g’ e*Sf,e*SW eiSt (

(m—1)(S—p)(Sm—p) m—1

I~y

) . (B63)

NI
(=]

The perturbation matrix above is obtained by calculating
Aexp(Dt)A_l. Note that the lower-right 2 x 2 sub-matrix is
identical to Eq. (A19), a simple consequence of linearity.

B15 Experiment L3C

Full interaction both ways.

WF=—puF+F (B64)

Qg = —Sm(uy —ug) + F (B65)

0o = S(uy — uo) (B66)
F -0 0 F F

Glul=1 1 —=Sm Sm||u|+]|0 (B67)
Uo 0 s =s) \u, 0
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uln —SM)
Al =—p,e] = S—pu ; Ma=—SM,
S
0 0
ex=|m|; 3=0, es=1]1 (B68)
-1 1
P=ADA"!
—u 0 0
=1 —-Sm Sm
0 s =S
upuw—SM)y 0 0 —u 0 0
= S—u m 1 0 —-SM O
S -1 1 0 0 0
[u(u—Sm1t o 0
(M(u—SM)™' M~ —m! (B69)
(uM)™! M1 mM!

The solution is

F 1
(mn) = AZ, (D)A™! <0> dr’
uo(t) 0
i, (1) 0 0 1
=A[ 0 T} (SM) 0 A7 (0)
0 0 T (0)dr’ 0

i (w)
= ([M(s — WTL (1) +muTl (SM) (- SITL O]/ (M — szvz)]) . (B70)
[SMZL () — pZi (SM) + (n — SM)T}, <0>ﬁ/[M/t(/A —SM)]

From this follows (after dropping decaying exponentials):

(uz () =
R(=3SM?*+ (2m% —m —=3)Su+m(m +4)u?)
M3Su3(SM + 1)
2R(t — ty)
o (B71)
~ _ R(pu+9)
(ua(HF (1)) = m (B72)
() = —RBSM?+5(m+1)Su +3u?)
Holl )12 = M3S13(SM + 1)
2R(t — 1)
o (B73)
(ua(uo(t))o =
R(—=382M? + (m? —3m —4)Spu + (m — 2)u?)
M3Su3(SM + )
2R(t —19)
+ o (B74)

In the absence of forcing, an initial perturbation at t = 0,
(F,u,,uy), evolves as

FP@
ul 1) | =
ug (1)

e M 0 0 =
M(S—pe  tmpe M 4 (u—SM)  14me=SM!  m(1—e=SM") f B75
M (u—SM) M ] u, |- ( )
SMe™M —pe”SM! —(SM—p) 1—e=SM! eSM g o
M (i—SM) M M
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The perturbation matrix above is obtained by calculating
Aexp(Dt)A~!. Note that the lower-right 2 x 2 sub-matrix is
identical to Eq. (A26), a simple consequence of linearity.

Appendix C: Fluctuation—dissipation theorem

The fluctuation—dissipation theorem applies to a system if the
system relaxes from a forced state to the unforced dynamics
in the same manner as if the forced state were due to an in-
ternal fluctuation of the system.

The average response of a system to an external small-
amplitude forcing is

t

(v(t,u))QZ(u(t))sva/ﬁ(t,S)F(S)dSvLO(FZ), (ChH

—00

where the first term on the right-hand side is the unforced
dynamics. The upper bound of the integral is imposed by
causality. In the linear case only the first term in the Taylor
expansion of the perturbation has to be considered (O (F?) =
0) and we can put (u(t))o = 0 and v(¢,u) = v(¢) as the evo-
lution does not depend on the state u. When the system is
stationary we can simplify to pu(t —s) = (¢, s).

C1 Example: Langevin equation (white noise)

The Ornstein—Uhlenbeck process (S > 0) and Brownian mo-
tion (S = 0) are considered:

diuo = —Suo + F. (2)
The response function is, using Eq. (A3),
w(At) = exp(—SAt). (C3)

Straightforward calculations using Eq. (B26) show that an
initial perturbation decreases as

uollo FAD _ . (Ar) = exp(—SAD). ©
1o ()

On the other hand we can show, using the same equation, that
the time correlation is

C (10, At) = (uo(to)uo(to + An))q = exp(=SAr) (C5)

and that the normalised correlation matrix is

C (A1) = C(ty, At)C(ty,0)~ " = exp(—SAL). (C6)
This leads to
w(At) = C(At) = x(AD). (C7)

Historically the first equality is the first FDT and the sec-
ond equality is Onsager’s principle (see Barrat and Hansen,
2003). Today the second equality which matches the decay of
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an initial perturbation with the normalised correlation matrix
is referred to as the FDT.

Note that for Brownian motion (S = 0) perturbations do
not decay and the process has the martingale property, but
also in this case the normalised correlation matrix does not
depend on the absolute time #( as the process is of stationary
increment.

C2 Example: Langevin equation with coloured noise

WF=—-puF+F (C8)
duoc = —Suoc + F. (C9)
The mathematical structure is the same as the L2 model, and
the solution is

t

F(t) = / D E(Ydr 4 070 F (1) (C10)
fo
t
MOCU)=t/esw_”ﬁ%fﬂh/+esw_”uocﬁw
0]
t
— ; /(eS(t’—t) _ e’w/_l))F(t/)dt/
u—=S
]
F(t
+ 50Dy (1) + Fio) (5007 — im0y (C11)

It is important to see that the system composed of Egs. (C8)
and (C9) is forced by a white noise and does obey the FDT
(in 2-D space), when only Eq. (C9) is considered forced by a
coloured noise the FDT (in 1-D space) is not observed.

More precisely, in 2-D space, a perturbation (F,uoc)
(putting F = 0 in Egs. C10 and C11) decreases as

FP (At)) ( F )
=x(A) | _
(ugC(At) x(AD) UOC
ehAL 0 a
= —uar_,-sa _ _ . Cl12
=l <MOC> 12
Equation (C11) shows that u(At) = x (At).
The time-lagged correlation matrix is
cw = ( (FU)F(to+AD)a  (uocto)F(to+ A)g )
(F(to)uoc(to+ At))a  {uoc(to)uoc(to + Af))a
eHat A
=R ( e"‘A’fe’SK’ e HAL Se)fl(A(lstf;,)SAl) . (C13)
2 22 w(S+p) wS(S2—u2)

Note that 9; (uoc (fo)uoc (to+1))el=0 = 0, so that contrary to
the white-noise case the correlation is differentiable at t = 0.
Calculations give

S+pu

_S(S+ 1) (€19

)" =R ( —S(S+M)>

S(S 4 w)?
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and the normalised correlation matrix

~ e HAt
C(At) =C(AHC0) ' = (e—;mz_e—sm
S—u

0
eSAf) . (C15)

As for the white-noise case, we get

w(At) = C(At) = x(AD). (C16)
The first equality is the (first) FDT and the second equality is
Onsager’s principle.

When only Eq. (C9) forced by a coloured noise is con-
sidered, the FDT does not apply. Indeed, an imposed pertur-
bation upc still has the same decay of the white noise case
given by Eq. (C4), as the decay in the linear equation does
not depend on the noise. The response function is also iden-
tical to Eq. (C3), as the response in the linear equation does
not depend on the noise. It follows that w, (A?) = x,(At?),
whereas the scalar calculations give

(uoc(to)uoc(to + At))q

Cu(At) =
! (U2 (o))
Se—HAL _ oSt
=2 re | (C17)
S—p

which does not agree with the response function or the decay
law of a perturbation and so neither the FDT nor Onsager’s
principle is observed. The failure of the FDT is due to the
non-vanishing auto-correlation time of F. A consequence of
this is that (uoc(tp) F (to +1)))q # 0 even if t > 0, meaning
that the future forcing is correlated to the actual state.

The FDT applies only when the forcing correlation time
vanishes, that is, when p > S or a generalised Langevin
equation is used; that is, the friction term is presented by a
memory kernel and Eq. (C9) replaced by

t

S / ~
druoc(t) = o / e Dugc(t)dt' + F.

—00

(C18)

A more general discussion of the problem of causality due to
time-correlated noise and the generalised Langevin equation
are given by Balakrishnan (1979).

As the system is linear, the pdfs of the variables are Gaus-
sian. In the unperturbed system, averages vanish and second-
order moments are given in Eq. (C13) by setting ¢ = 0.
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