Articles | Volume 30, issue 3
Review article
16 Aug 2023
Review article |  | 16 Aug 2023

Review article: Scaling, dynamical regimes, and stratification. How long does weather last? How big is a cloud?

Shaun Lovejoy

Related authors

Geographic variability of dust and temperature in climate scaling regimes over the Last Glacial Cycle
Nicolás Acuña Reyes, Elwin van ’t Wout, Fabrice Lambert, and Shaun Lovejoy
EGUsphere,,, 2023
Short summary
Fractional relaxation noises, motions and the fractional energy balance equation
Shaun Lovejoy
Nonlin. Processes Geophys., 29, 93–121,,, 2022
Short summary
The fractional energy balance equation for climate projections through 2100
Roman Procyk, Shaun Lovejoy, and Raphael Hébert
Earth Syst. Dynam., 13, 81–107,,, 2022
Short summary
The half-order energy balance equation – Part 1: The homogeneous HEBE and long memories
Shaun Lovejoy
Earth Syst. Dynam., 12, 469–487,,, 2021
Short summary
The half-order energy balance equation – Part 2: The inhomogeneous HEBE and 2D energy balance models
Shaun Lovejoy
Earth Syst. Dynam., 12, 489–511,,, 2021
Short summary

Related subject area

Subject: Scaling, multifractals, turbulence, complex systems, self-organized criticality | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere | Techniques: Theory
Stieltjes functions and spectral analysis in the physics of sea ice
Kenneth M. Golden, N. Benjamin Murphy, Daniel Hallman, and Elena Cherkaev
Nonlin. Processes Geophys., 30, 527–552,,, 2023
Short summary
Brief communication: Climate science as a social process – history, climatic determinism, Mertonian norms and post-normality
Hans von Storch
Nonlin. Processes Geophys., 30, 31–36,,, 2023
Short summary
Characteristics of intrinsic non-stationarity and its effect on eddy-covariance measurements of CO2 fluxes
Lei Liu, Yu Shi, and Fei Hu
Nonlin. Processes Geophys., 29, 123–131,,, 2022
Short summary
How many modes are needed to predict climate bifurcations? Lessons from an experiment
Bérengère Dubrulle, François Daviaud, Davide Faranda, Louis Marié, and Brice Saint-Michel
Nonlin. Processes Geophys., 29, 17–35,,, 2022
Short summary
Non-linear hydrologic organization
Allen Hunt, Boris Faybishenko, and Behzad Ghanbarian
Nonlin. Processes Geophys., 28, 599–614,,, 2021
Short summary

Cited articles

Adelfang, S. I.: On the relation between wind shears over various intervals, J. Appl. Meteorol., 10, 156–159, 1971. 
Arias, P. A., Bellouin, N., Coppola, E., Jones, R. G., Krinner, G., Marotzke, J., Naik, V., Palmer, M. D., Plattner, G.-K., Rogelj, J., Rojas, M., Sillmann, J., Storelvmo, T., Thorne, P. W., Trewin, B., Achuta Rao, K., Adhikary, B., Allan, R. P., Armour, K., Bala, G., Barimalala, R., Berger, S., Canadell, J. G., Cassou, C., Cherchi, A., Collins, W., Collins, W. D., Connors, S. L., Corti, S., Cruz, F., Dentener, F. J., Dereczynski, C., Di Luca, A., Diongue Niang, A., Doblas-Reyes, F. J., Dosio, A., Douville, H., Engelbrecht, F., Eyring, V., Fischer, E., Forster, P., Fox-Kemper, B., Fuglestvedt, J. S., Fyfe, J. C., Gillett, N. P., Goldfarb, L., Gorodetskaya, I., Gutierrez, J. M., Hamdi, R., Hawkins, E., Hewitt, H. T., Hope, P., Islam, A. S., Jones, C., Kaufman, D. S., Kopp, R. E., Kosaka, Y., Kossin, J., Krakovska, S., Lee, J.-Y., Li, J., Mauritsen, T., Maycock, T. K., Meinshausen, M., Min, S.-K., Monteiro, P. M. S., Ngo-Duc, T., Otto, F., Pinto, I., Pirani, A. Raghavan, K., Ranasinghe, R., Ruane, A. C., Ruiz, L., Sallée, J.-B., Samset, B. H., Sathyendranath, S., Seneviratne, S. I., Sörensson, A. A., Szopa, S., Takayabu, I., Tréguier, A.-M., van den Hurk, B., Vautard, R., von Schuckmann, K., Zaehle, S., Zhang, X., and Zickfeld, K.: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, United Kingdom and New York, NY, USA, Cambridge University Press,, 2021. 
Ashkenazy, Y., Baker, D., Gildor, H., and Havlin, S.: Nonlinearity and multifractality of climate change in the past 420,000 years, Geophys. Res. Lett., 30, 2146, 2003. 
Bak, P., Tang, C., and Weiessenfeld, K.: Self-Organized Criticality: An explanation of 1/f noise, Phys. Rev. Lett., 59, 381–384, 1987. 
Batchelor, G. K. and Townsend, A. A.: The Nature of turbulent motion at large wavenumbers, P. Roy. Soc. Lond. A, A199, 208—256, 1949. 
Short summary
How big is a cloud? and How long does the weather last? require scaling to answer. We review the advances in scaling that have occurred over the last 4 decades: (a) intermittency (multifractality) and (b) stratified and rotating scaling notions (generalized scale invariance). Although scaling theory and the data are now voluminous, atmospheric phenomena are too often viewed through an outdated scalebound lens, and turbulence remains confined to isotropic theories of little relevance.