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Abstract. Until the 1980s, scaling notions were restricted to self-similar homogeneous special cases. I review
developments over the last decades, especially in multifractals and generalized scale invariance (GSI). The for-
mer is necessary for characterizing and modelling strongly intermittent scaling processes, while the GSI for-
malism extends scaling to strongly anisotropic (especially stratified) systems. Both of these generalizations are
necessary for atmospheric applications. The theory and some of the now burgeoning empirical evidence in its
favour are reviewed.

Scaling can now be understood as a very general symmetry principle. It is needed to clarify and quantify the
notion of dynamical regimes. In addition to the weather and climate, there is an intermediate “macroweather
regime”, and at timescales beyond the climate regime (up to Milankovitch scales), there is a macroclimate and
megaclimate regime. By objectively distinguishing weather from macroweather, it answers the question “how
long does weather last?”. Dealing with anisotropic scaling systems – notably atmospheric stratification – requires
new (non-Euclidean) definitions of the notion of scale itself. These are needed to answer the question “how
big is a cloud?”. In anisotropic scaling systems, morphologies of structures change systematically with scale
even though there is no characteristic size. GSI shows that it is unwarranted to infer dynamical processes or
mechanisms from morphology.

Two “sticking points” preventing more widespread acceptance of the scaling paradigm are also discussed. The
first is an often implicit phenomenological “scalebounded” thinking that postulates a priori the existence of new
mechanisms, processes every factor of 2 or so in scale. The second obstacle is the reluctance to abandon isotropic
theories of turbulence and accept that the atmosphere’s scaling is anisotropic. Indeed, there currently appears to
be no empirical evidence that the turbulence in any atmospheric field is isotropic.

Most atmospheric scientists rely on general circulation models, and these are scaling – they inherited the
symmetry from the (scaling) primitive equations upon which they are built. Therefore, the real consequence of
ignoring wide-range scaling is that it blinds us to alternative scaling approaches to macroweather and climate –
especially to new models for long-range forecasts and to new scaling approaches to climate projections. Such
stochastic alternatives are increasingly needed, notably to reduce uncertainties in climate projections to the year
2100.
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1 Introduction

1.1 Dynamical ranges, fluctuations, and scales

Perhaps the most obvious difficulty in understanding the at-
mosphere is in dealing with its enormous range of scales. The
single picture in Fig. 1 shows clouds with horizontal spatial
variability ranging from millimetres to the size of the planet,
a factor of 10 billion in scale. In the vertical direction the
range is more modest but still huge: about 10 million. The
range of temporal variability is extreme, spanning a range
of 100 billion billion: from milliseconds to the planet’s age
(Fig. 2).

The earliest approach to atmospheric variability was phe-
nomenological: weather as a juxtaposition of various pro-
cesses with characteristic morphologies, air masses, fronts,
and the like. Circumscribed by the poor quality and quan-
tity of the then available data, these were naturally associated
with narrow-scale-range, mechanistic processes.

At first, ice ages, “medieval warming”, and other evidence
of low-frequency processes were only vaguely discerned.
Weather processes were thought to occur with respect to a
relatively constant (and unimportant) background: climate
was conceived as simply long-term “average” weather. It was
not until the 1930s that the International Meteorological Or-
ganisation defined “climate normals” in an attempt to quan-
tify the background “climate state”. The duration of the nor-
mals – 30 years – was imposed essentially by fiat: it conve-
niently corresponded to the length of high-quality data then
available: 1900–1930. This 30-year duration is still with us
today with the implicit consequence that – purely by conven-
tion – “climate change” occurs at scales longer than 30 years.

Interestingly, yet another official timescale for defining
“anomalies” has been developed. Again, for reasons of con-
venience (and partly – for temperatures – due to the diffi-
culty in making absolute measurements), anomalies are de-
fined with respect to monthly averages. Ironically, a month
wavers between 28 and 31 d: it is not even a well-defined
unit of time.

The overall consequence of adopting, by convenience,
monthly and 30-year timescales is a poorly theorized, inade-
quately justified division of atmospheric processes into three
regimes: scales less than a month, a month up to 30 years, and
a lumping together of all slower processes with timescales
longer than 30 years. While the high-frequency regime is
clearly “weather” and the slow processes – at least up to
ice age scales – are “climate”, until Lovejoy (2013) the in-
termediate regime lacked even a name. Using scaling – and
with somewhat different transition scales – the three regimes
were finally put on an objective quantitative basis, with the
middle regime baptized “macroweather”. By using scaling
to quantitatively define weather, macroweather, and climate,
we can finally objectively answer the question: how long
does weather last? A bonus, detailed in Sect. 2, is that scal-
ing analyses showed that what had hitherto been considered

simply climate is itself composed of three distinct dynamical
regimes. Rather than lumping all low frequencies together,
we must also distinguish between macroclimate and mega-
climate.

To review how scaling defines dynamical regimes, let us
define scaling using fluctuations – for example of the temper-
ature or of a component of the wind. For the moment, con-
sider only one dimension, i.e. time series or spatial transects.
Temporal scaling means that the amplitudes of fluctuations
are proportional to their timescale raised to a scale-invariant
exponent. For appropriately nondimensionalized quantities,

fluctuation= (scale)ζ . (1)

Every term in this equation needs an appropriate definition,
but for now, consider the classical ones. First, the usual tur-
bulence definition of a fluctuation is a difference (of temper-
ature, wind components, etc.) taken over an interval in space
or in time. This interval defines the timescale (1t) or space
scale (1x) of the corresponding fluctuation. Also, classically,
one considers the statistically averaged fluctuation (indicated
by “〈〉”). If we decompose ζ into a random singularity γ and
a non-random “fluctuation exponent” H , then the appropri-
ately averaged fluctuation will also be scaling with

〈fluctuation〉 = (scale)H ;

〈(scale)γ 〉 = 1;ζ =H + γ, (2)

where the symbol 〈〉 indicates statistical (ensemble) averag-
ing.

Later, in Sect. 2.5, fluctuations as differences (sometimes
called “poor man’s wavelets”) are replaced by (nearly as sim-
ple) Haar fluctuations based on Haar wavelets (see also Ap-
pendix B) and in Sect. 3, and Eq. (1) is interpreted stochasti-
cally. Finally, in Sect. 4, the notion of scale itself is general-
ized by introducing a scale function that replaces the usual
(Euclidean) distance function (metric). These anisotropic-
scale functions are needed to handle scale in 2D or higher
spaces, especially with regard to stratification.

In atmospheric regimes where Eq. (1) holds, average fluc-
tuations over durations λ1t are λH times those at duration
1t ; i.e. they differ only in their amplitudes, they are qualita-
tively of the same nature, and they are therefore part of the
same dynamical regime. More generally (Eq. 1), appropri-
ately rescaled probabilities of random fluctuations also have
scale-invariant exponents (“codimensions”, Sect. 3), so that
the entire statistical behaviour is scaling. Scaling therefore
allows us to objectively identify the different atmospheric
regimes.

Over the Phanerozoic eon (the last 540 Myr), the five scal-
ing regimes are weather, macroweather, climate, macrocli-
mate, and megaclimate (Lovejoy, 2015). Starting at around
a millisecond (the dissipation time), this covers a total range
of≈ 1019 in scale (Sect. 2.5; Tuck (2022) argues that the true
dissipation scale is much smaller: molecular scales). Scal-
ing therefore gives an unequivocal answer to the question
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Figure 1. Cigarette smoke (left) showing wisps and filaments
smaller than 1 mm up to about 1 m in overall size. The upper right
shows two clouds, each several kilometres across with resolutions
of 1 m or so. The lower right shows the global-scale arrangement
of clouds taken from an infrared satellite image of the Earth with
a resolution of several kilometres. Taken together, the three images
span a range of several billion in spatial scale. Reproduced from
Lovejoy (2019).

posed in the title: “How long does weather last?”. The an-
swer is the lifetime of planetary structures, typically around
10 d (Sect. 2.6).

If the key statistical characteristics of the atmosphere at
any given scale are determined by processes acting over wide
ranges of scales – and not by a plethora of narrow-range ones
– then we must conclude that the fundamental dynamical
processes are in fact dynamical “regimes” – not uninterest-
ing “backgrounds”. While there may also be narrow-range
processes, they can only be properly understood in the con-
text of the dynamical regime in which they operate, and in
any event, spectral or other analysis shows that they gener-
ally contribute only marginally to the overall variability. The
first task is therefore to define and understand the dynami-
cal regimes and then – when necessary – the narrow-range
processes occurring within them.

1.2 A multiscaling/multifractal complication

Before answering the quite different scaling question “How
big is a cloud?”, it is first necessary to discuss a complication:
that the scaling is different for every level of activity. It turns
out that the wide range over which the variability occurs is
only one of its aspects: even at fixed scales, the variability
is much more extreme than is commonly believed. Interest-
ingly, the extremeness of the variability at a fixed scale is a
consequence of the wide range of scaling itself: it allows the
variability to build up scale by scale in a multiplicative cas-

Figure 2. Left: 1000 points of various time series collectively span-
ning the range of scales of 470 Myr to 0.067 s= 2.4× 1017; each
series was normalized so as to have the same overall range and off-
set in the vertical for clarity. The right-hand-side column shows
the absolute first differences normalized by the mean. The solid
horizontal line shows the maximum value expected for Gaussian
variables (p = 10−3), and the dashed lines show the correspond-
ing p = 10−6, 10−9 probability levels. Representative series from
each of the five scaling regimes were taken with the addition of the
hourly surface temperatures from Lander, Wyoming (bottom, de-
trended daily and annually). The Berkeley series was taken from
a fairly well-estimated period before significant anthropogenic ef-
fects and was annually detrended. The top was taken over a partic-
ularly data-rich epoch, but there are still traces of the interpolation
needed to produce a series at a uniform resolution. The resolutions
(indicated) were adjusted so that, as much as possible, the smallest
scale was at the inner scale of the regime indicated. In the macro-
climate regime, the inner scale was a bit too small and the series
length a bit too long. The resulting megaclimate regime influence
on the low frequencies was therefore removed using a linear trend
of 0.25 δ18O Myr−1. The resolutions and time periods are indicated
next to the curves. The black curves have H > 0 and the red ones
H < 0: see the parameter estimates in Appendix A. The figure is
from Lovejoy (2018), updated only in the top megaclimate series
that is at a higher resolution than the previous one (from Grossman
and Joachimski, 2022).

cade manner. As a result, mathematically, the scaling of the
average fluctuation (Eq. 2) gives only a partial view of the
variability, and we need to consider Eq. (1) in its full stochas-
tic sense. In particular, if the exponent ζ is random, then it is
easy to imagine that the variability may be huge.

To graphically see this, it is sufficient to produce a “spike
plot” (the right-hand-side columns of Fig. 2, time, and the
corresponding spatial plot, Fig. 3). These spike plots are sim-
ply the absolute first differences in the values normalized by
their overall means (in Fig. 3, the normalization is slightly
different, by the standard deviation). In the right-hand-side
column of Fig. 2 and the bottom of Fig. 3, we see – with a sin-
gle but significant exception, macroweather in time (Fig. 2)
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Figure 3. The first 8196 points of the temperature series measured
by a GulfStream 4 flight over the Pacific Ocean at 196 mb and 1 s
resolution (corresponding to 280 m). Because the aircraft speed is
much greater than the wind, this can be considered a spatial tran-
sect. The bottom shows the absolute change in temperature from
one measurement to the next normalized by dividing by the typical
change (the standard deviation). This differs from the spike plot on
the right-hand side of Fig. 2 only in the normalization, here by the
standard deviation, not by the absolute difference. Reproduced from
Lovejoy and Schertzer (2013).

– that they all have strong spikes signalling sharp transitions.
In turbulence jargon, the series are highly “intermittent”.

How strong are the spikes? Using classical (Gaussian)
statistics, we may use probability levels to quantify them.
For example, Fig. 2 (right) shows solid horizontal lines that
indicate the maximum spike that would be expected from a
Gaussian process with the given number of spikes. For the
1000 points in each series in Fig. 2, this line thus corresponds
to a Gaussian probability p = 10−3. In addition, horizontal
dashed lines show spikes at levels p = 10−6 and p = 10−9.
Again, with the exception of macroweather, we see that the
p = 10−6 level is exceeded in every series and that the mega-
climate, climate, and weather regimes are particularly inter-
mittent, with spikes exceeding the p = 10−9 levels. In Sect. 3
we show how the spikes can be tamed by multifractal the-
ory and the maxima predicted reasonably accurately (Ap-
pendix A) by simply characterizing the statistics of the pro-
cess near the mean (i.e. using their non-extreme behaviour).

The spikes visually underline the fact that variability is
not simply a question of the range of scales that are in-
volved: at any given scale, variability can be strong or weak.
In addition, events can be highly clustered, with strong ones
embedded inside weak ones and even stronger ones inside
strong ones in a fractal pattern repeating to smaller and
smaller scales. This fractal sparseness itself can itself become
more and more accentuated for the more and more extreme
events/regions: the series will generally be multifractal.

1.3 How big is a cloud?

Scaling is also needed to answer the question “how big is a
cloud?” (here “cloud” is taken as a catch-all term meaning an
atmospheric structure or eddy). Now the problem is what we
mean by “scale”. The series and transects in Figs. 2 and 3 are
1D, so that it is sufficient to define the scale of a fluctuation
by the duration (time) or length (space) over which it occurs
(actually, time involves causality, so that the sign of1t is im-
portant; see Marsan et al. (1996): we ignore this issue here).
However, the state of the atmosphere is mathematically rep-
resented by fields in 3D space evolving in time.

Consider Fig. 4, which displays a cloud vertical cross sec-
tion from the CloudSat radar. In the figure, the gravitation-
ally induced stratification is striking, and since each pixel
in the figure has a horizontal resolution of 1 km but a ver-
tical resolution of 250 m, the actual stratification is 4 times
stronger than it appears. What is this cloud’s scale? If we use
the usual Euclidean distance to determine the scale, should
we measure it in the horizontal or vertical direction? In this
case, is the cloud scale its width (200 km) or its height (only
≈ 10 km)?

If the horizontal–vertical aspect ratio were the same for
all clouds, the two choices would be identical to within a
constant factor, and the anisotropy would be “trivial”. The
trouble is that the aspect ratio itself turns out to be a strong
power-law function of (either) horizontal or vertical scale, so
that, for any cloud,

vertical scale= (horizontal scale)Hz . (3)

In Sect. 4, we will see that, theoretically, the stratification
exponent is Hz = 5/9, a value that we confirm empirically
on various atmospheric fields, including clouds.

To further appreciate the issue, consider the simulation in
Fig. 5 that shows a vertical cross section of a multifractal
cloud liquid water density field. The left-hand-side column
(top to bottom) shows a series of blow-ups in an isotropic
(“self-similar”) cloud. Moving from top to bottom, blow-ups
of the central regions by successive factors of 2.9 are dis-
played. In order for the cross sections to maintain a constant
50 % “cloud cover”, the density threshold distinguishing the
cloud (white or grey) from the non-cloud (black) must be sys-
tematically adjusted to account for this change in resolution.
This systematic readjustment of the threshold is required due
to the multifractality, and with this adjustment, we see that
the cross sections are self-similar; i.e. they look the same at
all scales.

The effect of differential (scale-dependent) stratification is
revealed in the right-hand-side column that shows the anal-
ogous zoom through an anisotropic multifractal simulation
with a stratification exponent Hz = 5/9. The low-resolution
(top) view of the simulation is highly stratified in the horizon-
tal. Now, the blow-ups reveal progressively more and more
roundish structures. Eventually – with the bottom cross sec-
tion (a blow-up of a total factor of ≈ 5000) – we can start
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Figure 4. A vertical cloud cross section of radar backscatter taken
by the radar on the CloudSat satellite with resolutions of 250 m in
the vertical and 1 km in the horizontal. The black areas are those
whose radar reflectivities are below the radar’s minimum detectable
signal. The arrows show rough estimates of the horizontal and ver-
tical extents of the cloud. The two differ by a factor of more than
10. How do they characterize the size of this cloud? Adapted from
Lovejoy et al. (2009b).

to see vertically oriented structures “dangling” below more
roundish ones.

In the isotropic simulations (left-hand side), the only diffi-
culty in defining the size of the cloud is the multifractal prob-
lem of deciding, for each resolution, which threshold should
be used to distinguish cloud from no cloud. However, in the
more realistic anisotropic simulation on the right, there is an
additional difficulty in answering the question of “how big
is a cloud?” Should we use the horizontal or vertical cloud
extent? It turns out (in Sect. 4) that, to ensure that the an-
swer is well defined, we need a new notion of scale itself:
generalized scale invariance (GSI).

1.4 Wide-range scaling and the scalebound and
isotropic turbulence alternatives

1.4.1 Comparison with narrow-scale-range,
“scalebound” approaches

The presentation and emphasis of this review reflect expe-
rience over the last years that has shown how difficult it is
to shake traditional ways of thinking. In particular, tradi-
tional mechanistic meteorological approaches are based on
a widely internalized but largely unexamined “scalebound”
view that prevents scaling from being taken as seriously as it
must be. As we will see (Sect. 2), the scalebound view per-
sists in spite of its increasing divorce from the real world.
Such a persistent divorce is only possible because practis-
ing atmospheric scientists rely almost exclusively on numer-
ical weather prediction (NWP) or global circulation models
(GCMs), and these inherit the scaling symmetry from the at-
mosphere’s primitive equations upon which they are built.

The problem with scaleboundedness is not so much that it
does not fit the facts, but rather that it blinds us to promising
alternative scaling approaches. New approaches are urgently
needed. As argued in Lovejoy (2022a), climate projections
based on GCMs are reaching diminishing returns, with the
latest IPCC AR6 (Arias, Bellouin et al., 2021) uncertainty
ranges larger than ever before: cf. the latest climate sensi-
tivity range of 2–5.5 K rise in global temperature follow-

Figure 5. Left column: a sequence “zooming” into a vertical cross
section of an isotropic multifractal cloud (the density of liquid wa-
ter was simulated and then displayed using false colours with a grey
sky below a low threshold). From top to bottom, we progressively
zoom in by a factor of 2.9 (total factor≈ 1000). We can see that typi-
cal cloud structures are self-similar. In the right-hand-side column, a
multifractal cloud with the same statistical parameters as on the left,
but anisotropic, the zoom is still by factors of 2.9 in the horizontal,
but the structures are progressively “squashed” in the horizontal.
Note that while at large scales the clouds are strongly horizontally
stratified, when viewed close up they show structures in the opposite
direction. The spheroscale is equal to the vertical scale in the right-
most simulation in the bottom row. The film version of this and
other anisotropic space–time multifractal simulations can be found
at http://www.physics.mcgill.ca/~gang/multifrac/index.htm, last ac-
cess: 14 July 2023). This is reproduced from Blöschl et al. (2015).

ing a CO2 doubling. This is currently more than double the
range of expert judgement: (2.5–4 K). New low-uncertainty
approaches are thus needed, and scaling approaches based on
direct stochastic scaling macroweather models are promising
(Hébert et al., 2021b; Procyk et al., 2022).

1.4.2 “Scaling-primary” versus “isotropy-primary”
turbulence approaches

There are also sticking points whose origin is in the other,
statistical, turbulence strand of atmospheric science. Histor-
ically, turbulence theories have been built around two statis-
tical symmetries: a scale symmetry (scaling) and a direction
symmetry (isotropy). While these two are conceptually quite
distinct, even today, they are almost invariably considered to-
gether in the special case called “self-similarity”, which is a
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basic assumption of theories and models of isotropic 2D and
isotropic 3D turbulence. Formalizing scaling as a (nonclassi-
cal) symmetry principle clarifies the distinct nature of scale
and direction symmetries. In the atmosphere, due to gravity
(not to mention sources of differential rotation), there is no
reason to assume that the scale symmetry is an isotropic one:
indeed, atmospheric scaling is fundamentally anisotropic.
The main unfortunate consequence of assuming isotropy is
that it implies an otherwise unmotivated (and unobserved)
scale break somewhere near the scale height (≈ 7.4 km).

As we show (Sect. 4), scaling accounts for both the strat-
ification that systematically increases with scale as well as
its intermittency. Taking into account gravity in the gov-
erning equations provides an anisotropic scaling alternative
to quasi-geostrophic turbulence (“fractional vorticity equa-
tions”; see Schertzer et al., 2012). The argument in this re-
view is thus that scaling is the primary scale symmetry:
it takes precedence over other scale symmetries such as
isotropy. Indeed, it seems that isotropic turbulence is simply
not relevant in the atmosphere (Lovejoy et al., 2007).

1.5 The scope and structure of this review

This review primarily covers scaling research over the last
4 decades, especially multifractals, generalized scale invari-
ance, and their now extensive empirical validations. This
work involved theoretical and technical advances, revolu-
tions in computing power, the development of new data anal-
ysis techniques, and the systematic exploitation of mush-
rooming quantities of geodata. The basic work has already
been the subject of several reviews (Lovejoy and Schertzer,
2010c, 2012b), but especially a monograph (Lovejoy and
Schertzer, 2013). Although a book covering some of the sub-
sequent developments was published more recently (Love-
joy, 2019), it was nontechnical, so that this new review brings
its first four chapters up to date and includes some of the the-
ory and mathematics that were deliberately omitted so as to
render the material more accessible. The last three chapters
of Lovejoy (2019) focused on developments in the climate-
scale (and lower-frequency) regimes that will be reviewed
elsewhere. The present review is thus limited to the (turbu-
lent) weather regime and its transition to macroweather at
scales of ≈ 10 d.

In order to maintain focus on the fundamental physical
scaling issues and implications, the mathematical formalism
is introduced progressively – as needed – so that it will not
be an obstacle to accessing the core scientific ideas.

This review also brings to the fore several advances that
have occurred in the last 10 years, especially Haar fluc-
tuation analysis (developed in detail in Appendix B), and
a more comprehensive criticism of scalebound approaches
made possible by combining Haar analysis with new high-
resolution instrumental and paleodata sources (Lovejoy,
2015). On the other hand, it leaves out an emerging body
of work on macroweather modelling based on the fractional

energy balance equation for both prediction and climate pro-
jections (Del Rio Amador and Lovejoy, 2019, 2021a, b; Pro-
cyk et al., 2022) as well as their implications for the future of
climate modelling (Lovejoy, 2022a).

The presentation is divided into three main sections. Keep-
ing the technical and mathematical aspects to a minimum,
Sect. 2 focuses on a foundational atmospheric science issue:
what is the appropriate conceptual and theoretical framework
for handling the atmosphere’s variability over huge ranges of
scales? It discusses how the classical scalebound approach
is increasingly divorced from real-world data and numerical
models. Scaling is discussed but with an emphasis on its role
as a symmetry principle. It introduces fluctuation analysis
based on Haar fluctuations that allow for a clear quantita-
tive empirical overview of the variability over 17 orders of
magnitude in time. Scaling is essential for defining the ba-
sic dynamical regimes, underlining the fact that between the
weather and the climate sits a new macroweather regime.

Section 3 discusses the general scaling process: multifrac-
tals. Multifractals naturally explain and quantify the ubiqui-
tous intermittency of atmospheric processes. The section also
discusses an underappreciated consequence, the divergence
of high-order statistical moments – equivalently power-law
probability tails – and relates this to “tipping points” and
“black swans”. The now large body of evidence for the di-
vergence of moments is discussed and special attention paid
to the velocity field where the divergence of moments was
first empirically shown 40 years ago in the atmosphere, then
in wind tunnels, and most recently in large direct numerical
simulations of hydrodynamic turbulence.

In Sect. 4 a totally different aspect of scaling is covered:
anisotropic scaling, notably scaling stratification. The sec-
tion outlines the formalism of GSI needed to define the no-
tion of scale in anisotropic scaling systems. By considering
buoyancy-driven turbulence, the 23/9D model is derived: it
is a consequence of Kolmogorov scaling in the horizontal
and Bolgiano–Obukhov scaling in the vertical. This model is
“in between” flat 2D isotropic turbulence and “voluminous”
isotropic 3D turbulence – it is strongly supported by now bur-
geoning quantities of atmospheric data. It not only allows us
to answer the question “how big is a cloud?”, but also to un-
derstand and model differentially rotating structures needed
to quantify cloud morphologies.

2 Scaling or scalebound? From van Leuwenhoek to
Mandelbrot

2.1 The scalebound view examined

In the introduction, the conventional paradigm based on (typ-
ically deterministic) narrow-range explanations and mecha-
nisms was contrasted with the alternative scaling paradigm
that builds statistical models expressing the collective be-
haviour of high numbers of degrees of freedom and that pro-
vides explanations over huge ranges of scales.
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Let us consider the narrow-range paradigm in more detail.
It follows in the steps of van Leuwenhoek, who – peering
through an early microscope – was famously said to have
discovered a “new world in a drop of water” – microorgan-
isms (circa 1675). Over time, this evolved into a “powers of
ten” view (Boeke, 1957) in which every factor of 10 or so of
zooming revealed qualitatively different processes and mor-
phologies. Mandelbrot (1981) termed this view “scalebound”
(written as one word), which is a useful shorthand for the idea
that every factor of 10 or so involves something qualitatively
new: a new world, new mechanisms, new morphologies, etc.

The first weather maps were at extremely low spatial res-
olution, so that only a rather narrow range of phenomena
could be discerned. Unsurprisingly, the corresponding atmo-
spheric explanations and theories were scalebound. Later, in
the 1960s and 1970s under the impact of new data, espe-
cially in the mesoscale, the ambient scalebound paradigm
was quantitatively made explicit in space–time Stommel dia-
grams (discussed at length in Sect. 2.6) in which various con-
ventional mechanisms, morphologies, and phenomena were
represented by the space scales and timescales over which
they operate. For a recent inventory of scalebound mecha-
nisms from seconds to decades, see Williams et al. (2017).

While Stommel diagrams reflected scalebound thinking,
the goal was the modest one of organizing and classifying
existing empirical phenomenology, and it did this in the light
of the prevailing mechanistic analytic dynamical meteorol-
ogy. It was Mitchell (1976), writing at the dawn of the pa-
leoclimate revolution, who, more than anyone, ambitiously
elevated the scalebound paradigm into a general framework
spanning a range of scales from (at least) an hour to the age
of the planet (a factor of tens of billions, upper left, Fig. 6).
Mitchell’s data were limited, and he admitted that his spec-
trum was only an “educated guess”. He imagined when the
data would become available that their spectra would consist
of an essentially uninteresting white-noise “background” in-
terspersed with interesting quasi-periodic signals represent-
ing the important physical processes. Ironically, Mitchell’s
scalebound paradigm was proposed at the same time as the
first GCMs (Manabe and Wetherald, 1975). Fortunately, the
GCMs are scaling, inheriting the symmetry from the govern-
ing equations (Schertzer et al., 2012); see Chap. 2 of Lovejoy
and Schertzer (2013).

Mitchell’s schematic (upper-left panel) was so success-
ful that, more than 4 decades later, his original figure is
still faithfully reproduced (e.g. Dijkstra, 2013) or updated
by very similar scalebound schematics with only minor up-
dates. Even though the relevant geodata have since mush-
roomed, the updates notably have less quantification and
weaker empirical support than the original. The 45-year evo-
lution of the scalebound paradigm is shown in the other
panels of Fig. 6. Moving to the right of the figure, there
is a 25-year update, modestly termed an “artist’s render-
ing” (Ghil, 2002). This figure differs from the original in
the excision of the lowest frequencies and by the inclusion

of several new multimillennial-scale “bumps”. In addition,
whereas Mitchell’s spectrum was quantitative, the artist’s
rendering retreated to using “arbitrary units”, making it more
difficult to verify empirically. Nearly 20 years later, the same
author approvingly reprinted it in a review (Ghil and Lu-
carini, 2020).

As time passed, the retreat from quantitative empirical as-
sessments continued, so that the scalebound paradigm has
become more and more abstract. The bottom left of Fig. 6
shows an update downloaded from the NOAA paleoclimate
data site in 2015 claiming to be a “mental model”. Harken-
ing back to Boeke (1957), the site went on to state that the
figure is “intended . . . to provide a general “powers of ten”
overview of climate variability”. Here, the vertical axis is
simply “variability”, and the uninteresting background – pre-
sumably a white noise – is shown as a perfectly flat line.

At about the same time, Lovejoy (2015) pointed out that
Mitchell’s original figure was in error by an astronomical fac-
tor (Sect. 2.4), so that – in an effort to partially address the
criticism – an update in the form of a “conceptual landscape”
was proposed (Fig. 6, bottom right, von der Heydt et al.,
2021). Rather than plotting the log of the spectrum E(ω) as a
function of the log frequency ω, the “landscape’s” main inno-
vation was the use of the unitless “relative variance” ωE(ω)
plotted linearly, indicated as a function of log ω (bottom right
of the figure). Such plots have the property that areas under
the curves are equal to the total variance contributed over
the corresponding frequency range. Before returning to these
schematics, let us discuss the scaling alternative.

2.2 The scaling alternative

2.2.1 Scaling as a symmetry

Although scaling in atmospheric science goes back to
Richardson in the 1920s, it was the Fractal Geometry of Na-
ture (Mandelbrot, 1977, 1982) that first proposed scaling as
a broad alternative to the scalebound paradigm. Alongside
deterministic chaos and nonlinear waves, fractals rapidly be-
came part of the nascent nonlinear revolution. In contrast to
scaleboundedness, scaling supposes that zooming results in
something that is qualitatively unchanged.

Although Mandelbrot emphasized fractal geometry, i.e.
the scaling of geometrical sets of points, it soon became clear
(Schertzer and Lovejoy, 1985c) that the physical basis of
scaling (more generally scaling fields and scaling processes)
is in fact a scale-symmetry principle – effectively a scale-
conservation law that is respected by many nonlinear dynam-
ical systems, including those governing fluids (Schertzer and
Lovejoy, 1985a, 1987; Schertzer et al., 2012).

Scaling is seductive because it is a symmetry. Ever since
Noether published her eponymous theorem (Noether, 1918)
demonstrating the equivalence between symmetries and con-
servation laws, physics has been based on symmetry princi-
ples. Thanks to Noether’s theorem, by formulating scaling
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Figure 6. The evolution of the scalebound paradigms of atmospheric dynamics (1976–2021). The upper-left “educated guess” is from
Mitchell (1976), and the upper-right “artist’s rendering” is from Ghil (2002) and Ghil and Lucarini (2020). The lower left shows the NOAA’s
“mental model” (downloaded from the site in 2015), and the lower right shows the “conceptual model” from von der Heydt et al. (2021).

as a general symmetry principle, the scaling is the physics.
Symmetry principles represent a kind of maximal simplicity,
and since “entities must not be multiplied beyond necessity”
(Occam’s razor), physicists always assume that symmetries
hold unless there is evidence for symmetry breaking.

In the case of fluids, we can verify this symmetry on the
equations as implemented for example in GCMs (e.g. Stolle
et al., 2009, 2012, and the discussion in Sect. 2.2.3) – but only
for scales larger than the (millimetric) dissipation scales,
where the symmetry is broken and mechanical energy is con-
verted into heat: this is true for Navier–Stokes turbulence;
however, the atomic-scale details are not fully clear. Kadau
et al. (2010) and Tuck (2008, 2022) argue that scaling can
continue to much smaller scales. The scaling is also broken
at the large scales by the finite size of the planet. In between,
boundary conditions such as the ocean surface or topography
might potentially have broken the scaling, but in fact they
turn out to be scaling themselves and so do not introduce a
characteristic scale (e.g. Gagnon et al., 2006).

In the atmosphere one therefore expects scaling. It is ex-
pected to hold unless processes can be identified that act pref-
erentially and strongly enough at specific scales that could
break it. This turns the table on scalebound thinking: if we
can explain the atmosphere’s structure in a scaling manner,
then this is the simplest explanation and should a priori be
adopted. The onus must be on the scalebound approach to
demonstrate the inadequacy of scaling and the need to re-

place the hypothesis of a unique wide scaling-range regime
by (potentially numerous) distinct scalebound mechanisms.

Once a scaling regime is identified – either theoretically or
empirically (preferably by a combination of both) – it is asso-
ciated with a single basic dynamical mechanism that repeats
scale after scale over a wide range, and hence it provides an
objective classification principle.

2.2.2 Wide-range scaling in atmospheric science

The atmospheric scaling paradigm is almost as old as nu-
merical weather prediction, both being proposed by Richard-
son in the 1920s. Indeed, ever since Richardson’s scaling 4/3
law of turbulent diffusion (Richardson, 1926 – the precursor
of the better-known Kolmogorov law, Kolmogorov, 1941),
scaling has been the central turbulence paradigm.

From the beginning, Richardson argued for a wide-range
scaling holding from millimetres to thousands of kilometres
(Fig. 7). Richardson himself attempted an empirical verifica-
tion, notably using data from pilot balloons and volcanic ash
(and later – in the turbulent ocean – with bags of parsnips
that he watched diffusing from a pier on Loch Lomond;
Richardson and Stommel, 1948). However, there remained
a dearth of data spanning the key “mesoscale” range ≈ 1–
100 km corresponding to the atmosphere’s scale height, so
that for several decades following Richardson, progress in
atmospheric turbulence was largely theoretical. In particu-
lar, in the 1930s the turbulence community made rapid ad-
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vances in understanding the simplified isotropic turbulence
problem, notably the Karman–Howarth equations (Karman
and Howarth, 1938) and the discovery of numerous isotropic
scaling laws for passive scalar advection and for mechani-
cally driven and buoyancy-driven turbulence. At first, Kol-
mogorov and the other pioneers recognized that atmospheric
stratification strongly limited the range of applicability of
isotropic laws. Kolmogorov, for example, estimated that his
famous law of 3D isotropic turbulence would only hold at
scales below 100 m. As discussed in Sect. 4, modern data
show that this was a vast overestimate: if his isotropic law
ever holds anywhere in the atmosphere, it is below 5 m. How-
ever, at the same time, in the horizontal, the anisotropic gen-
eralization of the Kolmogorov law apparently holds up to
planetary scales.

In the 1970s, motivated by Charney’s isotropic 2D
geostrophic turbulence (Charney, 1971), the ambitious
“EOLE” experiment was undertaken specifically to study
large-scale atmospheric turbulence. EOLE (for the Greek
wind god) ambitiously used a satellite to track the diffu-
sion of hundreds of constant-density balloons (Morel and
Larchevêque, 1974), but the results turned out to be diffi-
cult to interpret. Worse, the initial conclusions – that the
mesoscale wind did not follow the Kolmogorov law – turned
out to be wrong, and they were later re-interpreted (Lacorta
et al., 2004) and then further re-re-interpreted (Lovejoy and
Schertzer, 2013), finally vindicating Richardson nearly 90
years later.

Therefore, when Lovejoy (1982), benefitting from mod-
ern radar and satellite data, discovered scaling right through
the mesoscale (Fig. 7, right), it was the most convincing sup-
port to date for Richardson’s daring 1926 wide-range scaling
hypothesis. Although at first it was mostly cited for its em-
pirical verification that clouds were indeed fractals, today,
40 years later, we increasingly appreciate its vindication of
Richardson’s scaling from 1 to 1000 km, right through the
mesoscale. It marks the beginning of modern scaling theories
of the atmosphere. This has since been confirmed by massive
quantities of remotely sensed and in situ data, both on Earth
(Fig. 8) and more recently on Mars (Fig. 9, discussed in detail
in Sect. 3.4).

2.2.3 Which is more fundamental: scaling or isotropy?

In Sect. 2.1, we discussed the debate between scaling
and mechanistic, generally deterministic, scalebound ap-
proaches. However, even in the statistical (turbulence) strand
of atmospheric science, there evolved an alternative to
Richardson’s wide-range scaling: the paradigm of isotropic
turbulence.

In the absence of gravity (or another strong source of
anisotropy), the basic isotropic scaling property of the fluid
equations has been known for a long time (Taylor, 1935;
Karman and Howarth, 1938). The scaling symmetry justi-
fies the numerous classical fluid dynamics similarity laws

Figure 7. Richardson’s pioneering scaling model (Richardson,
1926) of turbulent diffusion (left) with an early update (Lovejoy,
1982) (right) using radar rain data (black) and satellite cloud data
(open circles).

(e.g. Sedov, 1959), and it underpins models of statistically
isotropic turbulence, notably the classical turbulence laws of
Kolmogorov (Kolmogorov, 1941), Bolgiano and Obukhov
(buoyancy-driven, Sect. 4.1) (Bolgiano, 1959; Obukhov,
1959), and Corrsin and Obukhov (passive scalar) (Corrsin,
1951; Obukhov, 1949).

These classical turbulence laws can be expressed in the
form

fluctuation≈ (turbulent flux)a(scale)H , (4)

where scale was interpreted in an isotropic sense, H is the
fluctuation exponent, and, physically, the turbulent fluxes are
the drivers (compare with Eq. 2). The first and most fa-
mous example is the Kolmogorov law for fluctuations in the
wind, where the turbulent flux is the energy rate density (ε,
a = 1/3) and H = 1/3. Equation (4) is the same as Eq. (2),
except that the randomness is hidden in the turbulent flux that
classically was considered to be quasi-Gaussian, the non-
intermittent special case (Sect. 3.2).

Theories and models of isotropic turbulence were de-
veloped to understand the fundamental properties of high
Reynolds number turbulence, and this was independent of
whether or not it could be applied to the atmosphere. Since
the atmosphere is a convenient very high Reynolds number
laboratory (Re ≈ 1012), the question is therefore “Is isotropic
turbulence relevant in the atmosphere?” (the title of Lovejoy
et al., 2007).

Figure 10 graphically shows the problem: although the
laws of isotropic turbulence are themselves scaling, they im-
ply a break in the middle of the “mesoscale” at around 10 km.
To model the larger scales, Fjortoft (1953) and Kraichnan
(1967) soon found another isotropic scaling paradigm: 2D
isotropic turbulence. Charney in particular adapted Kraich-
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Figure 8. Planetary-scale power-law spectra (E (k)= k−β ) from
satellite radiances (top), aircraft (bottom left), and reanalyses (bot-
tom right). Upper right: spectra from over 1000 orbits of the Trop-
ical Rainfall Measurement Mission (TRMM), of five channels vis-
ible through thermal IR wavelengths displaying the very accu-
rate scaling down to scales of the order of the sensor resolution
(≈ 10 km). Adapted from Lovejoy et al. (2008b). Upper left: spec-
tra from five other (microwave) channels from the same satellite.
The data are at lower resolution, and the latter depend on the wave-
length: again, the scaling is accurate up to the resolution. Adapted
from Lovejoy et al. (2008b). Lower left: the spectrum of tempera-
ture (T ), humidity (h), and log potential temperature (logθ ) aver-
aged over 24 legs of aircraft flight over the Pacific Ocean at 200 mb.
Each leg had a resolution of 280 m and had 4000 points (1120 km).
A reference line corresponding to the k−2 spectrum is shown in
red. The mesoscale (1–100 km) is right in the middle of the fig-
ure and is not at all visible. Adapted from Lovejoy et al. (2010).
Lower right: zonal spectra of reanalyses from the European Centre
for Medium-Range Weather Forecasts (ECMWF), once daily for
the year 2008 over the band ±45◦ latitude. Adapted from Lovejoy
and Schertzer (2011).

nan’s 2D isotropic turbulence to geostrophic turbulence
(Charney, 1971), and the result is sometimes called “layer-
wise” 2D isotropic turbulence. While Kraichnan’s 2D model
was rigidly flat with strictly no vortex stretching, Charney’s
extension allowed for some limited vortex stretching. Fig-
ure 10 shows the implied difference between the 2D isotropic
and 3D isotropic regimes.

Even though isotropy had originally been proposed
purely for theoretical convenience, armed with two differ-
ent isotropic scaling laws, it was now being proposed as
the fundamental atmospheric paradigm. If scaling in atmo-
spheric turbulence is always isotropic, then we are forced to
accept a scale break. The assumption that isotropy is the pri-
mary symmetry implies (at least) two scaling regimes with
a break (presumably) near the 10 km scale height, i.e. in the
mesoscale. The 2D–3D model with its implied “dimensional

Figure 9. Earth (left) and Mars (right). The zonal spectra (top right)
of Mars as functions of the nondimensional wavenumbers for pres-
sure (p, purple), meridional wind (v, green), the zonal wind (u,
blue), and temperature (T , red). The data for Earth were taken for
the year 2006 at 69 % atmospheric pressure between latitudes±45◦.
The data for Mars were taken at 83 % atmospheric pressure for Mar-
tian years 24 to 26 between latitudes ±45◦. The reference lines (in
all the plots) have absolute slopes from top to bottom: β = 3.00,
2.05, 2.35, and 2.35 (for p,v,u, and T respectively). The spectra
have been rescaled and an offset added for clarity. Wavenumber
k = 1 corresponds to the half-circumference of the respective plan-
ets. Reproduced from Chen et al. (2016).

transition” (Schertzer and Lovejoy, 1985c) already contra-
dicted the wide-range scaling proposed by Richardson.

An important point is that the implied scale break is neither
physically nor empirically motivated: it is purely a theoretical
consequence of assuming the predominance of isotropy over
scaling. One is forced to choose: which of the fundamental
symmetries is primary, isotropy or scaling?

By the time a decade later that the alternative (wide-range)
anisotropic scaling paradigm (see Fig. 11 for a schematic)
was proposed (Schertzer and Lovejoy, 1985c, a), Charney’s
beautiful theory along with its 2D–3D scale break had al-
ready been widely accepted, and even today it is still taught.
More recently (Schertzer et al., 2012), generalized scale in-
variance was linked directly to the governing equations, so
that a clear anisotropic theoretical alternative to Charney’s
isotropic theory is available.

2.3 Aspects of scaling in one dimension

The basic signature of scaling is a power-law relation of a
statistical characteristic of a system as a function of space
scale and/or timescale. In the empirical test of the Richard-
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Figure 10. A schematic showing the geometry of isotropic 2D
models (top, for the large scales); the volumes of average structures
(disks) increase as the square of the disk diameter. The isotropic 3D
model is a schematic of 3D turbulence models for the small scales,
with the volumes of the spheres increasing as the cube of the diam-
eter. These geometries are superposed on the Earth’s curved surface
(the blue spherical segments on the right). We see (bottom right,
Earth’s surface) that – unless they are strongly restricted in range
– the 3D isotropic models quickly imply structures that extend into
outer space.

Figure 11. A schematic diagram showing the change in shape of
average structures which are isotropic in the horizontal (slightly
curved to indicate the Earth’s surface) but with scaling stratifica-
tion in the vertical. Hz increases from 0 (upper left) to 1 (lower
right) with an effective “elliptical dimension” Del = 2+Hz. In or-
der to illustrate the change in structures with scale, the ratio of tro-
pospheric thickness to Earth’s radius has been increased by nearly a
factor of 1000. Note that, in the Del = 3 case, the cross sections are
exactly circles; the small distortion is an effect of perspective due to
the mapping of the structures onto the curved surface of the Earth.
Reproduced from Lovejoy and Schertzer (2010c).

son 4/3 law (Fig. 7, left panel), it is the turbulent viscosity
as a function of horizontal scale that is a power law. On the
right-hand side, it is rather the complicated (fractal) perime-
ters of clouds and rain zones that are power-law functions

of the corresponding areas. The Fig. 7 analysis methods lack
generality, so let us instead consider spectra (Fourier space)
and, then, fluctuations (real space, Sect. 2.5, Appendix B).

Following Mitchell, we may consider variability in the
spectral domain: for example, the power spectrum of the tem-
perature T (t) is

E (ω)∝
〈∣∣T̃ (ω)

∣∣2〉 , (5)

where T̃ (ω) is its Fourier transform and ω is the frequency.
A scaling process E(ω) has the same form if we consider it
at a timescale λ times smaller or, equivalently, at a frequency
λ times larger:

E (λω)= λ−βE (ω) , (6)

where β is the “spectral exponent”. The solution of this func-
tional equation is a power law:

E (ω)∝ ω−β . (7)

Therefore, a log–log plot of the spectrum as a function of
frequency will be a straight line; see Fig. 12 for early quanti-
tative applications to climate series.

Alternatively, we can consider scaling in real space. Due
to “Tauberian theorems” (e.g. Feller, 1971), power laws in
real space are transformed into power laws in Fourier space
(and vice versa). This result holds whenever the scaling range
is wide enough – i.e. even if there are high- and/or low-
frequency cutoffs (needed if only for the convergence of the
transforms). If we consider fluctuations 1T over time inter-
val 1t , then if the system is scaling, we can introduce the
(“generalized”, qth-order) structure function as

Sq (1t)=
〈
(1T (1t))q

〉
∝1tξ (q), (8)

where the “〈〉” sign indicates statistical (ensemble) averaging
(assuming statistical stationarity, there is no t dependence).
Once again, classical fluctuations are defined simply as dif-
ferences, i.e. 1T (1t)= T (t)− T (t −1t), although more
general fluctuations are needed as discussed in Sect. 2.5. For
stationary scaling processes, the Wiener–Khintchin theorem
implies a simple relation between real space and Fourier scal-
ing exponents:

β = 1+ ξ (2) (9)

(the “2” is because the variance is a second-order moment).
If, in addition, the system is “quasi-Gaussian”, then S2 gives
a full statistical characterization of the process. Therefore,
often only the second-order structure function S2(1t) is con-
sidered (e.g. Fig. 12, top). However, as discussed above, geo-
processes are typically strongly intermittent and rarely quasi-
Gaussian, and the full exponent function ξ (q) is needed
(Sect. 3.1). In the next section, we discuss this figure in more
detail, including its physical implications. For the moment,
simply note the various linear (scaling) regimes in the log–
log plots.
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Figure 12. The evolution of the scaling picture for 1986–1999. Top:
the rms difference structure functions estimated from local (central
England) temperatures since 1659 (open circles, upper left), North-
ern Hemisphere temperature (black circles), and paleotemperatures
from Vostok (Antarctic, solid triangles), Camp Century (Greenland,
open triangles), and an ocean core (asterisks). For the Northern
Hemisphere temperatures, the (power-law, linear in this plot) cli-
mate regime starts at about 10 years. The reference line has a slope
H = 0.4. The rectangle (upper right) is the “glacial–interglacial
window” through which the structure function must pass in order
to account for typical variations of±2 to±3 K for cycles with half-
periods≈ 50 kyr. Reproduced from Lovejoy and Schertzer (1986b).
Note the two essentially flat sets of points, one from the local central
England temperature up to roughly 300 years and the other from an
ocean core that is flat from scales 100 000 years and longer. These
correspond to the macroweather and macroclimate regimes where
H < 0, so that the flatness is an artefact of the use of differences
in the definition of fluctuations (Appendix B2). Bottom left: com-
posite spectrum of δ18O paleotemperatures from Shackleton and
Imbrie (1990). Bottom right: composite using instrumental tem-
peratures (right) and paleotemperatures (left) with piecewise lin-
ear (power-law) reference lines. The composite is not very different
from the updated one shown in Fig. 13. The lower-right composite
is reproduced from Pelletier (1998).

2.4 The impact of data on the scalebound view

In spite of its growing disconnect with modern data,
Mitchell’s figure and its scalebound updates continue to be
influential. However, within 15 years of Mitchell’s famous
paper, two scaling composites, over the ranges 1 h to 105

years and 103 to 108 years, already showed huge discrep-
ancies (Lovejoy and Schertzer, 1986b; Fig. 12, top panel;
Shackleton and Imbrie, 1990, bottom left; see also Pelletier,
1998, bottom right, and Huybers and Curry, 2006). Returning
to Mitchell’s original figure, Lovejoy (2015) superposed the
spectra of several modern instrumental and paleo series; the
differences are literally astronomical (Fig. 13). While over
the range 1 h to 109 years, Mitchell’s background varies by

Figure 13. A comparison of Mitchell’s educated guess of a log–log
spectral plot (grey, bottom, Mitchell, 1976) superposed with mod-
ern evidence from spectra of a selection of the series described in
Table 1 and Lovejoy (2015) from which this figure is reproduced.
On the far right, the spectra from the 1871–2008 20CR (at daily
resolution) quantify the difference between the globally averaged
temperature (bottom right, red line) and local averages (2◦× 2◦, top
right, red line). The spectra were averaged over frequency intervals
(10 per factor of 10 in frequency), thus “smearing out” the daily
and annual spectral “spikes”. These spikes have been re-introduced
without this averaging and are indicated by green spikes above the
red daily-resolution curves. Using the daily-resolution data, the an-
nual cycle is a factor ≈ 1000 above the continuum, whereas using
hourly-resolution data, the daily spike is a factor ≈ 3000 above the
background. Also shown is the other striking narrow spectral spike
at (41 kyr)−1 (obliquity circa a factor of 10 above the continuum);
this is shown in dashed green since it is only apparent over the pe-
riod 0.8–2.56 Myr BP (before present). The blue lines have slopes
indicating the scaling behaviours. The thin dashed green lines show
the transition periods that separate out the scaling regimes; these are
(roughly) at 20 d, 50 years, 80 000 years, and 500 000 years. This is
reproduced from Lovejoy (2015).

a factor ≈ 150, the spectra from real data imply that the true
range is a factor greater than a quadrillion (1015).

Returning to the artist’s rendering, Fig. 14 shows that,
when compared to the data, it fares no better than Mitchell’s
educated guess. The next update – the NOAA’s mental model
– only specified that its vertical axis be proportional to “vari-
ability”. If we interpret variability as the root-mean-square
(rms) fluctuation at a given scale and the flat “background”
between the bumps as white noise, then we obtain the com-
parison in Fig. 15. Although the exact definition of these fluc-
tuations is discussed in Sect. 2.5, they give a directly phys-
ically meaningful quantification of the variability at a given
timescale. In Fig. 15, we see that the mental model predicts
that successive average Earth temperatures of 1 million years
would differ by only tens of micro-Kelvin. A closely similar
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Figure 14. Artist’s rendering with data superposed. Adapted from
Ghil (2002) and reprinted in Ghil and Lucarini (2020).

conclusion would hold if we converted Mitchell’s spectrum
into rms real-space fluctuations.

The most recent scalebound update – the “conceptual land-
scape” – is compared with modern data in Fig. 16. Although
the various scaling regimes proposed in Lovejoy (2013) (up-
dated in Fig. 18 and discussed below) are discreetly indicated
in the background, in many instances, there is no obvious re-
lation between the regimes and the landscape. In particular,
the word “macroweather” appears without any obvious con-
nection to the figure, but even the landscape’s highlighted
scalebound features are not very close to the empirical curve
(red). Although the vertical axis is only “relative”, this quan-
titative empirical comparison was made by exploiting the
equal-area property mentioned above. The overlaid solid red
curve was estimated by converting the disjoint spectral power
laws shown in the updated Mitchell graph (Fig. 8). In addi-
tion, there is also an attempt to indicate the amplitudes of the
narrow spectral spikes (the green spikes in Fig. 13) at diurnal,
annual, and – for the epoch 2.5–0.8 Myr – obliquity spectral
peaks at (41 kyr)−1. In conclusion, the conceptual landscape
bears little relation to the real world.

Figure 15. Mental model with data. The data spectrum in Fig. 13
is replotted in terms of fluctuations (grey, top; see Fig. 17). The di-
agonal axis corresponds to the flat baseline of Fig. 6 (lower left)
that now has a slope of −1/2 corresponding to an uncorrelated
Gaussian “white noise” background. Since the amplitudes in Fig. 6
(lower left) were not specified, the amplitudes of the transformed
“bumps” are only notional. At the top are superposed the typical
Haar fluctuations at timescale 1t as estimated from various instru-
mental and paleo-series, from Fig. 17 (bottom, using the data dis-
played in Fig. 2). We see (lower right) that consecutive 1 Myr aver-
ages would only differ by several micro-Kelvin. Reproduced from
Lovejoy (2019).

Figure 16. Conceptual landscape with data. The superposed red
curves use the empirical spectra in Fig. 13 and adjust the (linear)
vertical scale for a rough match with the landscape. The vertical
lines indicate huge periodic signals (the diurnal and annual cycles
on the right and on the left, the obliquity signal seen in spectra
between 0.8 and 2.5 Myr ago). Adapted from von der Heydt et
al. (2021).
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2.5 Revisiting the atmosphere with the help of
fluctuation analysis

The scalebound framework for atmospheric dynamics em-
phasized the importance of numerous processes occurring
at well-defined timescales, the quasi-periodic “foreground”
processes illustrated as bumps – the signals – on Mitchell’s
nearly flat background. The point here is not that these pro-
cesses and mechanisms are wrong or non-existent: it is rather
that they only explain a small fraction of the overall vari-
ability, and this implies that they cannot be understood with-
out putting them in the context of their dynamical (scaling)
regime. This was also demonstrated quantitatively and ex-
plicitly over at least a significant part of the climate range by
Wunsch (2003).

One of the lessons to be drawn from the educated guesses,
artists’ renderings, and conceptual landscapes is that, al-
though spectra can be calculated for any signal, the interpre-
tations are often not obvious. The problem is that we have
no intuition about the physical meaning of the units – K2 s,
K2 yr, or even K2 Myr – so that often (as here) the units
used in spectral plots are not even given. It then becomes im-
possible to take data from disparate sources and at different
timescales to make the spectral composites needed to make a
meaningful check of the scalebound paradigm.

The advantage of fluctuations such as in Fig. 12 (top)
is that the numbers – e.g. the rms temperature fluctuations
at some scale – have a straightforward physical interpreta-
tion. However, the differences used to define fluctuations (see
Fig. 17, top) have a non-obvious problem: on average, dif-
ferences cannot decrease with increasing time intervals (in
Appendix B, this problem is discussed more precisely in the
Fourier domain). This is true for any series that has correla-
tions that decrease with 1t (as physically relevant series al-
ways do). A consequence is that whenever the value of ξ (2) is
negative – implying that the mean fluctuations decrease with
scale – the difference fluctuations will at best give a constant
result (the flat parts of Fig. 12, top).

However, do regions of negative ξ (2) exist? One way to
investigate this is to try to infer the exponent ξ (2) from the
spectrum that does not suffer from an analogous restriction:
its exponent β can take any value. In this case we can use
the formula β = 1+ξ (2) (Eq. 9). The latter implies that neg-
ative ξ (2) corresponds to β < 1, and a check on the spec-
trum in Fig. 7 indicates that several regions (notably the
macroweather regime) are indeed flat enough (β < 1) to im-
ply negative ξ (2). How do we fix the problem and estimate
the correct ξ (2) when it is negative?

It took a surprisingly long time to clarify this issue. To
start with, in classical turbulence, ξ (2)> 0 (e.g. the Kol-
mogorov law), there was no motivation to look further than
differences. Mathematically, the main advance came in the
1980s from wavelets. It turns out that, technically, fluctua-
tions defined as differences are indeed wavelets, but mathe-
maticians mock them, calling them the poor man’s wavelet,

and they generally promote more sophisticated wavelets (see
Appendix B2): the simplicity of the physical interpretation is
not their concern. This was the situation in the 1990s, when
scaling started to be systematically applied to geophysical
time series involving negative ξ (2) (i.e. to any macroweather
series, although at the time this was not clear). A practical
solution adopted by many was to use the detrended fluctu-
ation analysis (DFA) method (Peng et al., 1994). One rea-
son the DFA method is popular is that the raw DFA fluctu-
ations are not too noisy. However, this is in fact an artefact
since they are fluctuations of the running sum of the pro-
cess, not of the process itself. When DFA fluctuations of the
process are used, they are just as variable as the Haar fluctu-
ations (Lovejoy and Schertzer, 2012a; Hébert et al., 2021a).
Unfortunately, DFA fluctuations are difficult to interpret, so
that typically only exponents are extracted: the important in-
formation contained in the fluctuation amplitudes is not ex-
ploited (see Appendix B).

New clarity was achieved with the help of the (first) Haar
wavelet (Haar, 1910). There were two reasons for this: the
simplicity of its definition and calculation and the simplic-
ity of its interpretation (Lovejoy and Schertzer, 2012a). To
determine the Haar fluctuation over a time interval 1t , one
simply takes the average of the first half of the interval and,
from this, subtracts the average of the second half (Fig. 17,
bottom; see Appendix B2 for more details). As for the in-
terpretation, when H is positive, then it is (nearly) the same
as a difference, whereas whenever H is negative, the fluc-
tuation can be interpreted as an “anomaly” (in this context,
an anomaly is simply the average over a segment length 1t
of the series with its long-term average removed, Appendix
B2). In both cases we also recover the correct value of the
exponent H . Although the Haar fluctuation is only useful for
H in the range −1 to 1, this turns out to cover most of the
series that are encountered in geoscience.

Figure 18 shows a modern composite using the rms Haar
fluctuation, spanning a range of scales of ≈ 1017 (compare
this with Fig. 12, top, for the earlier version using fluctu-
ations as differences). The same five regimes as in Fig. 13
are shown, but now the typical variations in temperature over
various timescales are very clear.

Also shown in Fig. 16 are reference lines indicating the
typical scale dependencies. These correspond to typical tem-
perature fluctuations 1T ∝1tξ (2)/2

≈1tξ (1), where ξ (1)=
H is the “fluctuation exponent” (the exponent of the mean
absolute fluctuation, the relationship ξ (2)= 2H , is valid if
we ignore intermittency: it is the quasi-Gaussian relationship
still often invoked; see Eq. 15). In the figure, we see that
the character of the regimes alternates between regimes that
grow (H > 0) and ones that decrease (H < 0) with timescale.
The sign of H has a fundamental significance; to see this,
we can return to typical series over the various regimes
in Fig. 2 (left-hand-side column). In terms of their visual
appearances, the H > 0 regimes have signals that seem to
“wander” or “drift”, whereas forH < 0 regimes, fluctuations
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Figure 17. Schematic illustration of difference (top) and anomaly
(middle) fluctuations for a multifractal simulation of the atmosphere
in the weather regime (0≤H ≤ 1), top, and in the lower-frequency
macroweather regime (−1≤H ≤ 0), middle. Note the wandering
or drifting of the signal in the top panel and the cancelling be-
haviour in the middle one. The bottom panel is a schematic illustra-
tion of Haar fluctuations (useful for processes with −1≤H ≤ 1).
The Haar fluctuation over the interval 1t is the mean of the first
half subtracted from the mean of the second half of the interval 1t .
Reproduced from Lovejoy (2019).

tend to cancel. In the former, waiting longer and longer typ-
ically leads to larger changes in temperature, whereas in the
latter, longer and longer temporal scales lead to convergence
to well-defined values.

With the help of the figure, we can now understand the
problem with the usual definition of climate as “long-term”
weather. As we average from 10 d to longer durations, tem-
perature fluctuations do indeed tend to diminish – as ex-
pected if they converged to the climate. Consider for ex-
ample the thick solid line in Fig. 18 (corresponding to data
at 75◦ N), which shows that, at about 10 d, the temperature
fluctuations are ≈± 3 K (S2(1t)1/2

≈ 6 K), diminishing at
20 years to≈±0.3 K. SinceH < 0, the Haar fluctuations are
nearly equivalent to the anomalies, i.e. to averages of the se-
ries with the long-time mean removed. Over this range, in-
creasing the scale leads to smaller and smaller fluctuations
about the point of the apparent point of convergence: the av-
erage climate temperature. Figure 18 also shows the longer
scales deduced purely from paleodata (isotope ratios from ei-
ther ice or ocean cores).

The interpretation of the apparent point of convergence as
the climate state is supported by the analysis of global data
compared with GCMs in “control runs” (i.e. with fixed ex-
ternal conditions, Fig. 19). When averaged over long enough
times, the control runs do indeed converge, although the con-
vergence is “ultra slow” (at a rate characterized by the ex-
ponent H ≈−0.15 for the GCMs). Extrapolating from the

Figure 18. The broad sweep of atmospheric variability with rms
Haar fluctuations showing the various (roughly power-law) atmo-
spheric regimes, adapted and updated from the original (Lovejoy,
2013) and the update in Lovejoy (2015), where the full details of
the data sources are given (with the exception of the paleo-analysis
marked “Grossman”, which is from Grossman and Joachimski,
2022). The dashed vertical lines show the rough divisions between
regimes; the macroweather–climate transition is different in the
preindustrial epoch. Starting at the left, we have, the high-frequency
analysis (lower left) from thermistor data taken at McGill at 15 Hz.
Then, the thin curve starting at 2 h is from a weather station, the next
(thick) curve is from the 20th century reanalysis (20CR), and the
next, “S”-shaped curve is from the EPICA core. Finally, the three
far-right curves are benthic paleotemperatures (from “stacks”). The
quadrillion estimate is for the spectrum: it depends somewhat on
the calibration of the stacks. With the calibration in the figure, the
typical variation of consecutive 50 million year averages is ±4.5 K
(1t = 108 years, rms 1T = 9 K). If the calibration is lowered by a
factor of ≈ 3 (to variations of ±1.5 K), then the spectrum would
be reduced by a factor of 9. On the other hand, the addition of
the 0.017 s resolution thermistor data increases the overall spectral
range by another factor of 108 for a total spectral range of a factor
≈ 1017 for scales from 0.017 s to 5× 108 years.

figure shows that, even after averaging over 1 million sim-
ulated years, the GCMs would still typically be only within
±0.01 K of their respective climates.

Returning to Fig. 18, however, we see that, beyond a criti-
cal timescale τc, the convergence is reversed and fluctuations
tend rather to increase with timescale. In the Anthropocene
(roughly since 1900), the ≈ 15-year timescale where fluc-
tuations stop decreasing and begin increasing with scale is
roughly the time that it has taken for anthropogenic warming
(over the last decades) to become comparable to the natural
internal variability (about±0.2 K for these globally averaged
temperatures). However, for the preindustrial epoch (see the
“S”-shaped paleotemperature curve from the EPICA (Euro-
pean Project for Ice Coring in Antarctica) ice core, Fig. 18),
the transition time is closer to 300 years. The origin of this
larger τc value is not clear; it is a focus of the PAGES–CVAS
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Figure 19. Top (brown): the globally averaged, rms Haar tempera-
ture fluctuations averaged over three data sets (adapted from Love-
joy, 2019, where there are full details: the curve over the corre-
sponding timescale range in Fig. 19 is at 75◦ N and is a bit different).
At small timescales, one can see reasonable power-law behaviour
withH ≈−0.1. However, for scales longer than about 15 years, the
externally forced variability becomes dominant, although, in reality,
the internal variability continues to larger scales and the externally
forced variability to smaller ones. The two can roughly be sepa-
rated at decadal scales as indicated by the vertical dashed line. The
curve is reproduced from Lovejoy (2017a). Bottom (red): the rms
Haar fluctuations for 11 control runs from the Climate Model Inter-
comparison Project 5 (CMIP5). The reference slope H =−0.15 is
adapted from Lovejoy (2019).

(Past Climate – Climate Variability Across Scales) working
group (Lovejoy, 2017b).

Regarding the last 100 kyr, the key point about Fig. 18 is
that we have three regimes – not two. Since the intermedi-
ate regime is well reproduced by control runs (Fig. 19), it is
termed “macroweather”: it is essentially averaged weather.

If the macroweather regime is characterized by slow con-
vergence of averages with scale, it is logical to define a
climate state as an average over durations that are long
enough so that the maximum convergence has occurred –
i.e. over periods 1t > τc. In the Anthropocene, this gives
some objective justification for the official World Meteoro-
logical Organization’s otherwise arbitrary climate-averaging
period of 30 years. Similarly, the roughly 10 d to 1-month
weather–macroweather transition at τw gives some objec-
tive justification for the common practice of using monthly
average anomalies: these define analogous macroweather
states. The climate regime is therefore the regime beyond
τc where the climate state itself starts to vary. In addition
to the analyses presented here, there are numerous papers
claiming evidence for power-law climate regimes: Love-
joy and Schertzer (1986b), Shackleton and Imbrie (1990),
Schmitt et al. (1995), Ditlevsen et al. (1996), Pelletier (1998),
Ashkenazy et al. (2003), Wunsch (2003), and Huybers and

Curry (2006); for a more comprehensive review, see the dis-
cussion and Table 11.4 in Lovejoy and Schertzer (2013).

Again from Fig. 18, we see that the climate state itself
starts to vary in a roughly scaling way up until Milankovitch
timescales (at about 50 kyr, half the period of the main
100 kyr eccentricity frequency) over which fluctuations are
typically of the order ±2 to ±4 K: the glacial–interglacial
“window” (Lovejoy and Schertzer 1986) over typical vari-
ability that is quite clear in the figure (the most recent esti-
mate is a total range of 6 K or ±3 K; Tierney et al., 2020).
At even larger scales there is evidence (from ice core and
benthic paleodata, notably updated with a much improved
megaclimate series by Grossman and Joachimski, 2022, bold
curve on the right) that there is a narrow macroclimate regime
and then a wide-range megaclimate regime, but these are out-
side our present scope (see Lovejoy, 2015, for more discus-
sion).

2.6 Lagrangian space–time relations, Stommel
diagrams, and the weather–macroweather transition
time

2.6.1 Space–time scaling from the anisotropic
Kolmogorov law

Space–time diagrams are log-time–log-space plots for the
ocean (Stommel, 1963, Fig. 20, left) and the atmosphere (Or-
lanski, 1975, Fig. 20, right). They highlight the conventional
morphologies, structures, and processes typically indicated
by boxes or ellipses in the space–time regions in which they
have been observed. Since the diagrams refer to the lifetimes
of structures co-moving with the fluid, these are Lagrangian
space–time relations. The Eulerian (fixed-frame) relations
are discussed in the next section.

A striking feature of these diagrams – especially in Or-
lanski’s atmospheric version (Fig. 20, right panel) but also
in the updates (Fig. 21) – is the near-linear, i.e. power-law,
arrangement of the features. As pointed out in Schertzer et
al. (1997a), in the case of Orlanski’s diagram, the slope of
the line is very close to the theoretically predicted value
3/2. This is the value that holds if the atmosphere respects
(anisotropic) Kolmogorov scaling in the horizontal:1v (l)≈
ε1/3l1/3, where ε is the power per mass, l is the horizon-
tal length scale, and 1v(l) is the typical velocity differ-
ence across a structure of size l. In the scaling “inertial”
range where this relationship holds – if only on dimen-
sional grounds – the lifetime τ of a structure is given by
τ = l/1v(l). This implies the lifetime–size relation

τ = ε−1/3l2/3. (10)

In isotropic turbulence, this is a classical result, yet it was
first applied to the anisotropic Kolmogorov law (and hence
up to planetary scales) in Schertzer et al. (1997a). Equa-
tion (10) predicts both the exponent (the log–log slope) and
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– if we know ε – the prefactor (Figs. 20–22; see Lovejoy et
al., 2001).

2.6.2 The atmosphere as a heat engine: space–time
scaling and the weather–macroweather transition
scale

Thinking of the atmosphere as a heat engine that converts
solar energy into mechanical energy (wind) allows us to esti-
mate ε directly from first principles. Taking into account the
average albedo and averaging over day, night, and the surface
of the globe, we find that solar heating is ≈ 238 W m−2. The
mass of the atmosphere is ≈ 104 kg m−2, so that the heat en-
gine operates with a total power of 23.8 mW kg−1. However,
heat engines are never 100 % efficient, and various thermody-
namic models (e.g. Laliberté et al., 2015) predict efficiencies
of a few percent. For example, an engine at about 300 K that
operates over a range of 12 K has a Carnot efficiency of 4 %.

On Earth, direct estimates of ε from wind gradi-
ents (using ε =1v3/1x) find large-scale average
values of ≈ 1 mW kg−1, implying an efficiency of
(1 mW kg−1)/(23.8 mW kg−1) ≈ 4 %, confirming the theory
(Lovejoy and Schertzer, 2010c) (the values 1 mW kg−1 and
23.8 mW kg−1 are for global averages, there are systematic
latitudinal variations, and Fig. 23 confirms that the theory
works well at each latitude).

Using the value ε ≈ 1 mW kg−1 and the global length
scale Le gives the maximum lifetime τ ≈ 10 d (this is
where the lines in the Stommel diagrams intersect the
Earth scales in the atmospheric Stommel diagrams). For
the surface ocean currents, as reviewed in Chap. 8 of
Lovejoy and Schertzer (2013), ocean drifter estimates yield
ε ≈ 10−8 W kg−1, implying a maximum ocean gyre lifetime
of about 6 months to 1 year. Deep ocean currents have much
smaller values ε ≈ 10−12–10−15 W kg−1 (or less) that ex-
plain the right-hand side of the Stommel diagram (Fig. 22).
This diagram indicates these values, with the theoretical
slope 3/2 fitting the phenomenology well. The figure also
shows the effect of intermittency (Sect. 3.3) that implies a
statistical distribution about the exponent 3/2 (this is simply
the exponent of the mean), the width of which is also theo-
retically estimated and shown in the plot, thus potentially ex-
plaining the statistical variations around the mean behaviour.

In space, up to planetary scales, the basic wind statistics
are controlled by ε; hence, up to τw, they also determine
the corresponding temporal statistics. Beyond this timescale,
we are considering the statistics of many planetary-scale
structures. That the problem becomes a statistical one is
clear since the lifetime in this anisotropic 23/9D turbulence
is essentially the same as its predictability limit, the error-
doubling time for the l-sized eddies (e.g. Chap. 2 of Love-
joy and Schertzer, 2013). If the atmosphere had been per-
fectly flat (or “layerwise flat” as in quasi-geostrophic 2D
turbulence), then its predictability limit would have been
much longer (e.g. Chap. 2 of Lovejoy and Schertzer, 2013).

Figure 20. The original space–time diagrams (Stommel, 1963,
ocean, left; Orlanski, 1975, the atmosphere, right). The solid red
lines are theoretical lines assuming the horizontal Kolmogorov scal-
ing with the measured mean energy rate densities indicated. The
dashed red lines indicate the size of the planet (half-circumference
20 000 km), where the timescale at which they meet is the lifetime
of planetary structures (≈ 10 d in the atmosphere, about 6 months
in the ocean). It is equal to the weather–macroweather and ocean
weather–ocean macroweather transition scales, and it is also close
to the corresponding deterministic predictability limits.

Figure 21. The original figures are space–time diagrams for the
ocean (left) and atmosphere (right) from Ghil and Lucarini (2020);
note that space and time have been swapped as compared to Fig. 20.
As in Fig. 20, solid red lines have been added, showing the purely
theoretical predictions. On the right, a solid blue line was added
showing the planetary scale. The dashed red line (also added) shows
the corresponding lifetimes of planetary structures (the same as in
Fig. 20). We see once again that wide-range horizontal Kolmogorov
scaling is compatible with the phenomenology, especially when tak-
ing into account the statistical variability of the space–time relation-
ship itself, as indicated in Fig. 22.
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Figure 22. A space–time diagram showing the effects of intermit-
tency and, for the oceans, the deep currents associated with very
low ε. The original was published in Steele (1995), with solid ref-
erence lines added in Lovejoy et al. (2001), and the dashed lines
were added in a further update in Lovejoy and Schertzer (2013).
The central black lines indicate the mean theory (i.e. τ ≈ ε−1/3l2/3

with ε = 10−3 W kg−1 left and ε = 10−12 right, appropriate for
deep water). The central dashed lines (surface layers) represent
ε = 10−8 W kg−1. The lines to the left and right of the central
lines represent the effects of intermittency with exponent C1 = 0.25
(slopes 3/(2± C1)≈ 0.75 and 0.59; see Sect. 3: this corresponds to
roughly 1 standard deviation variation of the singularities in the ve-
locity field). Reproduced from Lovejoy and Schertzer (2013).

Therefore, at this transition scale, even otherwise determin-
istic GCMs become effectively stochastic. Since the longer
timescales are essentially large-scale weather, this has been
dubbed “macroweather”.

Figure 24 shows atmospheric and oceanic spectra clearly
showing the weather–macroweather transition and ocean
weather–ocean macroweather transitions at the theoretically
calculated timescales. It also shows the only other known
weather–macroweather transition, this time on Mars using
Viking lander data. The Martian transition time may be
theoretically determined by using the Martian value ε ≈

40 mW Kg−1 and a 4 % Carnot efficiency. Using the Martian
solar insolation and atmospheric mass, the theory predicts a
Martian weather–macroweather transition at about 1.8 sols
(1 sol≈ 25 h), a prediction confirmed in Fig. 24 (Lovejoy et
al., 2014).

2.7 Eulerian space–time relations

In the previous section, we discussed the space–time rela-
tions of structures of size l that maintained their identities
over a lifetime τ – these space–time diagrams are Lagrangian
(albeit deduced from Eulerian data and reanalyses). Unsur-
prisingly, it turns out to be much simpler to empirically check
the corresponding fixed-frame Eulerian relations; we con-
sider this in this subsection.

Figure 23. The weather–macroweather transition time τw as a func-
tion of latitude. Blue shows the theoretical curve (±45◦ latitude
only) estimated from the horizontal wind field at 700 mb (blue, us-
ing ε =

〈
1v3/1x

〉
and τw ≈ ε−1/3L2/3 data from the ECMWF

reanalysis) and red direct estimates from breaks in the spectra of
700 mb temperature series at 2◦ resolution from the 20th century
reanalysis (the solid line is the mean and the dashed lines are the
1 standard deviation spread along each latitude line). Adapted from
Lovejoy and Schertzer (2013).

Figure 24. The three known weather–macroweather transitions: air
over the Earth (black, and upper left, grey), the sea surface tem-
perature (SST, ocean) at 5◦ resolution (lower line, thin black), and
air over Mars (thick, solid, black). The air over the Earth’s curve is
from 30 years of daily data from a French station (Macon, black)
and from air temperatures for the last 100 years (5◦× 5◦ resolu-
tion NOAA NCDC), and the spectrum of monthly averaged SST
is from the same database. The Mars spectra are from Viking lan-
der data. The strong “spikes” on the right are the Martian diurnal
cycle and its harmonics. On the far left, the spectral rise (Earth) is
the low-frequency response to anthropogenic forcing. Reproduced
from Lovejoy (2019).
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The key difference between the Eulerian and Lagrangian
statistics is that the former involves an overall mean advec-
tion velocity V . When studying laboratory turbulence, Tay-
lor (1938) proposed that the turbulence is “frozen”, such
that the pattern of turbulence blows past the measuring point
sufficiently quickly so that it does not have time to evolve.
Frozen turbulence requires the existence of a scale separa-
tion between small and large scales, so that the large (nearly
frozen) structures really do blow the small ones’ structures
without much evolution. When this approximation is valid,
the spatial statistics may be obtained from time series by the
deterministic transformation V1t→1x, where V is a con-
stant.

In Taylor’s laboratory turbulence, V is determined by the
fan and by the wind-tunnel geometry, and within limits, the
approximation is valid. However, although the transforma-
tion has been frequently used to interpret meteorological
data, due to the horizontal scaling, there is no scale sepa-
ration between large and small scales, so that atmospheric
turbulence is not frozen. However, we are only interested in
the statistical relations between time and space, and if the
system is scaling, then advection can be taken into account
using the Galilean transformation r→ r −V t , t→ t . Since
V is now a random (turbulent) velocity, its effects must then
be averaged; this is discussed in Sect. 4.1.5. The full theory of
space–time scaling requires the consideration of anisotropic
space–time and was developed in Schertzer et al. (1997a),
Lovejoy et al. (2008b), and Pinel et al. (2014) and reviewed
in Lovejoy and Schertzer (2013).

In order to test the space–time scaling on real-world data,
the best sources are remotely sensed data such as the space–
time lidar data discussed in Radkevitch et al. (2008) or the
global-scale data from geostationary satellites in the infrared
(IR), whose spectra are shown in Fig. 25 (Pinel et al., 2014).
The figure uses 1440 consecutive hourly images at 5 km res-
olution over the region 30◦ N to 30◦ S and 80 to 200◦ E. A
full analysis based on the 3D (x,y, t) space data is given in
Pinel et al. (2014); the figure shows only 1D subspaces (EW,
NS, and time).

There are two remarkable aspects of the figure. The first
is that, in spite of an apparently slight curvature (normally a
symptom of deviations from perfect scaling), it is in reality
largely a “finite-size effect” on otherwise excellent scaling.
This can be seen by comparison with the black curve that
shows the consequences of the averaging over the (roughly
rectangular) geometry of the observing region combined
with the “trivial” anisotropy of the spectrum (implied by the
matrix C in Eq. 11). This is clearly visible in the various
subspaces (x,y), (x, t), (y, t) analysed in Pinel et al. (2014),
where the full theory and analysis are given. Comparing the
spectra to the theoretical black curve, we see that there are
only small deviations from scaling, and this holds over the
range in space from 60 km to ≈ 5000 km (space) and from
≈ 2 h to ≈ 7 d.

The second remarkable aspect of Fig. 25 is the near-perfect
superposition of the 1D spectra E (ω) ,E (kx) ,E

(
ky
)

over
the same range (obtained by successively integrating out
the conjugate variables (e.g.E (ω)=

∫
P
(
kx,ky,ω

)
dkxdky).

WritingK =
(
kx,ky,ω

)
, the overall result is that the full 3D,

horizontal space–time spectrum P
(
K
)

respects the symme-
try: P

(
λ−1K

)
= λsP

(
K
)

(see Sect. 4.1.5 for the theory).
The full relationship between the Lagrangian and Eulerian
statistics is derived in full in Pinel et al. (2014) and Chap.
8 of Lovejoy and Schertzer (2013). By averaging over the
turbulent advection, the final theoretical result is

P (K)∝
∣∣∣C−1K

∣∣∣−s,
C =


1 0 −µx
0 1 −µy

0 0
√

1−
(
µ2
x + a

2µ2
y

)
 , (11)

where the nondimensional µx and µy are related to the aver-
age zonal and meridional advection velocities and their vari-
ances, and a is the average “trivial” zonal to meridional as-
pect ratio. The vertical bars indicate the usual vector norm.
Empirically, s = 3.4, a ≈ 1.6. Equation (11) implies that the
1D spectra in Fig. 25 respect E (ω)∝ E (kx)∝ E

(
ky
)

as
shown.

Given the space–time scaling, one can use the real space
statistics to define Eulerian space–time diagrams. Using the
same data, this is shown in Fig. 26, where we see that the
relationship is nearly linear in a linear–linear plot (i.e. with
a constant velocity) up to about 10 d, corresponding to near-
planetary scales as indicated in the figure. Note some minor
differences between the EW and NS directions.

3 Scaling and multifractals

3.1 Scaling in one dimension: time series and spatial
transects

Up until now, we have discussed scaling at a fairly general
level as an invariance under scale changes, contrasting it with
scaleboundedness and emphasizing its indispensable role in
understanding the atmosphere, the ocean, and, more gener-
ally, the geosphere. There are two basic elements that must
be considered: (a) the definition of the notion of scale and
scale change and (b) the aspect of the system or process that
is invariant under the corresponding change (the invariant).

We have seen that, in general terms, a system is scaling
if there exists a power-law relationship (possibly determin-
istic, but usually statistical) between fast and slow (time) or
small and large (space, or both, space–time). If the system is
a geometric set of points – such as the set of meteorologi-
cal measuring stations (Lovejoy et al., 1986), then the set is
a fractal set and the density of its points is scaling – it is a
power law whose exponent is its fractal codimension. Geo-
physically interesting systems are typically not sets of points
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Figure 25. The zonal, meridional, and temporal spectra of 1386
images (∼ 2 months of data, September and October 2007) of radi-
ance fields measured by a thermal infrared channel (10.3–11.3 µm)
on the geostationary satellite, MTSAT (Multifunctional Transport
Satellite), over the south-western Pacific at resolutions 30 km and
1 h over latitudes 40◦ S–30◦ N and longitudes 80–200◦ E. With the
exception of the (small) diurnal peak (and harmonics), the rescaled
spectra are nearly identical and are also nearly perfectly scaling (the
black line shows exact power-law scaling after taking into account
the finite image geometry). Adapted from Pinel et al. (2014).

Figure 26. The Eulerian (fixed-frame) space–time diagram ob-
tained from the same satellite pictures analysed in Fig. 25, lower
left, reproduced from Pinel et al. (2014). The slopes of the refer-
ence lines correspond to average winds of 900 km d−1, i.e. about
11 m s−1. The dashed reference lines show the spatial scales corre-
sponding to 1 and 10 d respectively.

but rather scaling fields such as the temperature T (r, t) at the
space–time point (r, t). Although we will generally use the
term scaling “fields”, for multifractals, the more precise no-
tion is of singular densities of multifractal measures.

In such a system, some aspect – most often a suitably de-
fined fluctuation 1T – has statistics whose small and large
scales are related by a scale-changing operation that involves
only the scale ratios: the system has no characteristic size. In
one dimension the scaling of temporal series or spatial tran-

sects can be expressed as

1T (1t) d= ϕ1t1tH , (12)

where 1t is the time interval (scale) over which the fluc-
tuations are defined (for transects, replace 1t by the spa-
tial interval 1x), H is the fluctuation exponent, and ϕ1t is
a random variable at resolution φ1t . Dimensionally, the units
of ϕ determine H , and physically ϕ is a turbulent flux that
drives the process (or a power of a flux; see Eq. 2). In tur-
bulence theory, (in the relevant “direct” cascades) the fluxes
are in Fourier space from small to large wavenumbers. The
subscript 1t indicates that ϕ generally depends on the scale

(resolution). The equality sign d
= is in the sense of random

variables; this means that the random fluctuation 1T (1t)
has the same probability distribution as the random variable
ϕ1t1t

H . We suppressed the t dependence since we consider
the case where the statistics are independent of time or space
– statistical stationarity or statistical homogeneity (see Ap-
pendix B4). Physically, this is the assumption that the under-
lying physical processes are the same at all times and every-
where in space. Equation (12) is the more formal expression
of Eq. (1) or of the classical turbulence laws Eq. (4). For ex-
ample, if we consider space rather than time, the Kolmogorov
law has H = 1/3 with ϕ = ε1/3.

The simplest case is where the fluctuations in a temporal
series T (t) follow Eq. (12) but with ϕ a random variable in-

dependent of resolution: ϕ1t
d
= ϕ, with ϕ the same as in Eq.

(12): a Gaussian random variable. This is the classical spe-
cial case of non-intermittent, quasi-Gaussian turbulence. Ex-
amples are fractional Gaussian noise (fGn,−1<H < 0) and
fractional Brownian motion (fBm, 0<H < 1), with special
cases Gaussian white noise (H =−1/2) and standard Brow-
nian motion (H = 1/2).

Equation (12) relates the probabilities of small and large
fluctuations; it is usually easier to deal with the deterministic
equalities that follow by taking qth-order statistical moments
of Eq. (12) and then averaging over a statistical ensemble:〈
(1T (1t))q

〉
=
〈
ϕ
q
1t

〉
1tqH , (13)

where “〈〉” indicates statistical (ensemble) averaging.
Equation (13) is the general case where the resolution 1t

is important for the statistics of ϕ; indeed, quite generally,
ϕ1t is a random function (1D) or field averaged at resolution
1t . If ϕ1t is scaling, its statistics will follow:〈
ϕ
q
λ

〉
= λK(q)

;λ= τ/1t ≥ 1, (14)

where τ is the largest, “outer” scale of the scaling regime
satisfied by the equation, and the 1t resolution is λ times
smaller. K(q) is a convex (K ′′ (q)≥0) exponent function;
since the mean fluctuation is independent of the scale (〈ϕλ〉 =
λK(1)

= const), we have K(1)= 0 (see Eq. 2). This is the
generic statistical behaviour of cascade processes: it displays

Nonlin. Processes Geophys., 30, 311–374, 2023 https://doi.org/10.5194/npg-30-311-2023



S. Lovejoy: Review article: Scaling, dynamical regimes, and stratification 331

general “multiscaling” behaviour – a different scaling expo-
nent K(q) for each statistical moment q. Since large q mo-
ments are dominated by large, extreme values and small q
moments by common, typical values, K(q) 6= 0 implies that
fluctuations of various amplitudes change scale with differ-
ent exponents – multiscaling – and each realization of such a
process is a multifractal. In general, K(q) 6= 0 is associated
with intermittency, a topic we treat in more detail in Sect. 3.2
and 3.3.

Combining Eqs. (13) and (14), we obtain

Sq (1t)=
〈
(1T (1t))q

〉
=
〈
ϕ
q
1t

〉
1tqH ∝1tξ (q)

;

ξ (q)= qH −K (q) , (15)

where Sq is the qth-order (“generalized”) structure function
and ξ (q) is its exponent defined in Eq. (15). Since K(q) is
convex, Eq. (15) shows that, in general, ξ (q) will be concave
(ξ ′′ ≤ 0). The structure functions are scaling since the small
and large scales are related by a power law:

Sq (λ1t)= λξ (q)Sq (1t) . (16)

As discussed in Sect. 2.3, the spectra are power laws E (ω)≈
ω−β with the exponents related as β = 1+ ξ (2)= 1+2H −
K (2) (Eq. 9).

In the case of “simple scaling” where ϕ has no scale de-
pendence (e.g. fGn, fBm), we find

〈
ϕ
q
1t

〉
= Bq , where Bq

is a constant independent of scale 1t , and hence we have
K(q)= 0 and Sq (1t)∝1tqH , so that

ξ (q)= qH ; (17)

i.e. ξ (q) is a linear function of q. Simple scaling is there-
fore sometimes called “linear scaling”, and it respects the
simpler relation β = 1+2H . Linear scaling arises from scal-
ing linear transformations of noises; the general linear scal-
ing transformation is a power-law filter (multiplication of
the Fourier transform by ω−H ) or, equivalently, fractional
integrals (H > 0) or fractional derivatives (H < 0). Appro-
priate fractional integrals of Gaussian white noises (of or-
der H + 1/2) yield fBm (1>H > 0) and fractional deriva-
tives yield fGn (−1<H < 0). The analogous Lévy motions
and noises are obtained by the filtering of independent Lévy
noises (in this case, ξ (q) is only linear for q < α < 2; for
q > α, the moments diverge, so that both ξ (q) and Sq→∞).

The more general “nonlinear scaling” case, where K(q)
is nonzero and convex, is associated with fractional integrals
or derivatives of scaling multiplicative (not additive) random
processes (cascades, multifractals). These pure multiplicative
processes (ϕ in Eq. 12) have H = 0, and they are sometimes
called “conservative multifractals” since their exponent of
the mean is ξ (1)=H = 0 (i.e. the mean is independent of
scale). The exponent H in Eq. (15) still refers to the order of
fractional integration (H > 0) or differentiation (H < 0) of
ϕ that adds the extra term qH in the structure function expo-
nent: ξ (q)= qH −K(q). Note that while the symbol H is in

honour of Edwin Hurst, the interpretation of H as the “Hurst
exponent” is only valid for Gaussian processes: more gener-
ally, it is a fluctuation exponent describing the behaviour of
the mean (q = 1) fluctuations.

Note that, in the literature, the notation “H” is not used
consistently. It was introduced in honour of Edwin Hurst, a
pioneer of long-memory processes sometimes called “Hurst
phenomena” (Hurst, 1951). Hurst introduced the rescaled
range exponent, notably in the study of Nile River stream-
flow records. To explain Hurst’s findings, Mandelbrot and
Van Ness (1968) developed Gaussian scaling models (fGn,
fBm) and introduced the symbol H . At first this represented
a Hurst exponent, and they showed that, for fGn processes, it
was equal to Hurst’s exponent. However, by the time of the
landmark Fractal Geometry of Nature (Mandelbrot, 1982),
the usage was shifting from a scaling exponent to a model
specification: the “Hurst parameter”. In this new usage, the
symbol H was used for both fGn and its integral fBm, even
though the fBm scaling exponent is larger by 1. To avoid con-
fusion, we will call it HM . Subsequently, a mathematical lit-
erature has developed usingHM with 0<HM < 1 to param-
eterize both the process (fractional Gaussian motion – fBm)
and its increments (fGn). However, also in the early 1980s
(Grassberger and Procaccia, 1983; Hentschel and Procaccia,
1983; Schertzer and Lovejoy, 1983b), much more general
scaling processes with an infinite hierarchy of exponents –
multifractals – were discovered, clearly showing that a sin-
gle exponent was not enough. Schertzer and Lovejoy (1987)
showed that it was nevertheless possible to keepH in the role
of a mean fluctuation exponent (originally termed a cascade
“conservation exponent”). This is the sense of the H expo-
nent discussed here. As described above, using appropriate
definitions of fluctuations (i.e. by the use of an appropriate
wavelet), H can take on any real value. When the definition
is applied to fBm, it yields the standard fBm value H =HM ,
yet when applied to fGn, it yields H =HM − 1.

We could mention that, here and in Sect. 3.3, where we dis-
cuss the corresponding multiscaling probability distributions,
we use the c(γ ), K(q) codimension multifractal formalism
that is appropriate for stochastic multifractals (Schertzer and
Lovejoy, 1987). Another commonly used multifractal for-
malism is the α, f (α), τ (q) dimension formalism of Halsey
et al. (1986) that was developed for deterministic chaos ap-
plications. The relationship between the two formalisms is
f (α)= d − c (γ ), where d is the dimension of the space in
which the multifractal process is defined and α = d−γ is the
singularity of the measure of the multifractal – not its density,
whose singularity is γ . For the moment exponent functions,
we have τ (q)= d (q − 1)−K (q).

The α, f (α), and τ (q) “dimension” formalism was devel-
oped to characterize deterministic chaos in low-dimensional
(i.e. small d) spaces. Here we are interested in stochastic
multifractal processes that are defined on probability spaces
with d =∞. Therefore, a codimension formalism that is in-
dependent of d is required. Another difference between the
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formalisms is that the singularity of the multifractal measure
α is assumed to be defined at a mathematical point (it is a
“Holder exponent”), whereas in the codimension formalism,
γ is the singularity of the density of the multifractal mea-
sure, and only a looser convergence in the neighbourhood of
a point is assumed. This lack of pointwise convergence of the
singularities is a general feature of (stochastic) cascade pro-
cesses and hence the codimension formalism is more relevant
in the atmosphere.

3.2 Spikiness, intermittency, and multifractals

3.2.1 Spikes, singularities, and codimensions

Atmospheric modelling is classically done using the deter-
ministic equations of thermodynamics and continuum me-
chanics. However, in principle, one could have used a more
fundamental (lower-level) approach – statistical mechanics –
but this would have been impossibly difficult. However, in
strongly nonlinear fluid flow, the same hierarchy of theories
continues to higher-level turbulent laws. These laws are scal-
ing and may – depending on the application – be simpler
and more useful. A concrete example is in the macroweather
regime where (strongly nonlinear, deterministic) GCMs are
taken past their deterministic predictability limit of about
10 d. Due to their sensitivity to initial conditions, there is an
inverse cascade of errors (Lorenz, 1969; Schertzer and Love-
joy, 2004), so that, beyond the predictability limit, small-
scale errors begin to dominate the global scales, so that
the GCMs effectively become stochastic. To some degree
of approximation, since the intermittency is low (the spiki-
ness on the right-hand side of Fig. 2 and at the bottom of
Fig. 3), this stochastic behaviour is amenable to modelling
by linear stochastic processes, in this case, the half-order and
fractional energy balance equations (HEBE, FEBE, Lovejoy,
2021a, b; Lovejoy et al., 2021; Lovejoy, 2022c). The key is-
sue – of whether linear or nonlinear stochastic processes can
be used – thus depends on their “spikiness” or intermittency
(multifractality).

Classically, intermittency was first identified in labora-
tory flows as “spottiness” (Batchelor and Townsend, 1949)
in the atmosphere by the concentration of atmospheric fluxes
in tiny, sparse regions. In time series, it is associated with
turbulent flows undergoing transitions from “quiescence”
to “chaos”. Quantitative intermittency definitions developed
originally for fields (space) are of the “on–off” type, the idea
being that when the energy or other flux exceeds a threshold,
then it is “on”, i.e. in a special state – perhaps of strong/vio-
lent activity. At a specific measurement resolution, the on–off
intermittency can be defined as the fraction of space where
the field is “on” (where it exceeds the threshold). In a scaling
system, for any threshold, the “on” region will be a fractal set
and both the fraction and the threshold will be characterized
by exponents (by c and γ , introduced shortly) that describe
the intermittency over all scales and all intensities (thresh-

olds). In scaling time series, the same intermittency defini-
tion applies; note however that other definitions are some-
times used in series in deterministic chaos.

With the help of multifractals, we can now quantitatively

interpret the spike plots. Recall that 1T (1t) d= ϕ1t1tH

(Eq. 12), where ϕ1t is the flux driving the process at reso-
lution 1t and normalized so that 〈ϕ1t 〉 = 1. If we estimate
the ensemble mean flux by the (temporal) average flux over
the entire time series and then average the result over all the

available series (indicated by an overbar), then 1T (1t) d=
ϕ1t1t

H and the normalized spikes1T/1T are estimates of
the nondimensional, normalized driving fluxes:

1T (1t)/1T (1t)= ϕ1t,un/ϕ1t,un = ϕλ;λ= τ/1t, (18)

where ϕ1t,un is the raw, unnormalized flux, and the outer
scale of the scaling regime is τ , so that the normalized flux ϕλ
is over the scale ratio λ. In the weather regime in respectively
time and space, the squares and cubes of the wind spikes are
estimates of the turbulent energy fluxes. This spikiness is be-
cause most of the dynamically important events are sparse
and hierarchically clustered, occurring mostly in storms and
at the centre of storms.

As long as H < 1 (true for nearly all geo-processes), the
differencing that yields the spikes acts as a high-pass fil-
ter, and the spikes are dominated by the high frequencies.
Smoothed Gaussian white noises such as the scaling fGn and
fractional Brownian motion (fBm) processes or non-scaling
processes such as autoregressive and moving average pro-
cesses will have spikes that look like the weak macroweather
spikes in Fig. 2, roughly bounded by the solid horizontal line
in the figure.

What happens if we change the resolution of ϕλ by averag-
ing it over larger and larger scales 1t (smaller λ)? Figure 27
shows this using the example of the spatial (aircraft) transect
in Fig. 3. The top plot is identical to the bottom of Fig. 3,
except that nondimensional units are used, so that the top
spike transect ϕλ has length 1 with λ= L/1x = 213

= 8192,
where L= 2294 km is the actual length and 1x = 280 m is
the transect resolution. As we move from top to bottom, the
resolution is successively degraded by factors of 4 (λ de-
creases by factors of 4). Since the flux is normalized by its
mean (λ= 1), the fluctuations are about unity (the dashed
line at the bottom where λ= 2).

Examine now the vertical axes. We see that – as expected
– the amplitude of the spikes systematically decreases with
resolution, and the plots are clearly not scale-invariant. We
would like to have a scale-invariant description of the spikes
and a scale-invariant probability distribution of the spikes.
For this, each spike is considered to be a singularity of order
γ :

λγ =
|1T |

|1T |
. (19)
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Figure 27. The top row is a reproduction of the intermittent spikes
taken from the gradients in the aircraft data at the bottom of Fig. 3.
The original series is 2294 km long with resolution 280 m, and
hence it covers a scale range of a factor of λ= 213. Here we
use nondimensional units, so that the length is 1 with resolution
λ−1
= 2−13. Moving from top to bottom, each row degrades (by

averaging) the resolution of the previous one by a factor of 4. Note
that the scale on the left is constantly changing. At the bottom, the
dashed line indicates the mean, which is unity since ϕ is a normal-
ized process. Reproduced from Lovejoy (2019).

This is simply a transformation of variables from the spikes
|1T |/

∣∣1T ∣∣ to singularities γ = log
(
|1T |/|1T |

)
/ logλ.

Figure 27 shows the same spikes but now in terms of the
orders of singularity. Now we see that the vertical range is
pretty much independent of the resolution. It is therefore
plausible that the characterization of the spikes by γ is scale-
invariant. To obtain a scale-invariant characterization of the
probabilities, introduce the codimension function c(γ ); the
spike probability distribution may be written as

Pr
(
|1T |

|1T |
> s

)
= P (s)λ−c(γ )

;γ =
logs
logλ

. (20)

Pr
(
|1T |

|1T |
> s

)
is the probability that a randomly chosen nor-

malized spike |1T |/|1T | will exceed a fixed threshold s (it
is equal to one minus the more usual cumulative distribution
function), and P (s) is a non-scaling prefactor that depends
on s and weakly on γ . For data analysis purposes, the P (s)
prefactor is inconvenient. Although it can be handled – and
c(γ ) estimated directly by using the probability distribution
multiple-scaling technique (Lavallée et al., 1991) – it is often
easier to analyse the statistical moments using trace-moment
analysis.

To leading order (i.e. setting the prefactor ≈1), we obtain

c (γ )≈− logPr/ logλ; γ = log
(
|1T |/|1T |

)
/ logλ. (21)

We see that, while γ gives a scale-invariant characterization
of the spikes, c(γ ) does the same for the probability dis-

Figure 28. The same as Fig. 27 but in terms of the correspond-
ing singularities obtained through the transformation of variables
γ = logϕ/ logλ. Note that, while the range of variation of the ϕ
in the previous figure rapidly diminishes as the resolution is low-
ered, by contrast, the amplitude of the fluctuations of the γ val-
ues (above) is roughly the same at all scales. Note that the dashed
horizontal line in the bottom plot shows the mean singularity, here
−0.06. It is < 0 since it is the mean of the log of the normalized
flux and the logarithm function is concave. Adapted from Lovejoy
and Schertzer (2013).

tributions. c(γ ) characterizes sparseness because it quanti-
fies how the probabilities of spikes of different amplitudes
change with resolution λ. c(γ ) corresponds to the sparse set
of spikes that exceed the threshold s = λγ . Increasing the
spike amplitude (λγ ) defines a sparse exceedance set with
large c. A series is intermittent whenever it has spikes with
c > 0.

In the general scaling case, the set of spikes that exceed a
given threshold form a fractal set whose sparseness is quan-
tified by the fractal codimension c(γ )= d −D(γ ), where d
is the dimension of the space (d = 1 for series and transects)
and D(γ ) is the corresponding fractal dimension. The codi-
mension is fundamental since it is the exponent of the prob-
ability distribution.

Gaussian series are not intermittent since c(γ )= 0 for all
the spikes. To see this, note that for Gaussian processes the
cumulative probability of a spike exceeding a fixed threshold
s is independent of the resolution λ, Pr

(
|1T |/|1T |> s

)
≈

P (s), where here P (s) is related to the error function. Com-
paring this with Eq. (20), we see that c = 0.

Returning to Fig. 2, we have λ= 1000. The extreme
spikes (|1T |/|1T |) in this 1000-point-long series have
a probability λ−1

≈ 1/1000. For Gaussian processes, the
spikes with this probability are |1T |/|1T | = 4.12 (calcu-
lated from the error function). This is shown by the solid
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lines in Fig. 2: the line therefore corresponds to γ = γmax =

log
(
|1T |/|1T |

)
/ logλ≈ log4.12/ log1000≈ 0.20. If the

series in Fig. 2 were generated by multifractal processes,
what is the maximum γ (and hence spike) that we would
expect? The extreme value would still correspond to λ−1;
hence, from Eq. (20), we have c (γmax)= 1. More gener-
ally, in a space of dimension d , there would be λd spikes,
and the probability of the maximum would be λ−d , so that
c (γmax)= d. Since the fractal dimension of the spikes is
D(γ )= d − c(γ ), this is simply the result that D (γmax)= 0.
Since c(γ ) is a monotonically increasing function, this is just
the simple geometric result that the fractal dimension of the
exceedance sets cannot be negative. Appendix A, Table 2
gives both the observed maximum γ for each series in Fig. 2
and the generally comparable theoretically expected maxima
for the multifractal processes with the parameters estimated
for the series in question.

While c(γ ) quantifies the way the probability distribu-
tions of spikes change with scale, the moment-scaling ex-
ponent K(q) (Eq. 14) quantifies the way the statistical mo-
ments change with scale. Since the process can be equiva-
lently characterized by either probabilities or moments, c and
K must be related. Indeed, the relationship is beautiful and
simple, via a Legendre transformation

K (q)=max
γ

(qγ − c (γ )) ; c (γ )=max
q

(qγ −K (q)) (22)

(Parisi and Frisch, 1985).
These equations imply one-to-one relationships between

the spike singularities γ (and amplitudes λγ ) and the expo-
nent of the order of moments q; they imply K ′(q)= γ and
c′(γ )= q. K ′(q = 1)= γ1 is therefore the singularity that
gives the dominant contribution to the mean (q = 1) of the
process. At the same time,K(1)= 0, so that (Eq. 22)K (1)=
0= γ1− c (γ1) (where γ1 is the value that gives the maxi-
mum of γ−c (γ )) and so that we obtain γ1 = c (γ1), and since
K ′(1)= γ1, we have K ′(1)= c(γ1). Defining C1 = c(γ1) as
the codimensions of the singularity γ1 that gives the dom-
inant contribution to the mean, we have K ′(1)= C1. Thus
C1 plays the dual role of being the order of singularity that
gives the dominant contribution to the mean while also be-
ing equal to the codimension of the set of the corresponding
singularities. Since we see that γ1 = C1 = c(C1), this justi-
fies the interpretation of C1 = γ1 as the codimension of the
mean.

3.2.2 Universal multifractals

At first sight, general (multifractal) scaling involves an entire
exponent function – either K(q) or c(γ ) – for its statistical
characterization, the equivalent of an infinite number of pa-
rameters (e.g. one for each statistical moment). This would
be unmanageable – either from the point of view of empiri-
cal parameter estimation or from the point of view of model
construction. Fortunately, one can avail oneself of a multi-

plicative version of the central limit theorem, which leads to
“universal multifractals” with

K (q)=
C1

α− 1

(
qα − q

)
(23)

and (via Legendre transform, Eq. 22)

c (γ )= C1

(
γ

C1α′
+

1
α

)α′
;

1
α
+

1
α′
= 1; 0≤ α ≤ 2 (24)

(Schertzer and Lovejoy, 1987). C1 is the codimension of the
mean introduced earlier, 0≤ α ≤ 2 is the Lévy index, and α′

is an auxiliary variable introduced for convenience.
Figures 28 and 29 show the universal K(q), c(γ ) func-

tions for various values of α in the relevant range 0≤ α ≤ 2.
The lower limit α = 0 corresponds to the on–off, “monofrac-
tal” “β model” (Novikov and Stewart, 1964; Frisch et al.,
1978), where all the fluxes are concentrated on a fractal set
with codimension C1 and the upper limit α = 2 on the “log-
normal” multifractal (Kolmogorov, 1962; Yaglom, 1966).
Note that, due to the divergence of moments discussed in
Sect. 3.5, the multifractals with the aboveK(q), c(γ ) are only
approximately “log-Lévy” (or, when α = 2, “log-normal”).

Table 1 shows various empirical estimates relevant to at-
mospheric dynamics. We see that, generally, 1.5≈≤ α < 2
and C1 ≈ 0.1, the main exception being precipitation. As
quantified in Table 1, precipitation is the most strongly in-
termittent atmospheric field (C1 ≈ 0.4), quantitatively con-
firming the subjective impression of extreme precipitation in-
termittency. The multifractal properties of precipitation have
been the subject of numerous studies. Early analyses in-
clude spatial analyses by Tessier et al. (1993), Olsson and
Niemczynowicz (1996), de Montera et al. (2009), Verrier et
al. (2010), and Veneziano et al. (2006) and temporal anal-
yses by Tessier et al. (1993), Hubert et al. (1993), Ladoy
et al. (1993), Harris et al. (1996), De Lima (1998), De
Lima and Grasman (1999), Hubert et al. (2002), Kiely and
Ivanova (1999), Hubert et al. (2002), Pathirana et al. (2003),
Venugopal et al. (2006), Garcia-Marin et al. (2008), Pathi-
rana et al. (2003), Serinaldi (2010), Sun and Barros (2010),
and Verrier et al. (2011). There is more discussion of Table 1
in Sect. 3.4.

3.3 Quantifying intermittency with structure functions

Using spike plots, we can simply demonstrate the unique
character of the macroweather regime: low intermittency in
time but high intermittency in space. We introduced the c(γ )
function that for each spike level λγ characterizes the prob-
ability (fraction) of a transect or series (or more generally
space) whose spikes exceed the threshold. In this section we
discuss a particularly simple way to analyse the intermit-
tency.

Consider the data shown in Fig. 31 (macroweather time se-
ries and spatial transects, top and bottom respectively). Fig-
ure 32 compares the rms fluctuations (with exponent ξ (2)/2)
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Table 1. We compare various horizontal parameter estimates, attempting to give summarized categories of values (radiances) or approximate
values (u,v, and w are the zonal, meridional, and vertical winds, T the temperature, h the humidity, and z the pressure height). C1 is the
codimension of the mean (a convenient intermittency parameter) α, the multifractal index, H the fluctuation exponent, and β the spectral
exponent. Leff is the effective outer-cascade scale (determined from the crossing scales of the different moments; this is given in kilometres).
When available (and when reliable), the aircraft data were used in precedence over the reanalysis values, with the latter given in parentheses
in those cases where there was no comparable in situ value or when it was significantly different from the in situ value. For Leff, where
the anisotropy is significant, the geometric means of the north–south and east–west estimates are given; the average ratio is 1.6 : 1 EW–NS
(although for the precipitation rate, the along-track TRMM estimate was used). Finally, the topography estimate of Leff is based on a single
realization (one Earth), so that we only verified that there was no obvious break below planetary scales. The aerosol concentration was
estimated from the lidar backscatter ratio from the data in Fig. 45.

C1 α H β Leff (km)

State variables u,v 0.09 1.9 1/3 (0.77) 1.6 (2.4) (14 000)
w (0.12) (1.9) (−0.14) (0.4) (15 000)
T 0.11 (0.08) 1.8 0.50 (0.77) 1.9 (2.4) 5000 (19 000)
h 0.09 1.8 0.51 1.9 10 000
z (0.09) (1.9) (1.26) (3.3) (60 000)

Precipitation R 0.4 1.5 0.00 0.2 32 000

Passive scalars Aerosol concentration 0.08 1.8 0.33 1.6 25 000

Radiances Infrared 0.08 1.5 0.3 1.5 15 000
Visible 0.08 1.5 0.2 1.5 10 000
Passive microwave 0.1–0.26 1.5 0.25–0.5 1.3–1.6 5000–15 000

Topography Altitude 0.12 1.8 0.7 2.1 20 000

Sea surface temperature SST 0.12 1.9 0.50 1.8 16 000

Figure 29. Universal K(q) as a function of q for different values
from 0 to 2 in increments of 0.2. Adapted from Schertzer and Love-
joy (1989).

and the mean fluctuations (with exponent H = ξ (1)) from
macroweather temperature time series (bottom) and for the
spatial transects (top). When the system is Gaussian (so that
K(q)= 0), we obtain ξ (2)/2= ξ (1), so that moments of the
mean and rms fluctuations are in a constant ratio. In this case,
log<1T (1t)> is parallel to log 〈1T (1t)2

〉
1/2. Figure 32

(bottom) shows that to a good approximation this is indeed

Figure 30. Universal c(γ ) for α in the range 0 to 2 in increments of
0.2. Adapted from Schertzer and Lovejoy (1989).

true of the non-spiky temporal series (Fig. 31, top). How-
ever, the corresponding statistics of the spatial transect (the
top lines in Fig. 31) tend to converge at large1x correspond-
ing to the highly spiky transect (Fig. 32, bottom). To a first
approximation, it turns out that ξ (2)/2− ξ (1)≈K ′(1)= C1,
which characterizes the intermittency near the mean. How-
ever, there is a slightly better way to estimate C1, using the
intermittency function (see Fig. 33 and caption) whose the-
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Figure 31. A comparison of temporal and spatial macroweather se-
ries at 2◦ resolution. The top shows the absolute first differences of
a temperature time series at monthly resolution (from 80◦ E, 10◦ N,
1880–1996, displaced by 4 K for clarity), and the bottom is the se-
ries of absolute first differences of a spatial latitudinal transect (an-
nually averaged, 1990 from 60◦ N) as a function of longitude. Both
use data from the 20CR. One can see that, while the top is noisy, it
is not very “spiky”. Quantitatively, the intermittency parameter near
the mean is C1 ≈ 0.01 (time), C1 ≈ 0.12 (space). Reproduced from
Lovejoy (2022b).

oretical slope (for ensemble-averaged statistics) is exactly
K ′(1)= C1. As a point of comparison, we could note that
fully developed turbulence in the weather regime typically
has C1 ≈ 0.09. The temporal macroweather intermittency
(C1 ≈ 0.01) is indeed small, whereas the spatial intermit-
tency is large (C1 ≈ 0.12).

For many applications, the exceptional smallness of
macroweather intermittency makes the “monoscaling” ap-
proximation (i.e. ξ (q)≈Hq) acceptably accurate, so that
macroweather processes are relatively easy to statistically
characterize. In this case, the fluctuation exponent H , the
spectral exponent β, and the DFA exponent a (Appendix A5)
are equivalent and sufficient (the general relations are H =
(β − 1+K (2))/2= a−1+K (2)/2, and here, with no inter-
mittency, K(2)= 0, and these simplify to H = (β − 1)/2=
a− 1). For examples of macroweather scaling, see Tessier
et al. (1996), Pandey et al. (1998), Koscielny-Bunde et
al. (1998), Bunde et al. (2004), Eichner et al. (2003), Blender
et al. (2006), Huybers and Curry (2006), Rybski et al. (2006),
Lennartz and Bunde (2009), Lanfredi et al. (2009), Fraedrich
et al. (2009), Franzke (2010, 2012), Varotsos et al. (2013,
2009), and de Lima and Lovejoy (2015).

3.4 Multifractal analyses of geofields: direct
(trace-moment) estimates of outer scales and K (q)
for Earth and Mars

In the preceding sections, we gave evidence that diverse at-
mospheric fields are scaling up to planetary scales. In addi-

tion, we argued that they generally were multifractal, with
each statistical moment q having a different exponent (K(q),
Eq. 14). In Sect. 3.2, we saw that this nonlinear, convex part
of the structure function exponent ξ (q) arises due to variabil-
ity building up scale by scale from a large external scale L to
smaller scales 1x (ratio λ= L/1x or, in time, λ= τ/1t).
By analysing the statistics of the fluxes

〈
ϕ
q
λ

〉
, this gives us the

possibility of directly determining the effective outer scale
of the process, i.e. the scale at which the variability starts to
grow. As a bonus, our method is based on isolating the flux:
in the exponent, it yieldsK(q) rather than ξ (q) (fluctuations).
By effectively removing the qH term, i.e. ξ (q)−K(q), it is
only sensitive to K(q), which for small q is often a small
correction to ξ (q).

Before proceeding to empirical analyses of the fluxes, a
few comments are required. The flux in Eq. (14) is assumed
to be normalized, i.e. 〈ϕλ〉 = 1. For empirical estimates, one
starts with unnormalized fluxes, and one does not know a
priori the effective outer scale of the variability L that is
needed to estimate the ratio λ. The normalization problem
is easy to solve (see Eq. 18). For empirical estimates, one
therefore starts with these normalized fluxes at the small-
est available resolution (i.e.1x = 1 pixel); using this, lower-
resolution estimates (i.e. larger 1x) are obtained simply by
averaging. However, to verify Eq. (14), we need the scale ra-
tio λ, which is the ratio of the (a priori unknown) outer scale
L to the resolution 1x. The simplest procedure is to use the
largest planetary-scale Lref (half the Earth’s circumference)
as an initial reference scale, a guess hopefully not far from
the true outer scale L, a kind of “bootstrap”. When this is
done, the statistics of the various moments as functions of
the reference-scale ratio (i.e. with λref = Lref/1x in place of
λ :
〈
ϕ
q
Lref/1x

〉
) are plotted in a log–log plot. For each moment

order of q, the regressions with slopes K(q) all converge to
the true outer scale; this is because at that scale λ= 1, and
(Eq. 14) shows that

〈
ϕ
q

λ=1
〉
= 1 for all q.

Figure 34 shows the first empirical trace-moment estimate
(Schertzer and Lovejoy, 1987). It was applied to data from a
land-based radar whose 3 km altitude reflectivity maps were
128 km wide with a 1 km resolution. The vertical axis is
Log10Mq , where Mq =

〈
ϕ
q
λ

〉
and λ= Lref/1x, with Lref =

128 km. Although this gives a tantalizing hint that atmo-
spheric cascades start at planetary scales, it was not until 20
years later when a decade of satellite radar data was released
over the Internet that this was confirmed directly (Fig. 35,
Lovejoy et al., 2009e). The poor scalings (curvature) for the
low q values (bottom) were quantitatively explained as arte-
facts of the fairly high minimum detectable signal. Figure 36
shows similar results, but this time using the same geosta-
tionary satellite data whose spectra were analysed in Fig. 25.
An interesting comparison of horizontal and vertical cascade
structures from vertical sections of lidar aerosol backscatter
is shown in Fig. 37. Although this is discussed in Sect. 4.1,
we can already note that the outer scales are roughly the
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Figure 32. The first-order and rms Haar fluctuations of the series
and transect in Fig. 31. One can see that, in the spiky transect, the
fluctuation statistics converge at large lags (1x), and the rate of
the convergence is quantified by the intermittency parameter C1.
The time series (bottom) is less spiky, converges very little, and has
low C1 (see Fig. 31, top). The break in the scaling at ≈ 20 years is
due to the dominance of anthropogenic effects at longer timescales.
Reproduced from Lovejoy (2022b).

Figure 33. A comparison of the intermittency function F =

〈|1T |〉
(〈
|1T |1+1q

〉)
/
(〈
|1T |1−1q

〉)1/1q
for the series and

transect in Fig. 31, quantifying the difference in intermittencies:
in time, C1 ≈ 0.01, and in space, C1 ≈ 0.12. Since K ′(1)= C1,
when 1q is small enough (here, 1q = 0.1 was used), we have
F (1t)=1tC1 . The break in the temporal scaling at about 20–
30 years (log101t ≈ 1.5) is due to anthropogenic forcings. Repro-
duced from Lovejoy (2022b).

largest available (≈ 20 000 km in the horizontal and ≈ 10 km
in the vertical), but analysis also shows that the slopes K(q)
are the theoretically predicted ratio Khor/Kvert =Hz = 5/9
(for all q, Sect. 4).

The trace moments characterize a fundamental aspect of
the atmosphere’s nonlinear dynamics – its intermittency – in
fully developed turbulence, which is expected to be a “uni-
versal” feature, i.e. found in all high Reynolds number flows.
In our case, the closest universality test is to compare Earth
with Mars (using the same reanalyses as in Fig. 9). Fig-
ure 38 shows the result when this technique is applied to
both terrestrial and Martian reanalyses for pressure, wind,
and temperature (for both planets, the reanalyses were at alti-
tudes corresponding to about 70 % of surface pressure). One
can note that, (a) as predicted, the turbulence is universal,
i.e. not sensitive to the forcing mechanisms and boundaries,
so that the behaviour is nearly identical on the two plan-
ets, (b) there is clear multiscaling (the logarithmic slopes
K(q) 6= 0), and (c) the effective outer scales (where the lines
converge) are indeed nearly the size of the planet. For more
detailed discussion and analyses (including spectra and hori-
zontal anisotropy), see Chen et al. (2016).

Table 1 shows typical values of multifractal parameters
estimated from trace moments (Sect. 3.4) of various atmo-
spheric fields. Over the decades, many multifractal anal-
yses of geofields have been performed, including of at-
mospheric boundary conditions, notably the topography on
Earth (Lavallée et al., 1993; Gagnon et al., 2006), Mars
(Landais et al., 2015), and the sea surface temperature (Love-
joy and Schertzer, 2013). We can see that the universal mul-
tifractal index (α) is typically fairly close to the log-normal
value (α = 2), although due to divergence of moments even
when α = 2, the statistics of the extremes are power laws (not
log-normal; see the next section on divergence of moments).
In the table we also see that with the notable exception of the
highly intermittent precipitation field, the parameter for the
intermittency near the mean (C1) might seem small. How-
ever, it should be noted that since the cascades operate over
huge ranges of scales, the resulting fields are nevertheless
highly intermittent. In addition, it should be recalled that,
since α ≈ 2, the intermittency increases very rapidly for the
higher-order moments; so, for example, the kurtosis (q = 4)
has an “effective” intermittency 12 times larger (K(4)= C1
(42
− 4) = 12C1).

3.5 Bare and dressed multifractals and multifractal
extremes

3.5.1 Power-law tails, divergence of high-order
moments, and multifractal phase transitions

The multifractal process ϕλ in Fig. 27 is shown at various
resolutions generated from data at 280 m resolution that were
then systemically degraded. How could we model such a pro-
cess? Let us first consider a multiplicative cascade process
by starting at the bottom and (multiplicatively) adding de-
tails as we move to the top. To go from one level (resolu-
tion) to the next (i.e. λ→ 4λ in this example), we would use
the same rule: pick four random multipliers from a unique
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Figure 34. The moments Mq =
〈
ϕ
q
λ

〉
of the normalized radar re-

flectivity factor for 70 constant-altitude radar maps at 3 km altitude
from the McGill weather radar (10 cm wavelength). As can be seen,
the outer scale (where the lines cross) is at roughly 32 000 km. This
scale is a bit larger than the Earth’s half-circumference because even
at the largest scale there is some precipitation variability due to the
interaction of precipitation with the other atmospheric fields. From
Schertzer and Lovejoy (1987), adapted in Lovejoy et al. (2008a).

Figure 35. The same as Fig. 34 except for TRMM reflectivities
(4.3 km resolution). The moments are for q = 0.0,0.1,0.2, . . .2,
taken along the satellite track. The poor scaling (curvature) for the
low q values (bottom) can be explained as artefacts of the fairly
high minimum detectable signal. The reference scale used as a first
estimate of the outer-cascade scale was Lref = 20 000 km, and the
outer scale (where the lines cross) was 32 000 km (as in Fig. 34)
(Lovejoy et al., 2009e).

probability distribution. In order to prevent the mean from
tending to either zero or infinity, these multipliers should be
normalized so that their mean is constant. At each step, the
spikes would become generally sharper, depending only on
the lower-resolution spikes. At each level (λ), the statistics
would be characterized by the sameK(q) (moments) or c(γ )

Figure 36. Trace moments from Mq =
〈
ϕ
q
λ

〉
(for q =

0,0.1,0.2, . . .2) for the 1440 hourly geostationary MTSAT
data at a 30 km resolution, over the region 40◦ N to 30◦ S covering
130◦ of longitude over the Pacific Ocean. Lref = 20 000 km, and
the lines cross at an outer scale of 32 000 km. For the space–time
spectra, see Fig. 25. Reproduced from Pinel et al. (2014).

Figure 37. The cascade structure of lidar aerosol backscatter; see
the example in Fig. 45. Moments of normalized fluxes (indicated
as M). We show the moments of order q = 0.0,0.2,0.4, . . .2. Note
how the lines converge at effective outer scales that are close to
the half-circumference (left) and tropopause height (right). Also,
the ratio of the intermittency parameters C1 is ≈ 0.70± 0.15, com-
patible with the theoretical ratio Hz. Reproduced from Lovejoy et
al. (2009a).

(probability); this is a multifractal cascade, the generic mul-
tifractal process.

However, we can already see a problem with this naïve
construct. When we reach the top (corresponding to data at
280 m resolution), we are still far from the turbulent dissi-
pation scale that is roughly 1 million times smaller: the top
line is better modelled by continuing the cascade down to
very small (dissipation) scales and then – imitating the air-
craft sensor – averaging the result over 280 m. A multifractal
process at scale λ can thus be produced in two ways: either by
a cascade that proceeds over a finite range λ and then stops –
or alternatively – one that proceeds to very small scales and
then is averaged to the same scale. Using renormalization jar-
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Figure 38. A comparison of the scaling of the normalized fluxes
(Mq (λ)) as functions of the scale ratio λ= Lref/1x for both Earth
(left) and Mars (right) and for surface pressure anomalies (p, top),
north–south wind (v), east–west wind (u), and temperature (T , bot-
tom). These were estimated from the fluctuations by using Eq. (18):
Lref is the half-circumference of each planet, so that the scale ra-
tio λ (denoted λref in the text) is the inverse of a nondimensional
distance. For each individual plot (trace moments), the moments of
order q = 2,1.9,1.8. . .0.1 are shown as indicated (upper right). For
the Earth the data were at 1◦ resolution from daily data from the
ECMWF-Interim reanalysis for the year 2006, whereas for Mars, it
was from the MACDA (Mars Analysis Correction Data Assimila-
tion) reanalysis at 3.75◦ resolution over 3 Martian years (roughly 8
terrestrial years). The regression lines are fits to Eq. (14); the slopes
are the exponents K(q) and the point of convergence is at the outer
scale ratio: it indicates the scale at which the variability starts to
build up. In all cases, it is nearly the size of the planet (λ= 1).
Adapted from Chen et al. (2016).

gon, the former is a “bare” multifractal process, whereas the
latter – the typical empirical multifractal – is a “dressed” pro-
cess. What is the difference between the statistics of the bare
and dressed resolution λ multifractal processes?

Mathematically, we can represent the dressed process as

ϕ(d),λ = lim
3→∞

53 (Bλ)
vol (Bλ)

, 53 (Bλ)=
∫
Bλ

ϕ3d
Dx,

vol (Bλ)=
∫
Bλ

dDx. (25)

The “flux” 53 (Bλ) and “volume” vol (Bλ) are D-
dimensional measures over a λ resolution “ball” Bλ. In the
D = 1 dimensional process considered here, it is an interval
(length λ−1) for isotropic processes in D = 2 or D = 3, and
it is a square or cube (areas λ−2 and volumes λ−3 respec-
tively, for anisotropic scaling and balls; see Sect. 4). The “λ
resolution dressed” process ϕ(d),λ is thus the small-scale cas-
cade limit (3→∞) of the λ scale average.

A basic result going back to Mandelbrot (1974) and gen-
eralized in Schertzer and Lovejoy (1985c, 1987, 1992, 1994)
shows that the statistical moments are related as〈
ϕ
q

(d),λ

〉
≈
〈
ϕ
q
λ

〉
; q < qD;

→∞; q ≥ qD;
(26)

i.e. the dressed moments greater than a critical order qD
diverge, but below this, the bare and dressed moments are
nearly the same. In terms of the moment-scaling exponents,

Kd (q)
=K (q) ; q < qD;

=∞; q ≥ qD;
(27)

(“d” for “dressed”).
The critical moment for divergence qD is the solution of

the implicit equation:

K (qD)=D (qD − 1) ; (28)

i.e. the qth moment converges if K(q)<D(q− 1), where D
is the dimension of space over which the averaging is per-
formed.

We can now briefly consider the conditions under which
there are nontrivial solutions to Eq. (28) with finite qD .
First, note that qD > 1 since otherwise the process cannot
be normalized. Then recall that K(q) is convex (K ′′ > 0)
and K(1)= 0 (the mean is independent of scale: it is “con-
served”). There is therefore a trivial solution at q = 1; the so-
lution we require – if it exists – is for q > 1. Such solutions
qD to Eq. (28) are found at the intersection of K(q) with the
line slope D passing through the axis at q = 1 for q > 1.

It is now convenient to define the strictly increasing “dual”
codimension function C(q):

C (q)=
K (q)
q − 1

(29)

(see Fig. 39 for a graphical representation of this relation-
ship). The equation for divergence is now C (qD)=D and
the condition K ′(1)<D is C(1)=K ′(1)= C1 <D. Since
C(1)<D andC(q) increase with q, then, wheneverC (∞)>
D, there will be a nontrivial qD . For universal multifractals,
this is always the case when the Lévy index α ≥1.

To find the corresponding dressed probability exponent
cd(γ ), we can now take the Legendre transform (Eq. 22) of
Kd(q):

cd (γ )=
c (γ ) , γ < γD,

c (γD)+ qD (γ − γD) , γ ≥ γD,
(30)

where γD is the singularity corresponding to the critical mo-
ment qD: γD =K ′ (qD). Finally, with this dressed cd(γ ), we
easily find that the tails of the probability distributions are
power laws:

Pr (1T > s)≈ s−qD ;s� 1. (31)
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Figure 39. A schematic illustration of the relation between K(q)
and C(q). Reproduced from Lovejoy and Schertzer (2013).

Such tails are sometimes called “fat” or “Pareto”. Note that,
unlike additive processes (e.g. sums of random variables) that
generally give rise to stable Lévy distributions with diver-
gence order restricted to exponents qD < 2, in these mul-
tiplicative cascade processes, qD can have any value > 1.
Finally, since the exponent functions K(q) and c(γ ) have
thermodynamic analogues, the discontinuities in the dressed
quantities can be theorized as “multifractal phase transitions”
of various orders (Schertzer and Lovejoy, 1992). Finally,
since no empirical value is infinite – infinite moments occur
only in the limit of averages over an infinite number of real-
izations – the moments q > qD will be finite but spurious: see
the full theory in Schertzer and Lovejoy (1992), summarized
in Chap. 5 of Lovejoy and Schertzer (2013).

3.5.2 Power-law tails, outliers, black swans, and tipping
points

To get an idea of how extreme the extremes can be, con-
sider the temperature fluctuations with qD = 5 (Fig. 40 and
Table 2). For a Gaussian, temperature fluctuations 10 times
larger than typical fluctuations would be ≈1023 times less
likely; if observed, they would be classified as outliers. How-
ever, with a power-law tail and qD = 5, such extremes occur
only 105 times less frequently, so that, although rare, they
are no longer outliers. In the context of temperatures, un-
derstanding the nature of the extremes is fundamental since
it determines our interpretation of large events as either ex-
treme – but nevertheless within the expected range and hence
“normal” – or outside this range and hence an “outlier” or
perhaps – notably in climate applications – even a “tipping
point”.

A relevant example of the importance of the power-law
extremes is global warming. Over about a century, there has
been 1 ◦C warming of the globally averaged temperature – an
event of roughly 5 standard deviations (with Gaussian prob-
ability ≈ 3× 10−6). In spite of this, climate skeptics claim
that it is no more than a giant natural fluctuation (GNF), i.e.
a change that might nevertheless be normal – albeit extreme.

Figure 40. The probability distribution of daily temperature dif-
ferences in daily mean temperatures from Macon, France, for the
period 1949–1979 (10 957 d). Positive and negative differences are
shown as separate curves. A best-fit Gaussian is shown for refer-
ence, indicating that the extreme fluctuations correspond to more
than 7 standard deviations. For a Gaussian this has a probability of
10−20. The straight reference line (added) has an absolute slope of
qD with qD = 5. Adapted from Ladoy et al. (1991).

The relevant extreme centennial changes are indeed non-
Gaussian, and bounding the probability tail between power
laws with 4< qD < 6, Lovejoy (2014) showed that the prob-
ability of extremes was enhanced by a factor of as much as
1000. However, the GNF hypothesis could nevertheless be
statistically rejected with more than 99.9 % confidence.

There are now numerous atmospheric fields whose ex-
tremes have been studied and power-tail exponents (qD) esti-
mated. Some of these are shown in Table 2 (reproduced from
Lovejoy and Schertzer, 2013), and the wind field is discussed
in the next section.

3.5.3 The divergence of high-order velocity moments

While the temperature is of fundamental significance for the
climate, the wind is the dynamical field, so that it is analo-
gously important at weather scales (as well as in mechan-
ically forced turbulence). For example, numerous statisti-
cal models of fully developed turbulence are based on “clo-
sure” assumptions that relate high-order statistical moments
to lower-order ones, thus allowing the evolution of the statis-
tics in high Reynolds number turbulence to be modelled. Clo-
sures thus postulate the finiteness of some (usually all) high-
order statistical moments of the velocity field.

In fully developed turbulence, in the inertial (scaling)
range, ε is conserved by the nonlinear terms in the Navier–
Stokes equations; this is the basis of the Kolmogorov law and
of cascade theories. In this range, the Kolmogorov law gives
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Table 2. A summary of various estimates of the critical order of divergence of moments (qD) for various meteorological fields (reproduced
from Lovejoy and Schertzer, 2013). The numerous estimates of qD in precipitation are not included; they are more fully reviewed in Lovejoy
and Schertzer (2013), and typical estimates are qD ≈ 3.

Field Data source Type qD Reference

Horizontal wind Sonic 10 Hz, time 7.5 Schmitt et al. (1994b)
Hot-wire probe Inertial range 7.7 Radulescu et al. (2002)
Hot-wire probe Dissipation range 5.4 Radulescu et al. (2002)
Anemometer 15 min 7 Tchiguirinskaia et al. (2006)
Anemometer Daily 7 Tchiguirinskaia et al. (2006)
Aircraft, stratosphere Horizontal, 40 m 5.7 Lovejoy and Schertzer (2007c)
Aircraft, troposphere Horizontal, 280 m–36 km ≈ 5 Lovejoy and Schertzer (2013)
Aircraft, troposphere Horizontal, 40 m–20 km ≈ 7± 1 Chigirinskaya et al. (1994)
Aircraft, troposphere Horizontal, 100 m ≈ 5 Schertzer and Lovejoy (1985b)
Radiosonde Vertical, 50 m 5 Schertzer and Lovejoy (1985b), Lazarev et al. (1994)

Potential temperature Radiosonde Vertical, 50 m 3.3 Schertzer and Lovejoy (1985b)

Humidity Aircraft, troposphere Horizontal, 280 m–36 km ≈ 5 Lovejoy and Schertzer (2013)

Temperature Aircraft, troposphere Horizontal, 280 m–36 km ≈ 5 Lovejoy and Schertzer (2013)

Paleotemperatures Ice cores 200 years, time 4 Lovejoy and Schertzer (1986a)

Geopotential anomalies Reanalyses 500 mb, daily 2.7 Sardeshmukh and Sura (2009)

Vorticity anomalies Reanalyses 300 mb, daily 1.7 Sardeshmukh and Sura (2009)

Seveso pollution Ground concentrations In situ measurements 2.2 Salvadori et al. (1993)

Chernobyl fallout Ground concentrations In situ measurements 1.7 Chigirinskaya et al. (1998); Salvadori et al. (1993)

ε ∝1v3. However, at small enough (dissipation) scales,
where the dynamics are dominated by viscosity, dimensional
analysis shows that ε ∝1v2. For the probability exponents,
these relations imply that qD,ε,IR = qD,v,IR/3 (inertial range)
and qD,ε,diss = qD,v,diss/2 (dissipation range). Since ε is ex-
pected to be constant throughout the inertial range – and
in the dissipation range to be equal to the dissipation – we
expect qD,ε,IR = qD,ε,diss; hence, the ratio of velocity expo-
nents in the two ranges is qD,v,diss/qD,v,IR = 3/2.

Before discussing this further, let us consider the evi-
dence for the divergence of high-order moments in the ve-
locity/wind field. The earliest evidence is shown in Fig. 41
(left): it comes from radiosondes (balloons) measuring the
changes in horizontal wind velocity in the vertical direction.
Schertzer and Lovejoy (1985c) found qD,v ≈ 5 as shown in
the plot that extends over layers of thicknesses varying from
50 to 3200 m. In Fig. 41 (from the same paper), probability
distributions of ε are shown from aircraft data, with qD,ε ≈
1.67≈ 5/3; we see that these exponents approximately sat-
isfy the above inertial range theory: qD,ε,IR = qD,v,IR/3.

These early results had only order 102–103 measurements,
which only allows the determination of probabilities down
to levels of 10−2–10−3; this is barely enough to robustly
characterize the exponents. More recent aircraft results with
nearly the same horizontal exponent (qD,v ≈ 5.7) were ob-
tained from another aircraft data set, this time with ≈ 106

data points (Fig. 42, right, Lovejoy and Schertzer, 2007b). A
probability distribution in the time domain also with ≈ 106

points is shown in Fig. 42 (left); it was obtained using a sonic

anemometer at 10 Hz (Schmitt et al., 1994b). Here, the expo-
nent is qD,v ≈ 7.5, i.e. a bit larger than in space.

Results from a much larger sample and from a more con-
trolled laboratory setting (a wind tunnel), also in the tem-
poral domain, are shown in Fig. 43 (data taken from Myd-
larski and Warhaft, 1998, and analysed in Radulescu et al.,
2002, and Lovejoy and Schertzer, 2013). In this case, by
placing sensors at varying separations, one can estimate the
exponents in both the inertial and dissipation ranges. In the
inertial range, the result (qD,vIR ≈ 7.7) is very close to the
earlier temporal result (Fig. 43, left: the truncation at large
1v is explained by experimental limitations; Lovejoy and
Schertzer, 2013), whereas in the dissipation range, it has the
lower value qD,vdiss ≈ 5.4. The ratio qD,vdiss/qD,vIR ≈ 1.43
is very close to the theoretical ratio 3/2 noted above with
the value qD,ε ≈ 2.7. This good verification of the theoretical
result lends credence to the theory and to the reality of the
divergence itself.

The previous results from the wind and laboratory turbu-
lence allowed estimates of the probability tails down to lev-
els of only about 10−6. A more recent result (Fig. 44) is
about 1 billion times larger. This is from the largest direct
numerical simulation (DNS) to date, using (213)3 discrete-
volume elements. This high Reynolds number incompress-
ible Navier–Stokes turbulence (Yeung et al., 2015) allows
us to reach much lower probability levels (p ≈ 10−15). Fig-
ure 43 shows that, over ≈ 6 orders of magnitude, the prob-
ability tails of ε (and of enstrophy) have qD,ε ≈ 5/3. Sur-
prisingly, although the plot was made explicitly to reveal
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Figure 41. The left-hand-side plot shows the probability distribu-
tion of the squares of horizontal wind differences in the vertical
direction, estimated from radiosondes. The curves from left to right
are for layer thicknesses 50, 100, . . . 3200 m. The curves’ straight
reference lines have slopes corresponding to qD = 5. The separa-
tion of each curve is 2Hv with Hv = 3/5, the Bolgiano–Obukhov
value; see Sect. 4. The plot on the right is for the probability dis-
tribution of ε estimated in the horizontal from aircraft spectra. The
straight line has slope −5/3; since ε ∝1v3, this corresponds to
qD = 5 for the wind. Both figures are adapted from Schertzer and
Lovejoy (1985c).

the nature of extreme fluctuations and the theory predict-
ing the divergence of moments in turbulence (Mandelbrot,
1974; Schertzer and Lovejoy, 1987, Eqs. 26 and 30), this
striking power-law behaviour of the extremes was not even
mentioned by Yeung et al. (2015); it was apparently only first
noted in Lovejoy (2019).

We could note that values qD,ε < 2 imply the divergence
of the second moment (i.e. the variance) of ε. This di-
vergence is theoretically significant since – following Kol-
mogorov (1962), who proposed a log-normal distribution of
ε (i.e. with all moments finite) – the variance of ε is regularly
used to characterize turbulent intermittency, but we now see
that, due to the divergence, this characterization is problem-
atic. In practice, no empirical result is ever infinite. What di-
verging moments imply is rather that, when one attempts to
empirically estimate them, the estimates get larger and larger
as the sample size increases. Different experiments can thus
readily get quite different results, and the parameters are not
at all robust.

3.5.4 Power-law probabilities may be more common
than we think

In these log–log plots of probability densities, we see that
most of the distributions show evidence of log–log linear-

Figure 42. The left-hand-side figure shows the probability distribu-
tion of changes 1v in the horizontal wind as measured by a sonic
anemometer at 10 Hz. The reference slope corresponds to qD = 7.5
(adapted from Schmitt et al., 1994a). The figure on the right shows
the differences in horizontal wind from 24 aircraft trajectories fly-
ing near 12 km altitude; results are shown for separations of 40 and
80 m, and reference slopes corresponding to qD = 5.7 are shown.
Adapted from Lovejoy and Schertzer (2007b).

Figure 43. Probability distributions from laboratory turbulence
from pairs of anemometers separated by small dissipation range
(DR) distances and larger (IR) distances. Slopes corresponding to
qD = 5.4 and 7.7 respectively are shown. Their theoretical ratio is
3 : 2, close to the empirical ratio 1.43. Reproduced from Lovejoy
and Schertzer (2013).

ity near the extremes. When judging possible deviations,
it could be recalled that, due to inadequate instrumental
response times, postprocessing noise-reduction procedures
(e.g. smoothing), or outlier-elimination algorithms, extremes
can easily be underestimated. Since, physically, the extremes
are consequences of variability building up over a wide range
of spatial scales, we expect that numerical model outputs
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Figure 44. Probability distributions of enstrophy (W ) and en-
ergy (e) fluxes from a large direct numerical simulation of incom-
pressible hydrodynamic turbulence ((213)3), adapted from Yeung
et al. (2015) by adding the dashed reference line corresponding to
qD,ε = 5/3 for the velocity qD,v .

(including reanalyses) will underestimate the extremes. For
example, Lovejoy (2018) argued that the models’ small hy-
perviscous scale range (truncated at ≈ 105 m rather than at
the viscous scale of ≈ 10−3 m) effectively truncates the ex-
treme tails. Any of these effects may explain deviations from
perfect power-law tails or might explain some of the larger
(i.e. less extreme) qD values in Table 2. Finally, while power-
law probabilities arise naturally in scaling systems, the dis-
tributions are not necessarily power laws; non-power laws
(curved tails) may simply correspond to the special cases
where qD→∞ (as with the non-intermittent Gaussian spe-
cial cases).

3.5.5 The Noah effect, black swans, and tipping points

The power-law fluctuations in Figs. 41–44 are so large that,
according to classical assumptions, they would be outliers.
In atmospheric science, thanks to the scaling, very few pro-
cesses are Gaussian and extremes occur much more fre-
quently than expected, a fact that colleagues and I regularly
underscored starting in the 1980s (see Table 2 and, for a re-
view, Chap. 5 of Lovejoy and Schertzer, 2013).

At best, Gaussians can be justified for additive processes,
with the added restriction that the variance is finite. How-
ever, once this restriction is dropped, we obtain “Lévy dis-
tributions” with power-law extremes but with exponents
qD < 2 (see however Ditlevsen, 1999). Mandelbrot and Wal-
lis (1968) called the Lévy case the “Noah effect” after the
Biblical Flood. The Gaussian assumption also fails for the
additive but scaling H model (Lovejoy, 2015; Lovejoy and
Mandelbrot, 1985). Most importantly, Gaussians are irrel-
evant for multiplicative processes: these generally lead to

power-law extremes but without any restriction on the value
of qD (Mandelbrot, 1974; Schertzer and Lovejoy, 1987).
Related models include self-organized criticality (Bak et
al., 1987) and correlated additive and multiplicative noise
(Sardeshmukh and Sura, 2009). We could also mention that
power-law distributions also appear as the special (Frechet)
case of generalized extreme-value distributions, although,
due to long-range statistical dependencies, standard extreme-
value theory does not generally apply to scaling processes.

To underscore the importance of nonclassical extremes,
Taleb introduced the terms “grey and black swans” (Taleb,
2010). Originally, the former designated Lévy extremes, and
the latter was reserved for extremes that were so strong that
they were outliers with respect to any existing theory. How-
ever, the term “grey swan” never stuck, and the better-known
expression “black swan” is increasingly used for any power-
law extremes.

All of this is important in climate science, where extreme
events are often associated with tipping points. The existence
of black swan extremes leads to a conundrum: since black
swans already lead to exceptionally big extremes, how can
we distinguish “mere” black swans from true tipping points?

4 How big is a cloud? Scaling in 2D or higher
spaces

4.1 Generalized scale invariance

4.1.1 Discussion

So far, we have only discussed scaling in 1D (series and tran-
sects), so that the notion of scale itself can be taken simply
as an interval (space) or lag (time), and large scales are sim-
ply obtained from small ones by multiplying by their scale
ratio λ. However, series and transects are only 1D subspaces
of the full (r, t) space–time where atmospheric processes are
defined. In order to answer the question “how big is a cloud?”
– i.e. for more general atmospheric applications – we need
to define the scale in 3D space and, for its evolution, in 4D
space and time.

The most obvious problem is stratification in the horizon-
tal (see Figs. 4 and 5). This is graphically shown in Fig. 45
of airborne lidar backscatter from aerosols. At low resolu-
tion (bottom), one can see highly stratified layers. However,
zooming in (top) shows that the layers have small struc-
tures that are in fact quite “roundish” and hinting that, at
even higher resolutions, there might be stratification instead
in the vertical. If we determine the spectra in the horizon-
tal and compare them with those in the vertical, we obtain
Fig. 46; the spectra show power laws in both directions but
with markedly different exponents. As shown below, it turns
out that the key ratio is

Hz =
ξh (2)
ξv (2)

=
βh− 1
βv − 1

, (32)
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where h indicates horizontal and v vertical (see Eq. 9), with
the valueHz = 5/9 predicted by the 23/9D model (discussed
below). In the figure we see that this prediction is well sat-
isfied by the data. If the atmosphere is scaling but stratified,
then the transects and series must more generally have dif-
ferent exponents, ξ (q), H , and K(q), but for any q, the ratio
of horizontal to vertical exponents is Hz.

The difference in horizontal and vertical exponents is a
consequence of scaling stratification: the squashing of struc-
tures with scale. In the simplest case, called “self-affinity”,
the squashing is along orthogonal directions that are the same
everywhere in space – for example along the y axis in an x−y
space. More generally, there is also rotation of structures
with scale, and the anisotropy depends not only on scale, but
also on position. We need more general nonclassical (non-
Euclidean) notions of scale and scale change: this is GSI
(Schertzer and Lovejoy, 1985a; for a review, see Chap. 7 of
Lovejoy and Schertzer, 2013, or for a nontechnical overview,
see Chap. 3 of Lovejoy, 2019). Note that the following pre-
sentation is based on scale functions, and these can be used
to define anisotropic Hausdorff measures, hence providing a
(mathematical) measure-based definition of size (Schertzer
and Lovejoy, 1985a).

4.1.2 Scale functions and scale-changing operators:
from self-similarity to self-affinity

To deal with anisotropic scaling, we need an anisotropic def-
inition of the notion of scale itself.

The simplest scaling stratification is called self-affinity:
the squashing is along orthogonal directions whose direc-
tions are the same everywhere in space – for example along
the x and z axes in an x− z space, e.g. a vertical section
of the atmosphere or solid Earth. More generally, even hori-
zontal sections will not be self-similar: as the scale changes,
structures will be both squashed and rotated with scale. A fi-
nal complication is that the anisotropy can depend not only
on scale, but also on position. Both cases can be dealt with by
using the GSI formalism corresponding respectively to linear
(scale only) and nonlinear (scale and position) GSI (Lovejoy
and Schertzer, 2013, Chap. 7; Lovejoy, 2019, Chap. 3).

The problem is to define the notion of scale in a system
where there is no characteristic size. Often, the simplest (but
usually unrealistic) self-similar system is simply assumed
without question: the notion of scale is taken to be isotropic.
In this case, it is sufficient to define the scale of a vector r
by the usual vector norm (in a vertical section r = (x,z), the
length of the vector r denoted by

∣∣r∣∣= (x2
+ z2)1/2).

∣∣r∣∣ sat-
isfies the following elementary scaling rule:∣∣∣λ−1r

∣∣∣= λ−1 ∣∣r∣∣ , (33)

where again λ is a scale ratio. When λ > 1, this equation says
that the scale (here, length) of the reduced, shrunken vector

Figure 45. Bottom: a vertical section of laser backscatter from
aerosols (smog particles) taken by an airborne lidar (laser) flying
at 4.5 km altitude (purple line) over British Columbia near Vancou-
ver (the topography is shown in black; the lidar shoots two beams,
one up and one down) (Lilley et al., 2004). The resolution is 3 m in
the vertical and 96 m in the horizontal. The top panel is at a fairly
coarse resolution, and we mostly see a layered structure. Top: the
black box in the lower left is shown blown up at the top of the fig-
ure. We are now starting to discern vertically aligned and roundish
structures. The aspect ratio is about 40 : 1, reproduced from Lilley
et al. (2004).

Figure 46. The lower curve is the power spectrum for the fluctua-
tions in the lidar backscatter ratio, a surrogate for the aerosol density
(B) as a function of horizontal wavenumber k (m−1) with a line of
best fit with slope βh = 1.61. The upper trace is the power spec-
trum for the fluctuations in B as a function of vertical number k
with a line of best fit with slope βv = 2.15. Adapted from Lilley et
al. (2004).
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Figure 47. The average mean absolute difference in the horizontal
wind from 238 dropsondes over the Pacific Ocean taken in 2004.
The data were analysed over regions from the surface to higher and
higher altitudes (the different lines from bottom to top, separated
by a factor of 10 for clarity). Layers of thickness 1z increasing
from 5 m to the thicknesses spanning the region were estimated and
lines fitted corresponding to power laws with the exponents as indi-
cated. At the bottom, reference lines with slopes 1/3 (Kolmogorov,
K), 3/5 (Bolgiano–Obukhov, BO), and 1 (gravity waves, GWs, and
quasi-geostrophic turbulence) are shown for reference. Reproduced
from Lovejoy et al. (2007), and see Hovde et al. (2011).

λ−1r is simply reduced by the factor λ−1, a statement that
holds for any orientation of r .

To generalize this, we introduce a scale function
∥∥r∥∥ as

well as a more general scale-changing operator Tλ; together
they satisfy the analogous equation:∥∥Tλr∥∥= λ−1 ∥∥r∥∥ . (34)

For the system to be scaling, a reduction by scale ratio λ1
followed by a reduction λ2 should be equal to the first re-
duction by λ2 and then by λ1, and both should be equivalent
to a single reduction by factor λ= λ1λ2. The scale-changing
operator therefore satisfies multiplicative group properties so
Tλ is a one-parameter Lie group with generator G:

Tλ = λ
−G, (35)

when G is the identity operator (I ), then Tλr = λ
−I r =

λ−1Ir = λ−1r , so that the scale reduction is the same in all
directions (an isotropic reduction):

∥∥λ−1r
∥∥= λ−1

∥∥r∥∥. How-
ever, a scale function that is symmetric with respect to such
isotropic changes is not necessarily equal to the usual norm∣∣r∣∣ since the vectors with a unit scale (i.e. those that satisfy∥∥r∥∥= 1) may be any (nonconstant, hence anisotropic) func-
tion of the polar angle – they are not necessarily circles (2D)
or spheres (3D). Indeed, in order to complete the scale func-
tion definition, we must specify all the vectors whose scale is
unity – the “unit ball”. If, in addition to G= I , the unit scale

is a circle (sphere), then the two conditions imply
∥∥r∥∥= ∣∣r∣∣

and we recover Eq. (33). In the more general but still linear
case where G is a linear operator (a matrix), Tλ depends on
scale but is independent of location. In this case, the qualita-
tive behaviour of the scale functions depends on whether the
eigenvalues ofG are real or complex. In the former case there
is only a finite rotation of structures with scale, and in the lat-
ter, structures rotate an infinite number of times as the scale
λ goes from 1 to infinity. More generally, in nonlinear GSI
G also depends on location and scale: Figs. 48 and 52–55
give some examples of scale functions and Figs. 56–66 and
69 show some of the corresponding multifractal cloud sim-
ulations. For simulations of the Earth’s magnetization, rock
density, gravity, and topography, see Lavallée et al. (1993),
Pecknold et al. (2001), Lovejoy and Schertzer (2007a), and
Lovejoy et al. (2005).

4.1.3 Scaling stratification

GSI is exploited in modelling and analysing many at-
mospheric fields (wind, temperature, humidity, precipita-
tion, cloud density, aerosol concentrations; see Lovejoy and
Schertzer, 2013). To give the idea, we can define the “canon-
ical” scale function for the simplest stratified system repre-
senting a vertical (x,z) section in the atmosphere or solid
Earth:

‖(x,z)‖ = ls

∣∣∣∣∣
((

x

ls

)
,sign(z)

∣∣∣∣ zls
∣∣∣∣1/Hz

)∣∣∣∣∣
= ls

[(
x

ls

)2

+

∣∣∣∣ zls
∣∣∣∣2/Hz

]1/2

. (36)

Hz characterizes the degree of stratification (see below) and
ls is the “spheroscale”, so called because it defines the scale at
which horizontal and vertical extents of structures are equal
(although they are generally not exactly circular):

‖(ls,0)‖ = ‖(0, ls)‖ = ls. (37)

It can be seen by inspection that ‖(x,z)‖ satisfies

‖Tλ (x,z)‖ = λ−1
‖(x,z)‖; Tλ = λ

−G
;

G=

(
1 0
0 Hz

)
(38)

(note that matrix exponentiation is simple only for diagonal

matrices – here Tλ =
(
λ−1 0

0 λ−Hz

)
– but when G is not

diagonal, it can be calculated by expanding the series λ−G =
e−G logλ

= 1−G logλ+(G logλ)2/2− . . . or alternatively by
transforming to a diagonal frame). Note that, in this case,
the ratios of the horizontal and vertical statistical exponents,
i.e. ξ (q), H , K(q), and c(γ ), are equal to Hz. We could also
note that linear transects taken in any direction other than the
horizontal or vertical will have two scaling regimes (with a
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break near the spheroscale). However, the break is spurious:
it is a consequence of using the wrong notion of scale.

Figure 48 shows some examples of lines of constant scale
function defined by Eq. (36) with varyingHz values. Succes-
sive ellipses are related by the operator Tλ with λ= 100.1

=

1.26 in the illustration. It can be seen that, while horizontal
scales are changed by a factor λ, vertical scales are changed
by λHz , and hence cross-sectional areas are changed by

areas∝ λ−Del; Del = 1+Hz. (39)

The exponent Del is called the “elliptical dimension” (al-
though the curves of constant scale are generally only
roughly elliptical). Similarly, in 3D space, if there are two
horizontal directions that scale as λ−1 and the vertical scales
as λ−Hz, then the elliptical dimension is Del = 2+Hz. Fig-
ure 11 shows a schematic of various models of the atmo-
sphere, with the classical 2D isotropic (totally stratified, flat)
large-scale model at one extreme and the 3D isotropic model
at the other and the more realistic Del = 23/9D model dis-
cussed below. Interestingly, in the atmosphere – although
highly variable – ls is typically small (metres to hundreds of
metres), but Hz < 1 (close to the middle top set of curves in
Fig. 48). In contrast, in the solid Earth, ls is very large (prob-
ably larger than the planet scale), but Hz > 1 (probably ≈ 2,
close to the bottom-right curves; see Lovejoy and Schertzer,
2007a, for a review). In the former, the stratification becomes
stronger at larger and larger scales, whereas in the latter, it is
stronger at smaller scales.

Equipped with a scale function, the general anisotropic
generalization of the 1D scaling law (Eq. 12) may now be
expressed by using the scale

∥∥1r∥∥:

1v
(
1r
) d
= ϕ‖1r‖

∥∥1r∥∥H . (40)

where v could be any scalar with anisotropic scaling prop-
erties; below it is a component of the horizontal wind. This
shows that the full scaling model or full characterization of
scaling requires the specification of the notion of scale via
the scale-invariant generator G and unit ball (hence the scale
function), the fluctuation exponentH , and the statistics of the
generic anisotropic flux ϕ‖1r‖ specified via K(q), c(γ ) or –
for universal multifractals – C1, α. In many practical cases
– e.g. vertical stratification – the direction of the anisotropy
is fairly obvious, but in horizontal sections, where there can
easily be significant rotation of structures with scale, the em-
pirical determination ofG and the scale function is a difficult,
generally unsolved problem.

4.1.4 The 23/9D model

Kolmogorov theory was mostly used to understand labora-
tory hydrodynamic turbulence, which is mechanically driven
and can be made approximately isotropic (unstratified) by
the use of either passive or active grids. In this case, fluc-
tuations in 1v for points separated by 1r can be determined

Figure 48. A series of ellipses each separated by a factor of 1.26
in scale, red indicating the unit scale (here, a circle and thick lines).
Upper left to lower right:Hz increasing from 2/5, 3/5, 4/5 (top), 1,
6/5, 7/5 (bottom, left to right). Note that, when Hz > 1, the strat-
ification on large scales is in the vertical rather than horizontal di-
rection (this is required for modelling the Earth’s geological strata).
Reproduced from Lovejoy (2019).

essentially via dimensional analysis using ε, the latter choice
being justified since it is a scale-by-scale conserved turbulent
flux. The atmosphere however is fundamentally driven by so-
lar energy fluxes which create buoyancy inhomogeneities; in
addition to energy fluxes, buoyancy is also fundamental. In
order to understand atmospheric dynamics, we must there-
fore determine which additional dimensional quantities are
introduced by gravity or buoyancy. As discussed in Monin
and Yaglom (1975), this is necessary for a more complete
dimensional analysis.

In addition to the dynamical equations with quadratic in-
variant ε – the only dimensional quantity pertinent in the in-
ertial range in isotropic turbulence – we must consider the
thermodynamic energy equation for the potential tempera-
ture θ (e.g. Lesieur, 1987). Analysis shows that the v and θ
fields are only coupled by the 1f buoyancy forcing term:

f = g logθ, (41)

where g is the acceleration of gravity. f is therefore the fun-
damental physical and dimensional quantity rather than θ .

The classical way of dealing with buoyancy is to use the
Boussinesq approximation, i.e. to assume the existence of a
scale separation and then define density (and hence buoy-
ancy) perturbations about an otherwise perfectly stratified
“background” flow. This leads to the classical isotropic buoy-
ancy subrange turbulence discovered independently by Bol-
giano (1959) and Obukhov (1959). Unfortunately, it was pos-
tulated to be an isotropic range, yet it was never observed in
the horizontal. Therefore, by the time it was observed later in
the vertical, it had either been forgotten (Endlich et al., 1969)
or its significance was not appreciated (Adelfang, 1971), and
it was subsequently largely ignored.
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However, if there is wide-range atmospheric scaling, then
there is no scale separation (as outlined in Chap. 6 in Lovejoy
and Schertzer, 2013), and so we can make a more physically
based argument which is analogous to that used for deriving
passive scalar variance cascades in passive scalar advection –
the Corrsin–Obhukhov law (Corrsin, 1951; Obukhov, 1949)
(itself analogous to the energy flux cascades that lead to the
Kolmogorov law).

If we neglect dissipation and forcing, then Df/Dt = 0
(where D/Dt is the advective derivative), so that f obeys
a passive scalar advection equation and therefore the corre-
sponding buoyancy force variance flux:

φ =
∂f 2

∂t
(42)

is conserved by the nonlinear terms. In this case, the only
quantities available for dimensional analysis are ε (m2 s−3)
and φ (m2 s−5). In this approach, there is no separation be-
tween a stratified “background” state and a possibly isotropic
fluctuation field, so that there is no rationale for assum-
ing that either the ϕ or ε cascades are associated with any
isotropic regimes. Indeed, following Schertzer and Love-
joy (1983a, 1985b), it is more logical to assume that the two
basic turbulent fluxes ε and φ can co-exist and cascade over a
single-scale wide-range regime, with the former dominating
in the horizontal and the latter in the vertical:

1v (1x) d= ϕh1xHh , ϕh = ε
1/3, Hh = 1/3,

1v (1z) d= ϕv1xHv , ϕv = φ
1/5, Hv = 3/5,

(43)

where 1x is a horizontal lag and 1z a vertical lag (for the
moment we ignore the other horizontal coordinate y). Di-
mensionally, the fluxes ε, φ define a unique length scale ls:

ls =

(
ϕh

ϕv

)1/(Hv−Hh)

=
ε5/4

φ3/4 . (44)

Figure 47 shows that in the vertical the Bolgiano–Obukhov
law holds quite well – especially near the surface, but at all
altitudes, it is much better respected than the isotropic Kol-
mogorov law (Hv = 1/3) or the alternative laws from quasi-
linear gravity wave or quasi-geostrophic turbulence that give
Hv = 1 (Lovejoy et al., 2007; Hovde et al., 2011).

We can see that the two laws in Eq. (43) are special cases
of the more general anisotropic scaling law Eq. (40) since,
for pure horizontal displacements (1z= 0) and pure vertical
displacements (1x = 0), Eq. (40) yields

1v (1x,0) d= ϕ1xH = ε1/31x1/3, ‖(1x,0)‖ =1x,

1v (0,1z) d= ϕlHz−1
s 1zH/Hz = φ1/51z3/5, ‖(0,1z)‖ = ls

∣∣∣∣1zls
∣∣∣∣1/Hz . (45)

If we identify H =Hh = 1/3 and Hz =Hh/Hv = 5/9, ϕ =
ε1/3, we see that Eqs. (40) and (45) are equivalent (use Eq. 36
for the scale functions in the horizontal and vertical direc-
tions). If, in addition, we assume that the two horizontal di-
rections are equivalent, we obtainDel = 1+1+Hz = 23/9=

2.555. . ., hence the name “23/9D model”; see Fig. 11 for a
schematic.

4.1.5 Scaling space–time, Fourier space GSI

In Sect. 2.6 and 2.7, we mentioned that for Lagrangian
frame temporal velocity fluctuations we should use the size–
lifetime relation that is implicit in the horizontal Kolmogorov
law. If we assume horizontal isotropy, then, for velocity fluc-
tuations, we have

1v (1x) d= ε1/31x1/3,

1v (1y) d= ε1/31y1/3,

1v (1z) d= φ1/51z3/5,

1v (1t) d= ε1/21t1/2. (46)

Following the developments in the previous subsection
(Eqs. 40 and 43), we can express the full space–time scal-
ing (Eq. 46) in a single expression valid for any space–time
vector displacement1R =

(
1r,1t

)
= (1x,1y,1z,1t) by

introducing a scalar function of space–time vectors called the
“(space–time) scale function”, denoted

[[
1R

]]
, which satis-

fies the fundamental (functional) scale equation:[[
λ−Gst1R

]]
= λ−1 [[1R]] ,Gst =

(
Gs 0
0 Hτ

)
,

Hτ = (1/3)/ (1/2)= 2/3, (47)

where Gs is the 3× 3 matrix spatial generator:

Gs =

 1 0 0
0 1 0
0 0 Hz

 , (48)

with rows corresponding to (x,y,z), and the 4×4 matrix Gst
is the extension to space and time. We have introduced the
notation “[[]]” for the spacescale and timescale function in
order to distinguish it from the purely spatial-scale function
denoted “‖‖”.

Using the spacescale and timescale function, we may now
write the space–time generalization of the Kolmogorov law
as

1v
(
1R

) d
= ε

1/3
[[1R]]

[[
1R

]]1/3
, (49)

where the subscripts on the flux indicate the space scale and
timescale over which ε is averaged. This anisotropic inter-
mittent (multifractal) generalization of the Kolmogorov law
is thus one of the key emergent laws of atmospheric dynam-
ics and serves as a prototype for the emergent laws governing
the other fields.

The result analogous to that of the previous subsection, the
corresponding simple (“canonical”) spacescale and timescale
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function, is

[[
1R

]]
can = ls

(∥∥1r∥∥
ls

)2

+

(
|1t |

τs

)2/Hτ
1/2

, (50)

where τs = φ
−1/2ε1/2 is the “sphero-time” analogous to the

spheroscale ls = φ−3/4ε5/4 (see also Marsan et al., 1996).
With the scale function (Eq. 50), the fluctuations (Eq. 49)
respect Eq. (46).

We now seek to express the generalized Kolmogorov law
in an Eulerian framework. The first step is to consider the ef-
fects on the scale function of an overall advection. We then
consider statistical averaging over turbulent advection veloc-
ities.

Advection can be taken into account using the Galilean
transformation r→ r − vt , t→ t , which corresponds to the
following matrix A:

A=


1 0 0 u

0 1 0 v

0 0 1 w

0 0 0 1

 , (51)

where the mean wind vector has components v = (u,v,w)
(Schertzer et al., 1997b) and the columns and row correspond
to x,y,z, t . The new “advected” generator is Gst,advec =

A−1GstA and the scale function
[[
1R

]]
advec, which is

symmetric with respect to Gst,advec, is
[[
1R

]]
advec =[[

A−11R
]]

. The canonical advected scale function is there-
fore

[[
1R

]]
advec,can =

[[
A−11R

]]
can
= ls

((
1x− u1t

ls

)2

+

(
1y− v1t

ls

)2

+

(
1z−w1t

ls

)2/Hz

+

(
1t

τs

)2/Hτ
)1/2

. (52)

Note that, since Dst,advec = TrGst,advec = Tr
(
A−1GstA

)
=

TrGst =Dst, such constant advection does not affect the el-
liptical dimension (“Tr” indicates “trace”; see however below
for the “effective” Geff, Deff).

It will be useful to study the statistics in Fourier space; for
this purpose we can use the result (e.g. Chap. 6 of Lovejoy
and Schertzer, 2013) of the Fourier generator G̃=GT, so
that

G̃st,advec = A
TGT

st

(
A−1

)T
. (53)

The corresponding canonical dimensional Fourier spacescale
function is therefore[[
K
]]

advec,can =
[[
ATK

]]
can = l

−1
s

(
(kx ls)2

+
(
ky ls

)2
+ (kzls)2/Hz

+
(
τs
(
ω+ k · v

))2/Ht)1/2
. (54)

In other words, the real-space Galilean transformation r→
r − vt; t→ t corresponds to the Fourier space transforma-
tion k→ k;ω→ ω+k·v (this is a well-known result, notably
used in atmospheric waves).

The above results are for a deterministic advection ve-
locity, whereas in reality, the advection is turbulent. Even
if we consider a flow with zero imposed mean horizontal
velocity (as argued by Tennekes, 1975) in a scaling turbu-
lent regime with 1vl ≈ ε1/3l1/3 the typical largest eddy, the
“weather scale” Lw will be the scale of the Earth (≈ Le), will
have a mean velocity Vw ≈1vw ≈ ε

1/3
w L

1/3
w , and will sur-

vive for the corresponding eddy turn over time τeddy = τw =

Lw/Vw = ε
−1/3
w L

2/3
w estimated as ≈ 10 d above. In other

words, if there is no break in the scaling, then we expect that
smaller structures will be advected by the largest structures
in the scaling regime.

The statistics of the intensity gradients of real fields are
influenced by random turbulent velocity fields and involve
powers of such scale functions but with appropriate “aver-
age” velocities. In this case, considering only the horizon-
tal and time, we introduce the nondimensional variables (de-
noted by a circumflex “ˆ”):

1̂x =
1x

Lw
; 1̂y =

1y

aLw
; 1̂t =

1t

τw
;

v̂x = µx =
vx

Vw
; v̂y = µy =

vy

Vw
. (55)

The symbols µx and µy are used for the components of the
nondimensional velocity; they are less cumbersome than v̂x ,
v̂y , where

Vw =
(
v2
x + a

2v2
y

)1/2
; τw =

Lw

Vw
. (56)

Note that here Vw is a large-scale turbulent velocity, whereas
vx , vy are given by the overall mean advection in the region
of interest and µx < 1, µy < 1 (since v2 > (v)2). The use of
the averages (indicated by the overbars) is only totally jus-
tified if the second power of the scale function is averaged;
presumably, it is some other power that is physically more
relevant, and there will thus be (presumably small) intermit-
tency corrections (which we ignore). It is now convenient to
define

µ=
(
µx,µy

) ∣∣∣µ∣∣∣2 = µ2
x +µ

2
y, (57)
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which satisfies
∣∣∣µ∣∣∣< 1. In terms of the nondimensional

quantities this yields an “effective” nondimensional scale
function:[[
1̂R

]]
eff =

∣∣C1̂R∣∣ , (58)

where the matrix C is given in Eq. (11), its rows and columns
corresponding to x,y, t (left to right, top to bottom; the verti-
cal bars indicate the usual isotropic vector norm). The effec-
tive scale function in Eq. (58) is only “trivially anisotropic”
since it is scaling with respect to an “effective” G matrix
Geff = 1= the identity, the matrix C simply determining the
trivial space–time anisotropy.

As discussed in Lovejoy and Schertzer (2013), the above
real spacescale function is needed to interpret “satellite
winds” (deduced from time series of satellite cloud images),
and in Sect. 2.7 the Fourier equivalent of Eq. (58) (based
on the inverse matrix C−1 and the Fourier scale function[[
K
]]

eff =
∣∣C−1K

∣∣; see Fig. 25 and Eq. 11). It was exten-
sively empirically tested in Pinel et al. (2014), where the full
parameters of the C matrix were estimated.

4.2 Empirical testing of the 23/9D model

4.2.1 Testing the 23/9D model with aircraft wind data

The first experimental measurement of the joint (1x, 1z)
structure function of the horizontal velocity was made pos-
sible by the development of aircraft navigation systems with
a highly accurate TAMDAR (Tropospheric Airborne Mete-
orological Data Reporting) GPS-based vertical positioning
system (Pinel et al., 2012, Fig. 49). High vertical accuracy
is needed to distinguish aircraft flying on isobars from those
flying on isoheights. The problem with earlier aircraft veloc-
ity spectra – going back to the famous and still cited (Nas-
trom and Gage, 1983) analysis – is that the aircraft fly on iso-
bars, and these were gently sloping. As pointed out in Love-
joy et al. (2009c), at some critical horizontal distance (that
depended on the various fluxes ε, ϕ, and the slope of the
isobar), the vertical (Bolgiano–Obukhov) statistics (1z3/5)
begin to dominate over the horizontal Kolmogorov statistics
(1x1/3). In the spectral domain this implies a transition from
E(k)≈ k−5/3 to k−11/5 (using β = 1+ 2H , i.e. ignoring in-
termittency). The history of aircraft wind spectra – in par-
ticular the multidecadal (and continuing) attempts to shoe-
horn the spurious horizontal Bolgiano–Obukhov spectra into
a k−3 regime (in accordance with quasi-geostrophic turbu-
lence theory) – is thoroughly reviewed in Chap. 2 of Lovejoy
and Schertzer (2013) and Appendix B of Lovejoy (2022a).

To illustrate what the 23/9D model implies for the at-
mosphere, we can make multifractal simulations of passive
scalar clouds: these were already discussed in Fig. 5, which
showed that, in general, scaling leads to morphologies, struc-
tures that change with scale even though there is no char-
acteristic scale involved. Figure 5 compares a zoom into an

Figure 49. A contour plot of the mean squared transverse (top) and
longitudinal (bottom) components of the wind as estimated from
a year’s (≈ 14 500) TAMDAR flights and 484 000 wind difference
measurement (i.e. the second-order structure function from differ-
ence fluctuations) data from flight legs between 5 and 5.5 km. Hz
was estimated as 0.57± 0.02. Black shows the empirical contours,
purple the theoretical contours with Hz = 5/9. Reproduced from
Pinel et al. (2012).

isotropic (self-similar) multifractal cloud (left) and into a ver-
tical section of a stratified cloud with 23/9D. While zoom-
ing into the self-similar cloud yields similar-looking cross
sections at all scales, zooming into the 23/9D cloud on the
right of Fig. 5 displays continuously varying morphologies.
We see that, at the largest scale (top), the cloud is in fairly
flat strata; however, as we zoom in, we eventually obtain
roundish structures (at the spheroscale), and then, at the very
bottom, we see vertically oriented filaments forming, indicat-
ing stratification in the vertical direction (compare this with
the lidar data in Fig. 45).

4.2.2 Testing the 23/9D model with cloud data

The anisotropic stratification and elliptical dimension of
rain areas (as determined by radar) go back to Lovejoy et
al. (1987) and, with much more vertical resolution, to Cloud-
Sat, a satellite-borne radar analysed in Fig. 50 (see the sam-
ple CloudSat image in Fig. 4). From Fig. 51, we see that
the mean relation between horizontal and vertical extents of
clouds is very close to the predictions of the 23/9D theory,
with a spheroscale (averaged over 16 orbits) of about 100 m.
The figure also shows that there is fair amount of variabil-
ity (as expected since the spheroscale is a ratio of powers
of highly variable turbulent fluxes, Eq. 44). Figure 51 shows
the implications for typical cross sections. The stratification
varies considerably as a function of the spheroscale (and
hence buoyancy and energy fluxes).

Finally, we can compare the CloudSat estimates with those
of other atmospheric fields (Table 3). The estimates for T
(temperature), logθ (log potential temperature), and h (hu-
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Figure 50. A space (horizontal)–space (vertical) diagram esti-
mated from the absolute reflectivity fluctuations (first-order struc-
ture functions) from 16 CloudSat orbits. Reproduced from Lovejoy
et al. (2009b).

midity) are from comparing aircraft and dropsonde expo-
nents. These are inherently less accurate than using vertical
sections; see the three right-hand columns. Overall, we find
excellent agreement with 23/9 theory. Recall that the lead-
ing alternative theory – quasi-geostrophic turbulence – has
Hz = 1 (for small scales, the isotropic 3D turbulence value)
or Hz = 1/3 (for large scales, the isotropic 2D turbulence
value). It is clear that these can be eliminated with high de-
grees of confidence – both are at least 10 standard deviations
from the more accurate estimates in Table 3.

4.2.3 The 23/9D model and numerical weather models

What about numerical weather models? We mentioned that
in the horizontal they show excellent scaling (and see Fig. 8
for reanalysis spectra, Fig. 9 for the comparison of Mars and
Earth spectra, and Fig. 38 for the cascade structures). Ac-
cording to the 23/9D model, the dynamics are dominated
by Kolmogorov scaling in the horizontal (Hh = 1/3) and
Bolgiano–Obukhov scaling in the vertical (Hv = 3/5), so
that Hz =Hh/Hv = 5/9= 0.555. . . Assuming that the hor-
izontal directions have the same scaling, typical structures
of size L×L in the horizontal have vertical extents of LHz ,
and hence their volumes are LDel with “elliptical dimension”
Del = 2+Hz = 2.555. . ., the “23/9D model” (Schertzer and
Lovejoy, 1985c). Unfortunately, it is nontrivial to test the ver-
tical scaling in models (they are typically based on pressure
levels, and their statistics are different than those from true
vertical displacements). Nevertheless, an indirect test is to
consider the number of vertical levels compared to horizon-
tal levels. In the historical development of NWPs, the num-
ber of spatial degrees of freedom – the product of horizontal
degrees of freedom multiplied by the vertical number – was
limited by computer power. In any given model, the num-

Figure 51. The theoretical shapes of average vertical cross sections
using the empirical parameters estimated from CloudSat-derived
mean parameters: Hz = 5/9, with spheroscales 1 km (top), 100 m
(middle), and 10 m (bottom), roughly corresponding to the geomet-
ric mean and 1 standard deviation fluctuations. In each of the three,
the distance from left to right horizontally is 100 km, and from top
to bottom vertically it is 20 km. It uses the canonical scale function.
The top figure in particular shows that structures 100 km wide will
be about 10 km thick whenever the spheroscale is somewhat larger
than average (Lovejoy et al., 2009c).

ber of vertical levels compared to the number of horizontal
pixels is a somewhat ad hoc model choice. However, if we
consider (Lovejoy, 2019) the historical development of the
models since 1956 (Fig. 52), we see that the number of lev-
els (the vertical range) as a function of the number of zonal
degrees of freedom (horizontal range) has indeed followed
the 5/9 power law, so that

(vertical range)≈ (horizontal range)Hz . (59)

Figure 52 shows that the choices of horizontal and verti-
cal scale ranges in the historical development of numerical
models are close to the 5/9 law (and hence to the empirical
data), and it contradicts the “standard model” that is based on
isotropic symmetries and that attempts to combine a small-
scale isotropic 3D regime and a large-scale isotropic (flat) 2D
regime in conjunction with a transition supposedly near the
atmospheric-scale height of 10 km.

4.3 GSI in the horizontal: cloud morphologies,
differential rotation, and nonlinear GSI

4.3.1 Differential rotation

Due to the larger north–south temperature gradients, large at-
mospheric structures 10 000 km in the east–west direction are
typically “squashed” to a size about a ≈ 1.6 times smaller in
the north–south direction (Sect. 4.1.5). However, there is no
systematic change in this aspect ratio as we move to smaller
scales, nor is there a plausible theory that might explain one.
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Table 3. This table uses the estimate of the vertical Hv, the (horizontal) values for Hh for T , logθ , and h (humidity): these are from Lovejoy
and Schertzer (2013). For the horizontal velocity v, the aircraft data in Fig. 49 were used. B is the lidar reflectivity (spectral estimate in
Fig. 46). For clouds, the far-right column (L) is an estimate using CloudSat cloud length and depth probability data from Guillaume et
al. (2018). We find that Hz = 0.53± 0.02.

T Logθ h v B L

Hz =Hh/Hv 0.47± 0.09 0.47± 0.09 0.65± 0.06 0.57± 0.02 0.53± 0.02 0.53± 0.02

Figure 52. The choices of horizontal and vertical numbers of de-
grees of freedom that were made during the historical develop-
ment of general circulation models. According to the 23/9D mode
I, the dynamics are dominated by Kolmogorov scaling in the hor-
izontal (Hh = 1/3) and Bolgiano–Obukhov scaling in the vertical
(Hv = 3/5), so that Hz =Hh/Hv = 5/9= 0.555. . . Assuming that
the horizontal directions have the same scaling, typical structures of
size L×L in the horizontal have vertical extents of LHz , and hence
their volumes are LDel with “elliptical dimension” Del = 2+Hz =
2.555. . ., the “23/9D model” (Schertzer and Lovejoy, 1985c). The
number of model degrees of freedom thus roughly follows the 23/9
power of the number of horizontal-resolution (e.g. zonal-resolution)
elements. Reproduced from Lovejoy (2019).

Although this statement is true of the data, it turns out that
one of the limitations of GCMs is that they do have horizontal
stratifications that are apparently spurious. If the east–west
direction is taken as the reference, GCM structures in the
north–south direction follow: (north–south)= (east–west)Hy

with Hy = 0.80 for this, and for a possible explanation, see
Lovejoy and Schertzer (2011).

With this possible exception, we conclude that, unlike the
vertical, there is little evidence for any overall stratification
in the horizontal analogous to the vertical, but there is still
plenty of evidence for the existence of different shapes at
different sizes and the fact that shapes commonly rotate by
various amounts at different scales. We thus need to go be-
yond self-affinity and (at least) add some rotation. Mathemat-
ically, to add rotation to the blow-up and squashing that we

Figure 53. Blow-ups and reductions by factors of 1.26 starting at
circles (red). The upper left shows the isotropic case, the upper
right shows the self-affinity (pure stratification case), the lower-left
example is stratified but along oblique directions, and the lower-
right example has structures that rotate continuously with scale
while becoming increasingly stratified. The matrices used are G=(

1 0
0 1

)
,
(

1.35 0
0 0.65

)
,
(

1.35 0.25
0.25 0.65

)
, and

(
1.35 −0.45
0.85 0.65

)
(upper left to

lower right). Reproduced from Lovejoy (2019).

discussed earlier, we only need to add off-diagonal elements
to the generator G.

Figures 53–56 show a few examples of contours at differ-
ent scales, each representing the shapes of the balls at sys-
tematically varying scales. We can see that we have the free-
dom to vary the unit balls (here circles and rounded triangles)
and the amounts of squashing and rotation. In Fig. 53, with
unit balls taken to be circles, we show the self-similar case in
the upper left, a stratified case in the upper right, a stratified
case with a small amount of rotation (lower left), and another
case with lots of rotation (lower right). Figure 56 shows the
same but with unit balls as rounded triangles, Fig. 55 takes
the lower-right example and displays the balls over a factor
of 1 billion in scale, and in Fig. 56 we show an example with
only a little rotation but over the same factor of 1 billion in
scale. We can see that, if these represent average morpholo-
gies of clouds at different scales, even though there is a single
unique rule or mechanism to go from one scale to another, the
average shapes change quite a bit with scale.
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Figure 54. The same as above except that now the unit ball is the
rounded triangle. Reproduced from Lovejoy (2019).

Figure 55. The same blow-up rule as in the lower right of Fig. 53
but showing an overall blow-up by a factor of 1 billion. Starting with
the inner thick grey ball in the upper-left corner, we see a series of
10 blow-ups, each by a factor of 1.26 spanning a total of a factor of
10 (the outer thick, grey ball). Then, that ball is shrunk (as indicated
by the dashed lines) so as to conveniently show the next factor of 10
blow-up (top middle). The overall range of scales in the sequence is
thus 109

= 1 billion. The scale-changing rule (matrix) used here is
the same as the lower right in Figs. 53 and 54: G=

(
1.35 −0.45
0.85 0.65

)
.

Reproduced from Lovejoy (2019).

4.3.2 Anisotropic multifractal clouds

We have explored ways in which quite disparate shapes can
be generated using blow-ups, squashings, and rotations. With
the help of a unit ball, we generated families of balls, any
member of which would have been an equally good start-

Figure 56. A different example of balls with squashing but with
only a little rotation: the maximum rotation of structures in this ex-
ample from very small to very large scales is 55◦. The matrix used
here was G=

(
1.1 0.02
0.18 0.9

)
. Reproduced from Lovejoy (2019).

ing point. The unit ball has no particular importance, and it
does not have any special physical role to play. If we have a
scaling model based on isotropic balls, then replacing them
with these anisotropic balls will also be scaling when we use
the anisotropic rule to change scales: any morphologies made
using such a system of balls will be scale-invariant. Mathe-
matically anisotropic space–time models (see Schertzer and
Lovejoy, 1987; Wilson et al., 1991; Lovejoy and Schertzer,
2010b, a) are produced in the same way as isotropic ones,
except that the usual vector norm is replaced by a spacescale
and timescale function and the usual dimension of space–
time D (4) is replaced by Del:∣∣R∣∣→ [[

R
]]
;D→Del, (60)

where R = (x,y,z, t).
We already showed a self-similar and stratified example

where the balls were used to make a multifractal cloud sim-
ulation of a vertical section (Fig. 5). Let us now take a quick
look at a few examples of horizontal and 3D multifractal
cloud simulations.

The simulation of a cross section of a stratified multifractal
cloud in Fig. 5 already shows that the effect of changing the
balls can be quite subtle. Let us take a look at this by making
multifractal cloud simulations with realistic (observed) mul-
tifractal parameters (these determine the fluctuation statis-
tics, not the anisotropy) and systematically varying the fam-
ilies of balls (Fig. 57). In the figure, all the simulations have
the same random “seed”, so that the only differences are due
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to the changing definition of scale. First we can explore the
effects of different degrees of stratification combined with
different degrees of rotation. We consider two cases: in the
first (Fig. 57), there is roughly a circular unit ball within the
simulated range, and in the second (Fig. 58), all the balls are
highly anisotropic. Each figure shows a pair: the cloud simu-
lation (left) and the family of balls that were used to produce
it on the right.

From the third column in Fig. 57 with no stratification, we
can note that changing the amount of rotation (moving up
and down the column) changes nothing; this is simply be-
cause the circles are rotated to circles: rotation is only inter-
esting when combined with stratification. The simulations in
Fig. 58 might mimic small clouds (for example 1 km across)
produced by complex cascade-type dynamics that started ro-
tating and stratifying at scales perhaps 10 000 times larger. In
both sets of simulations, the effect of stratification becomes
more important up and down away from the centre line, and
the effects of rotation vary from the left to the right, becom-
ing more important as we move away from the third column.

Figure 59 shows examples where rotation is strong and
the scale-changing rule is the same everywhere; only the unit
ball is changed. By making the latter have some long narrow
parts, we can obtain quite “wispy”-looking clouds.

Figure 60 shows another aspect of multifractal clouds. In
Sect. 3.5.5 we discussed the fact that, in general, the cas-
cades occasionally produce extreme events. If we make a
sufficiently large number of realizations of the process, from
time to time we will generate rare cloud structures that are
almost surely absent on typical realizations. For example, a
typical satellite picture of the tropical Atlantic Ocean would
not have a hurricane, but from time to time hurricanes do
appear there. The multifractality implies that this could hap-
pen quite naturally, without the need to invoke any special
scalebound “hurricane process”. In the examples in Fig. 60,
we use a rotating set of balls (Fig. 61). However, in order to
simulate occasional, rare realizations, we have “helped” the
process by artificially boosting the values in the vicinity of
the central pixel. The two different rows are identical except
for the sequence of random numbers used in their generation.
For each row, moving from left to right, we boosted only the
central region to simulate stronger and stronger vortices that
are more and more improbable. As we do this, we see that
the shapes of the basic set of balls begin to appear out of the
chaos.

4.3.3 Radiative transfer in multifractal clouds

The cloud simulations above are for the density of cloud liq-
uid water; they used false colours to display the more and
less dense cloud regions. Real clouds are of course in 3D
space, and the eye sees the light that has been scattered by
the drops. Therefore, if we make 3D cloud simulations, in-
stead of simply using false colours, we can obtain more re-
alistic renditions by simulating the way light interacts with

Figure 57. Left: multifractal simulations with nearly isotropic unit
scales with stratification becoming more important up and down
away from the centre line and the rotation parameter (left to right)
becoming more important as we move away from the third col-
umn. Right: the balls used in the simulations to the left. This is an
extract from the multifractal explorer website: http://www.physics.
mcgill.ca/~gang/multifrac/index.htm (last access: 3 July 2023). Re-
produced from Lovejoy and Schertzer (2007b).

Figure 58. The same as above except that the initial ball is highly
anisotropic in an attempt to simulate the effect of stretching due
to a wide range of larger scales. Reproduced from Lovejoy and
Schertzer (2007b).

the clouds (see Figs. 8, 25, and 26 for various scaling analy-
ses of cloud radiances at various wavelengths). The study of
radiative transfer in multifractal clouds is in its infancy; see
however Naud et al. (1997), Schertzer et al. (1997b), Lovejoy
et al. (2009d), and Watson et al. (2009).

Figures 61 and 62 show the top and side views of a multi-
fractal cloud with the usual false colours; Figs. 64 and 65
show the same cloud rendered by simulating light travel-
ling through the cloud with both top (Fig. 64) and bottom
(Fig. 65) views. Finally, in Fig. 66, we show a simulation
of thermal infrared radiation emitted by the cloud, similar to
what can observed from infrared weather satellites. We see
that quite realistic morphologies are possible.

Up until now, we have only discussed space, but of course
clouds and other atmospheric structures evolve in time. Since
we have argued that the wind field is scaling and the wind
moves clouds around, it effectively couples space and time.
We therefore have to consider scaling in space and in time:
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Figure 59. Simulations of cloud liquid water density with the scale-
changing rule the same throughout: only the unit balls are system-
atically modified so as to yield more and more “wispy” clouds. Re-
produced from Lovejoy et al. (2009).

Figure 60. Each row has a different random seed but is otherwise
identical. Moving from left to right shows a different realization
of a random multifractal process, with the central part boosted by
factors increasing from left to right in order to simulate very rare
events. The balls are shown in Fig. 61. Reproduced from Lovejoy
and Schertzer (2013).

in space–time. The time domain opens up a whole new realm
of possibilities for simulations and morphologies. While the
balls in space must be localized – since they represent typ-
ical spatial structures, “eddies” – in space–time they can be
delocalized and form waves. In this case it turns out that it is
easier to describe the system using the Fourier methods. Fig-
ure 67 shows examples of what can be achieved with various
parameters.

4.3.4 Nonlinear GSI: anisotropy that changes from
place to place and from scale to scale

Generalized scale invariance is necessary since zooming into
clouds displays systematic changes in morphology with the
magnification, so that in order to be realistic, we needed to
generalize the idea of self-similar scaling. The first step was
to account for the stratification. When the direction of the
stratification is fixed (pure stratification), there is no rotation
with scale. We saw that, to model the horizontal plane, we
needed to add rotation and, to a first approximation, we could

Figure 61. The balls used in the simulations above. Contours of
the (rotation-dominant) scale function used in the simulations in
Fig. 60. Reproduced from Lovejoy and Schertzer (2013).

Figure 62. The top layer of cloud liquid water using a grey-shaded
rendition. Reproduced from Lovejoy and Schertzer (2013).

think of the different cloud morphologies as corresponding to
different cloud types – cumulus, stratus, cirrus, etc.

However, there is still a problem. Up until now, we have
discussed linear GSI where the generator is a matrix, so that
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Figure 63. A side view of the previous one. Reproduced from
Lovejoy and Schertzer (2013).

Figure 64. The top view with light scattering for the Sun (incident
at 45◦ to the right). Reproduced from Lovejoy and Schertzer (2013).

the scale-changing operator λ−G is also a linear transforma-
tion. Now we need to generalize this to account for the fact
that because cloud types and morphologies not only change
with scale, they also change with spatial location (and in
time). Figure 66 shows the problem with a real satellite in-
frared cloud picture: it seems clear that the textures and mor-
phologies vary from one part of the image to another. Using
a type of 2D fluctuation analysis, we can try to estimate the
corresponding “balls”. When the image is broken up into an
8×8 array of sub-images (Fig. 69, with a fair bit of statistical
scatter), we can confirm that the balls are quite different from
one place to another.

In the more general nonlinear GSI, the notion of scale
depends not only on the scale, but also on the location. In

Figure 65. The same as Fig. 64 except viewed from the bottom.
Reproduced from Lovejoy and Schertzer (2013).

Figure 66. The same as Fig. 64 except for a grey-shaded rendition
of a thermal infrared field as might be viewed by an infrared satel-
lite. Reproduced from Lovejoy and Schertzer (2013).
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Figure 67. Examples of simulations in space–time showing wave-
like morphologies. The same basic shapes are shown but with the
wavelike character increasing clockwise from the upper left. Repro-
duced from the reference Lovejoy et al. (2008b).

Figure 68. An infrared satellite image from a satellite at
1.1 km resolution, 512×512 pixels. Reproduced from Lovejoy and
Schertzer (2013).

Figure 69. Estimates of the shapes of the balls in each 64× 64-
pixel box from the image in Fig. 68. Reproduced from Lovejoy and
Schertzer (2013).

Figure 70. A multifractal simulation of a cloud with texture and
morphology varying in both location and scale, simulated using
nonlinear GSI; the anisotropy depends on both scale and position
according to the balls shown in Fig. 71. Reproduced from Lovejoy
and Schertzer (2013).
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Figure 71. The set of balls displayed according to their relative
positions used in the simulation shown in Fig. 70. Reproduced from
Lovejoy and Schertzer (2013).

nonlinear GSI we introduce the generator of the infinitesimal
scale change g

(
r
)

(consider just space and use the notation
r = (x1, x2, x3)). Using g(r), we can obtain the following
equation for the scale function:

gi
∂

∂xi

∥∥r∥∥= ∥∥r∥∥ (61)

(summation over repeated indices).
Locally (in a small enough neighbourhood of a point), lin-

ear GSI is defined by the tangent space; i.e. the elements of
the linear generator are

Gij =
∂gi

∂xj
. (62)

In the special case of linear GSI, this yields

xiGij
∂

∂xj

∥∥r∥∥= ∥∥r∥∥ . (63)

Full details and more examples are given in Chap. 7 of Love-
joy and Schertzer (2013).

Figures 70 and 71 show an example. The physics behind
this are analogous to those in Einstein’s theory of general rel-
ativity. In the latter, it is the distribution of mass and energy
in the universe that determines the appropriate notion of dis-
tance, i.e. the metric. With GSI, it is the nonlinear turbulent
dynamics that determine the appropriate notions of scale and
size. Note however an important difference: the GSI notion

of scale is generally not a metric; it is not a distance in the
mathematical sense.

With nonlinear GSI a bewildering variety of phenomena
can be described in a scaling framework. The framework
turns out to be so general that it is hard to make further
progress. It is like saying “the energy of the atmosphere is
conserved”. While this is undoubtedly true – and this enables
us to reject models that fail to conserve it – this single energy
symmetry is hardly adequate for modelling and forecasting
the weather. One can imagine that, if one must specify the
anisotropy both as a function of scale and as a function of
location, many parameters are required. At a purely empiri-
cal level, these are difficult to estimate since the process has
such strong variability and intermittency. In order to progress
much further, we will undoubtedly need new ideas. However,
the generality of GSI does make the introduction of scale-
bound mechanisms unnecessary.

4.3.5 The scalebound approach and the
phenomenological fallacy

We have given the reader a taste of the enormous diver-
sity of cloud morphologies that are possible within the scal-
ing framework. We discussed morphologies that were in-
creasingly stratified at larger scales, that rotated with scale
but only a bit, or that rotated many times. There were fil-
amentary structures, there were structures with waves, and
there were structures whose character changed with posi-
tion. Although all of these morphologies changed with scale,
they were all consequences of dynamical mechanisms that
were scale-invariant. The scalebound approach is therefore
logically wrong and scientifically unjustified. When scale-
bound mechanisms and models based solely on phenomeno-
logical appearances are invoked, they commit a corollary
of the scalebound approach: the “phenomenological fallacy”
(Lovejoy and Schertzer, 2007c). More concisely, the phe-
nomenological fallacy is the inference of mechanisms from
phenomenology (appearances).

5 Conclusions

Starting in the 1970s, deterministic chaos, scaling, and frac-
tals have transformed our understanding of many nonlinear
dynamical systems including the atmosphere: they were the
main components of the “nonlinear revolution”. While de-
terministic chaos is largely a deterministic paradigm with a
small number of degrees of freedom, the scaling, fractal, and
later multifractal paradigm is a stochastic framework with a
large number of degrees of freedom that is particularly ap-
propriate to the atmosphere. Ever since Richardson proposed
his 4/3 law of turbulent diffusion in the 1920s, scaling has
been explicit and central in turbulence theories. Scaling and
multifractals therefore embody the modern turbulent strand
of atmospheric science.
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Over the last century, deterministic and stochastic strands
of atmospheric science have developed largely in parallel.
The first, “dynamical meteorology”, is an essentially mech-
anistic, phenomenologically based approach: it is largely
scalebound because the relevant processes were believed to
occur over narrow ranges of scales. Since atmospheric vari-
ability occurs over a wide range of scales, a large number of
such processes are required. The second, a statistical turbu-
lence approach, is by contrast based on the scaling idea that
there exists a simple statistical relation between structures
and processes at potentially widely different scales – unique
dynamical regimes spanning wide ranges of scale. However,
the classical turbulence notion of scaling is highly restrictive.
For one, it assumes that processes are not far from Gaussian,
whereas real-world turbulence is by contrast highly intermit-
tent. For another, it reduces scaling to its isotropic special
case “self-similarity” – effectively confounding the quite dif-
ferent scale and direction symmetries.

Without further developments, neither classical approach
is a satisfactory theoretical framework for atmospheric sci-
ence. Fortunately, by the turn of the millennium, numerical
models – based on the scaling governing equations – had
matured to the point that they were increasingly – and to-
day, often exclusively – being used to answer atmospheric
questions. As a consequence, the deficiencies of the classical
approaches are thus increasingly irrelevant for applied atmo-
spheric science. However, there are consequences: elsewhere
(Lovejoy, 2022a), I have argued that the primary casualty of
the disconnect between high-level atmospheric theory and
empirical science is that it blinds us to potentially promis-
ing new approaches. If only to reduce the current large (and
increasing) uncertainties in projection projections, new ap-
proaches are indeed urgently needed.

This review therefore focuses on the new developments in
scaling that overcame these restrictions: multifractals to deal
with scaling intermittency (Sect. 3) and generalized scale
invariance (Sect. 4) to deal with scaling stratification and
more generally scaling anisotropy. GSI clarifies the signifi-
cance of scaling in geoscience since it shows that scaling is a
rather general symmetry principle: it is thus the simplest rela-
tion between scales. Just as the classical symmetries (tempo-
ral, spatial invariance, directional invariance) are equivalent
(Noether’s theorem) to conservation laws (energy, momen-
tum, angular momentum), the (nonclassical) scaling symme-
try conserves the scaling exponentsG,K , and c. Symmetries
are fundamental since they embody the simplest possible as-
sumption or model: under a change in the system, there is an
invariant. In physics, initial assumptions about a system are
that it respects symmetries. Symmetry breaking is only in-
troduced on the basis of strong evidence or theoretical justi-
fication: in the case of scale symmetries, one only introduces
characteristic space scales or timescales when this is abso-
lutely required.

There are now massive data analyses of all kinds – in-
cluding ones based on new techniques, notably trace mo-

ments and Haar fluctuations – that confirm and quantify at-
mospheric scaling over wide ranges in the horizontal and ver-
tical. Since this includes the wind field, this implies that the
dynamics (i.e. in time) are also scaling. Sections 1 and 2 dis-
cuss how, over the range of milliseconds to at least hundreds
of millions of years, temporal scaling objectively defines five
dynamical ranges: weather, macroweather, climate, macro-
climate, and megaclimate. The evolution of the scalebound
framework from the 1970s (Mitchell) to the 2020s (Von der
Leyden et al.) shows that it is further and further divorced
from empirical science. This is also true of the usual in-
terpretation of space–time (Stommel) diagrams that are re-
interpreted in a scaling framework (Sect. 2.6). These scale-
bound frameworks have survived because practising atmo-
spheric scientists increasingly rely instead on general cir-
culation models that are based on the primitive dynamical
equations. Fortunately, the outputs of these models inherit the
scaling of the underlying equations and are hence themselves
scaling: they can therefore be quite realistic. For decades, this
has allowed the contradiction between the scaling reality and
the dominant “mental model” to persist.

Similar comments apply to the still dominant isotropic the-
ories of turbulence that – although based on scaling – illog-
ically place priority on the directional symmetry (isotropy)
ahead of the scaling one – and this in spite of the obvi-
ous and strong atmospheric stratification. In order for these
theories to be compatible with the stratification – notably
the ≈ 10 km scale height – they attempt to marry models
of small-scale 3D isotropic turbulence with (layerwise) 2D
(quasi-geostrophic) turbulence at large scales. It turns out
that the only empirical evidence supporting such an implicit
“dimensional transition” is spurious: it comes from aircraft
data following isobars rather than isoheights. Although this
incoherency has been known for over a decade, thanks to the
wide-range scaling of the GCMs, like scalebound views, it
does not impact mainstream atmospheric science.

The review also emphasizes the impact of the analysis of
massive and new sources of atmospheric data. This involves
the development of new data analysis techniques, for exam-
ple trace moments (Sect. 3) that not only directly confirm
the cascade nature of the fields, but also give direct estimates
of the outer scales, which turn out to be close to planetary
scales (horizontal) and the scale height (vertical). However,
for scales beyond weather scales (macroweather), fluctua-
tions tend to decrease rather than increase with scale, and
this requires new data analysis techniques. Haar fluctuations
are arguably optimal – being both simple to implement and
simple to interpret (Sect. 2, Appendix B).

There is still much work to be done. While this review
was deliberately restricted to the shorter (weather regime)
timescales corresponding to highly intermittent atmospheric
turbulence, scaling opens up new vistas at longer timescales
too. This has important implications for macroweather –
both monthly and seasonal forecasts – that exploits long-
range (scaling) memories (Lovejoy et al., 2015; Del Rio
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Amador and Lovejoy, 2019, 2021a, b) as well as for mul-
tidecadal climate projections (Hébert et al., 2021b; Procyk
et al., 2022). In addition, the growing paleodata archives
from the Quaternary and Pleistocene are clarifying the prein-
dustrial weather–macroweather transition scale (Lovejoy et
al., 2013a; Reschke et al., 2019; Lovejoy and Lambert,
2019) and confirming the scaling of paleotemperatures over
scale ranges of millennia through to Milankovitch scales
(≈ 100 kyr). Similarly, over the “deep-time” megaclimate
regime where biogeological processes are dominant, and
with the help of scaling analyses and models, quantitative
paleobiology data can be increasingly combined with in-
creasingly high-resolution paleoindicators to help resolve
outstanding questions, including whether life or the climate
dominates macroevolution (Spiridonov and Lovejoy, 2022;
Lovejoy and Spiridonov, 2023).

Scaling also needs theoretical development. For example,
a recent paper by Schertzer and Tchiguirinskaia (2015) pro-
vides important new results on vector multifractal processes
that are needed for stochastic modelling of the highly inter-
mittent weather regime processes. For the lower-frequency
regimes that generally have weak intermittency, the natural
framework for scaling models is fractional differential equa-
tions (e.g. Lovejoy, 2022c; Lovejoy and Spiridonov, 2023).
For example, these arise naturally (and classically) as con-
sequences of the Earth’s radiative–conductive boundary con-
ditions (Lovejoy, 2021a, b) and can potentially help explain
the scaling of the climate regime via the long (multimillen-
nial, power-law) relaxation times of deep ocean currents.
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Appendix A

This Appendix summarizes the technical characteristics of
the data presently in Fig. 2 and the corresponding multifractal
parameters that characterize their scaling. The only update in
Fig. 2 is the (top) megaclimate series that was taken from
Grossman and Joachimski (2022) rather than the Veizer et
al. (1999) stack whose characteristics are given in Tables A1
and A2.

Table A1. A summary of the data used in Figs. 2. For more details and the spatial analyses whose parameters are also given in the table, see
Lovejoy (2018). In Fig. 2, the (top) series was the updated series from Grossman and Joachimski (2022). It replaces the similar but somewhat
lower-resolution Veizer stack (no. 8 in the table).

No. Regime Description Resolution, time Resolution, space

Time 1 Weather Thermistor, 2 h 1/15 s 1 mm
2 Weather Lander, 3 years Hourly 1 m
3 Weather Montreal, 17 years Hourly 1 m
4 Macroweather 20CR: 0–40◦ N, every 2◦ longitude Monthly 2◦× 2◦

5 Climate GRIP paleotemperature 85 years 1 m
6 Climate EPICA paleotemperature Depth 1 m
7 Macroclimate Zachos stack 5 kyr Global
8 Megaclimate Veizer stack 553 kyr Global

Space 9 Weather Aircraft 0.5 s 280 m
10 Weather ECMWF reanalysis Daily 1◦

11 Macroweather ECMWF reanalysis Monthly 1◦× 1◦

12 Climate 20CR reanalysis 140 years 2◦× 2◦

Table A2. The scaling parameters H,C1, and α and the probability exponents qD . The far-right columns give theoretical estimates of the
maximum spike heights using the parameters C1, α, and qD and the scale ratio λ of the plots in Fig. 2 (1000; the spike plot for data set
no. 6 is not shown). The theory column uses these parameters with the multifractal theory described in the text to estimate the solution
to the equation c (γmax)= 1. The “observed” column determines γmax from the spike plot directly: γmax = log

(
|1T |/|1T |

)
max/ logλ,

where
(
|1T |/|1T |

)
max is the maximum spike. For comparison, for λ= 1000, Gaussian probabilities of 10−3, 10−6, and 10−9 yield

respectively γmax = 0.20, 0.26, and 0.30. Error estimates for the right-hand-side columns (extremes) were not given due to their sensitivity
to the somewhat subjective choice of range over which the regressions were made. Reproduced from Lovejoy (2018).

Data no. H C1 α qD γmax (theory) γmax (observed)

Time 1 0.54± 0.003 0.013± 0.001 1.60± 0.08 3.1 0.34 0.39
2 0.36± 0.02 0.011± 0.002 1.46± 0.05 3.4 0.31 0.38
3 0.38± 0.01 0.021± 0.001 1.50± 0.07 6.2 0.22 0.27
4 −0.24± 0.01 0.052± 0.003 1.56± 0.02 7.2 0.32 0.22
5 0.20± 0.02 0.047± 0.006 1.40± 0.12 5.1 0.30 0.30
6 0.41± 0.01 0.01± 0.01 1.46± 0.15 5.0 0.24 0.28
7 −0.30± 0.03 0.083± 0.014 1.49± 0.13 3.3 0.44 0.31
8 0.33± 0.03 0.107± 0.016 1.52± 0.31 1.7 0.65 0.52

Space 9 0.485± 0.004 0.055± 0.002 1.52± 0.16 3.5 0.38 0.38
10 0.55± 0.02 0.070± 0.005 1.41± 0.06 13.0 0.35 0.38
11 0.56± 0. 018 0.154± 0.006 1.55± 0.03 8.4 0.56 0.43
12 0.47± 0.02 0.182± 0.011 1.64± 0.11 5.2 0.62 0.51
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Appendix B: Estimation methods for wide-range
scaling processes

B1 Introduction

In 1994, a new H < 0 data analysis technique was proposed
by Peng et al. (1994) that was initially applied to biological
series: the detrended fluctuation analysis (DFA) method. The
key innovation was simply to first sum the series (effectively
an integration of order 1), which has the effect of adding 1
to the value of H . The consequence is that, in most geophys-
ical series and transects (as long as H >−1), the resulting
summed series had H > 0, allowing the more usual differ-
ence and difference-like fluctuations to be applied. Over an
interval 1t , the DFA method estimates fluctuations in the
summed series by using the standard deviation of the resid-
uals of a polynomial fit over the interval length 1t (i.e. a
different regression for each fluctuation at each time inter-
val). We return to this in more detail in Sect. B4, but for
the moment, note that the interpretation of the DFA “fluc-
tuation function” is sufficiently opaque that typical plots do
not bother to even use units for the fluctuation amplitudes.

Over the following decades, there evolved several more
or less independent strands of scaling analysis, each with
their own mathematical formalism and interpretations. The
wavelet community dealing with fluctuations directly, the
DFA community wielding a method that could be conve-
niently implemented numerically, and the turbulence com-
munity focused on intermittency. In the meantime, most geo-
scientists continued to use spectral analysis, occasionally
with singular spectral analysis (SSA), the multitaper method
(MTM), or other refinements. New clarity was achieved by
the first “Haar” wavelet (Haar, 1910). There were two rea-
sons for this: the simplicity of its definition and calcula-
tion and the simplicity of its interpretation (Lovejoy and
Schertzer, 2012). To determine the Haar fluctuation over a
time interval1t , one simply takes the average of the first half
of the interval and subtracts the average of the second half
(Fig. 17, bottom; see Sect. B3 for more details). As for the
interpretation, whenH is positive, then it is (nearly) the same
as a difference, whereas whenever H is negative, the fluctu-
ation can be interpreted as an “anomaly” (in this context an
anomaly is simply the average over a segment length 1t of
the series with its long-term average removed; see Sect. B3).
In both cases, in addition to a useful quantification of the
fluctuation amplitudes, we also recover the correct value of
the exponentH . Although the Haar fluctuation is only useful
forH in the range−1 to 1, this turns out to cover most of the
series that are encountered in geoscience (see e.g. Fig. 18).

B2 Fluctuations revisited

The inadequacy of using differences as fluctuations forces us
to use a different definition. The root of the problem is that
“cancelling” series (H < 0) are dominated by high frequen-

cies, whereas “wandering” series (H > 0) are dominated by
low frequencies (see Figs. B3 and B4 discussed in Sect. B2).
As we discuss below, differencing can be thought of as a fil-
tering operation that de-emphasizes the low frequencies yet,
in the H > 1 case, it is not enough: the result depends spu-
riously on the very lowest frequencies present in the series
(later). Conversely, the difference filter does not affect the
high frequencies much, so that, in the H < 0 case, differ-
ence fluctuations are spuriously determined by the very high-
est frequencies. In either case, the difference-filtered results
are spurious in the sense that they depend on various details
of the empirical samples: the overall series length and the
small-scale resolution respectively. Mathematically, the link
between the mean amplitude of the fluctuation and the lags
has been broken.

How can we remedy the situation? First, consider the case
−1<H < 0. If we could obtain a new series whose expo-
nent was raised by 1, then its exponent would be 1+H , which
would be in the range 0≤ 1+H ≤ 1, and hence its fluctua-
tions could be analysed by difference fluctuations. However,
this turns out to be easy to achieve. Return to the simple sinu-
soid, frequency ω, period 1t = 1/ω: T (t)= Asinωt , where
the amplitude A of this elementary fluctuation is identified
with 1T . Now, consider its derivative: Aωcosωt . Since the
difference between sine and cosine is only a phase, tak-
ing derivatives yields oscillations/fluctuations with the same
period 1t but with an amplitude multiplied by the factor
ω = 1/1t . Now consider the integral −Aω−1 cosωt : fluctu-
ations of the series obtained by integration are simply mul-
tiplied by ω−1 or equivalently by 1t . Therefore, if the aver-
age fluctuations are scaling with 〈1T (1t)〉 ≈1tH , then we
expect any reasonable definition of fluctuation to have the
property that fluctuations of derivatives (for discrete series,
differences) or fluctuation of integrals (sums) to also be scal-
ing but with exponents respectively decreased or increased
by 1. More generally, it turns out that a filter ω−H corre-
sponds to anH th-order (fractional) integral (whenH < 0, to
a (fractional) derivative).

With this in mind, consider a series with −1≤H ≤ 0 and

replace it by its “running sum” s (ti)=
i∑

j=1
T (ti) so that its

mean differences will have the scaling 〈1s(1t)〉 ≈1t1+H ,
with exponent 1+H in the useful range between zero and
one. However, note now that 1s (1t)= s(t)− s(t −1t) is
simply the sum of the T (t) over 1t values, and hence
1s (1t)=1tT1t , where T1t is the temporal average over
the interval length1t . We conclude that, when−1<H < 0,
the mean of a time average over an interval of length 1t
has the scaling

〈
T1t

〉
≈1tH . Indeed, this provides a straight-

forward interpretation: when −1<H < 0, H quantifies the
rate at which the means of temporal averages decrease as
the length of the temporal averaging 1t increases. The only
technical detail here is that, when H < 0, lim

1t→∞
1tH = 0,

so that this interpretation can only be true if the long-term
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(large 1t) temporal average of the series is indeed zero. To
ensure this, it is sufficient to remove the overall mean T
of the series before taking the running sum (T ′ = T − T ).
Whenever −1≤H ≤ 0, the resulting average T ′1t is there-
fore a useful and easy-to-interpret definition of fluctuation
called the “anomaly” fluctuation (this was earlier called a
“tendency” fluctuation; Lovejoy and Schertzer, 2012). To
distinguish it from other fluctuations, we may denote it by
(1T (1t))anom = T

′
1t .

From the way it was introduced by a running-sum trans-
formation of the series, we see that the anomaly fluctua-
tion will be dominated by low-frequency details whenever
H > 0 and by high-frequency details wheneverH <−1 (see
however Sect. B3 for some caveats when H < 0). The vari-
ation of the standard deviation of the anomaly fluctuation
with scale is sometimes called a “climactogram” (Kout-
soyiannis and Montanari, 2007). However, because this is an
anomaly statistic, it is only useful when H < 0: see Lovejoy
et al. (2013).

It turns out that many geophysical phenomena have both
−1≤H ≤ 0 and 0≤H ≤ 1 regimes (Fig. 18), so that it
is useful to have a single fluctuation definition that cov-
ers the entire range −1≤H ≤ 1. From the preceding dis-
cussion, it might be guessed that such a definition may
be obtained by combining both differencing and summing;
the result is the Haar fluctuation. To obtain (1T (1t))Haar,
it suffices to take the differences of averages (or, equiv-
alently, averages of differences; the order does not mat-
ter): the result is 1T (1t)Haar = Tt,t−1t/2− Tt−1t/2,t−1t =

(s (t)− 2s (t −1t/2)+ s (t −1t))/1t , i.e. the difference of
the average over the first and second halves of the interval
between t and t +1t (note that, in terms of the running
sum, s(t), this is expressed in terms of second differences).
(1T (1t))Haar is a useful estimate of the1t scale fluctuation
as long as −1≤H ≤ 1. Note that we do not need to remove
the overall mean T , since taking differences removes any ad-
ditive constant.

However, what does the Haar fluctuation mean, and
how do we interpret it? Consider first the Haar fluctua-
tion for a series with 0≤H ≤ 1. We have seen that, for
such series, the anomaly fluctuation changes little: it satu-
rates. Therefore, taking the temporal averages of the first
and second halves of the interval yields roughly the val-
ues at the centre of the intervals, so that 〈(1T (1t))Haar〉 =

Cdiff 〈(1T (1t))dif〉, where Cdiff is a “calibration” constant
of order 1. Conversely, consider the Haar fluctuation for
a series with −1≤H ≤ 0. In this case it is the anomaly
fluctuation of the consecutive differences over intervals of
length1t/2, but forH < 0, the differences saturate (yielding
roughly a constant independent of 1t), so that when −1≤
H ≤ 0, 〈(1T (1t))Haar〉 = Canom 〈(1T (1t))anom〉. The nu-
merical factors Cdiff,Canom that yield the closest agree-
ments depend on the statistics of the series. However,
numerical simulations, much data analysis, and the the-
ory discussed below show that (especially for H ≈> 0.1;

see Fig. B5) using Cdiff = Canom = C = 2 gives quite good
agreement, so that if we define the “calibrated” Haar fluc-
tuation (1T (1t))Haar,cal as = 2

(
Tt,t−1t/2− Tt−1t/2,t−1t

)
,

then we find
〈
(1T (1t))Haar,cal

〉
≈ 〈(1T (1t))dif〉 for 0≤

H ≤ 1 and
〈
(1T (1t))Haar,cal

〉
≈ 〈(1T (1t))anom〉 for −1≤

H ≤ 0. Therefore, the interpretation of the calibrated Haar
fluctuation is very close to differences (0≤H ≤ 1) and
anomalies (−1≤H ≤ 0), and it has the advantage of being
applicable to any series with regimes in the range−1≤H ≤
1; this covers almost all geophysical fields that have been
analysed to date.

So what about other ranges of H , other definitions
of fluctuation? From the above, the obvious method of
extending the range of H s is to use derivatives or inte-
grals (for series, differences, and running sums) which
respectively decrease or increase the exponents. Hence,
for example, a fluctuation that is useful over the range
0≤H ≤ 2 can be obtained simply by taking the second
difference rather than the first and combining this with
summing (s(t) above) to yield the “quadratic Haar” fluc-
tuation valid over the range −1≤H ≤ 2: 1T (1t)Haar2 =

(s (t)− 3s (t −1t/3)+ 3s (t − 21t/3)− s (t −1t))/1t .
While these higher-order fluctuations are quite adequate
for estimating exponents H , the drawback is that their
interpretations are no longer simple; fortunately, they are
seldom needed. More examples are given in the next section.

B3 Fluctuations as convolutions, filters, and the H limits

To get a clearer idea of what is happening, let us briefly
put all of this into the framework of wavelets, a very gen-
eral method for defining fluctuations. The key quantity is the
“mother wavelet” 9(t), which can be practically any func-
tion as long as it has an overall mean zero: this is the basic
“admissibility condition”. The fluctuation at a scale 1t at a
location t is then simply the integral of the product of the
rescaled, shifted mother wavelet.

1T (1t)=
1
1t

∫
T
(
t ′
)
9

(
t − t ′

1t

)
dt ′ (B1)

1T (1t) is the 1t scale fluctuation. The fluctuations dis-
cussed in the previous section are the following special cases.

– Difference fluctuations

(1T (1t))diff = T (t +1t/2)− T (t −1t/2)

9 (t)= δ (t − 1/2)− δ (t + 1/2) (B2)
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– Anomaly fluctuations

(1T (1t))anom =
1
1t

t+1t∫
t

T ′
(
t ′
)

dt ′,

T ′ (t)= T (t)− T (t), (B3)

9 (t)= I[−1/2,1/2]−
I[−1/2,1/2] (t)

τ
,τ � 1,

where I[a,b] (t)=
1, a ≤ t ≤ b,

0, otherwise. (B4)

– Haar fluctuations

(1T (1t))Haar

=
2
1t

 t+1t/2∫
t

T
(
t ′
)

dt ′−

t+1t∫
t+1t/2

T
(
t ′
)

dt ′

 ,
9 (t)=

2, 0≤ t < 1/2,
−2, −1/2≤ t < 0,

0, otherwise.
(B5)

These fluctuations are related by

(1T )Haar = (1(1T )anom)diff = (1(1T )dif)anom. (B6)

These are shown in Fig. B1 and some other common
wavelets in Fig. B2. Table B1 gives definitions and Fourier
transforms.

In order to understand the convergence/divergence of dif-
ferent scaling processes, it is helpful to consider the Fourier
transforms (indicated with a tilde). The general relation be-
tween the Fourier transform of the fluctuation at lag 1t , 1̃T
and the series T̃ is obtained from the fact that the fluctuation
is a rescaled convolution:

1̃T 1t (ω)= T̃ (ω)9̃ (ω1t). (B7)

We see that the fluctuation is simply a filter with respect to
the original series (its Fourier transform T̃ (ω) is multiplied
by 9̃ (ω1t)). Table B1 shows9(ω) for various wavelets, and
Figs. B3 and B4 show their moduli squared.

Taking the modulus squared and ensemble averaging
(“〈.〉”), we obtain

E1T,1t (ω)= ET (ω)
∣∣∣9̃ (ω1t)

∣∣∣2,
E1T,1t (ω)=

〈∣∣1̃T 1t (ω)
∣∣2〉 ,

ET (ω)=
〈∣∣T̃ (ω)

∣∣2〉 , (B8)

where E1T (ω) and ET (ω) are the spectra of the fluctuation
and the process respectively.

We may now consider the convergence of the fluctuation
variance using Parseval’s theorem:

〈
1T (1t)2

〉
= 2

∞∫
0

E1T,1t (ω)dω (B9)

(we have used the fact that the spectrum is a symmetric func-
tion). Now consider scaling processes

ET (ω)≈ ω−β (B10)

and consider the high- and low-frequency dependence of the
wavelet:∣∣∣9̃ (ω)

∣∣∣≈ ωHlow; ω→ 0;
ωHhigh; ω→∞.

(B11)

Plugging these forms into the integral for the fluctuation vari-
ance, we find that the latter only converges when

Hlow >H
′ >Hhigh; H ′ =

β − 1
2

. (B12)

When H ′ is outside of this range, the fluctuation variance
diverges; in practice it is dominated by either the high-
est (H ′ <Hhigh) or lowest (H ′ >Hlow) frequencies present
in the sample. We use the prime since this discussion is
valid for second-order moments – not only for Gaussian
processes (where H ′ =H ), but also for multifractals where
H ′ =H −K(2)/2.

When Hlow >H
′ >Hhigh, then the variance is finite and

the fluctuation variance
〈
1T (1t)2〉 is

〈
1T (1t)2

〉
= 21t−1

∞∫
0

ET

( ω
1t

)
|9 (ω)|2dω. (B13)

If ET is a pure power law (Eq. B10), then we obtain

〈
1T (1t)2

〉
= 21t−1

∞∫
0

( ω
1t

)−β
|9 (ω)|2dω

= 21tβ−1

∞∫
0

ω−β |9 (ω)|2dω. (B14)

The integral is just a constant and, since β− 1= 2H ′, as ex-
pected we recover the scaling of the fluctuations (1t2H

′

). We
also have C(1t)= C as a pure “calibration” constant (inde-
pendent of 1t).

The difference between different fluctuations is the inte-
gral on the far right of Eq. (B14). As long as it converges, the
difference between using two different types of fluctuations
is therefore the ratio C:

C =

 ∞∫
0

ω−β |9ref (ω)|2dω/

∞∫
0

ω−β |9Haar (ω)|2dω

1/2

, (B15)
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Figure B1. The simpler wavelets discussed in the text: see Table A1
for mathematical definitions and properties. The black bars symbol-
izing Dirac delta functions (these are actually infinite in height) in-
dicate the difference fluctuation (poor man’s wavelet), the stippled
red line indicates the anomaly fluctuation, the blue rectangles shows
the Haar fluctuation (divided by 2), and the red line shows the first
derivative of the Gaussian.

Figure B2. The higher-order wavelets discussed in the text: the
black bars (representing Dirac delta functions) indicate the second
difference fluctuation, the solid blue the quadratic Haar fluctuation,
and the red the “Mexican hat wavelet” or second derivative of the
Gaussian fluctuation.

where 9ref is the reference wavelet (here we consider dif-
ferences or anomalies). Figure B5 shows that C for the ref-
erence wavelet equals the anomaly for H ′ < 0 and the dif-
ference for H ′ > 0; it can be seen that the canonical value
C = 2 is a compromise that is mostly accurate for H ′ > 0.1
but is not so bad for negative H ′. If needed, we could use
the theory value from the figure, but in real-world applica-
tions, there will not be perfect scaling; there may be zones
of both positive and negative H ′ present, so that this might
not be advantageous. Finally, we defined H ′ as the rms fluc-
tuation exponent and have discussed the range over which

Figure B3. The simple wavelets and fluctuations discussed in the
text in the frequency domain. The power spectrum of the wavelet
filter

∣∣9̃∣∣2 is shown in a log–log plot (9̃ (x) is the Fourier transform
of 9 (x)). The key asymptotic behaviour is shown by the reference
lines.

this second-order moment converges for different wavelets
characterized by Hlow, Hhigh. In the quasi-Gaussian case, we
have 〈(1T (1t))q〉 ≈1tqH , so that H ′ =H and the limits
for convergence of the q = 1 and q = 2 moments are the
same. However, more generally, in the multifractal case the
limits will depend on the order of moment considered, with
the range Hlow >H >Hhigh being valid for the first-order
moment.

In summary, when the wavelet falls off quickly enough at
high and low frequencies, the fluctuation variance converges
to the expected scaling form. Conversely, whenever the in-
equality Hlow >H

′ >Hhigh is not satisfied, the fluctuation
variance depends spuriously on either high- or low-frequency
details.

B4 Stationarity/nonstationarity

To illustrate various issues, we made a multifractal simula-
tion withH =−0.3 (Fig. B6, C1 = 0.1, α = 1.8, Sect. 3.2.2)
and then took its running sum in Fig. B7. Note that, as ex-
pected, while Fig. B6 withH < 0 has cancelling fluctuations,
Fig. B7 with H = 1− 0.3= 0.7, it is wandering. Now com-
pare the left- and right-hand sides of Fig. B7 – are they pro-
duced by the same stochastic process, or is the drift on the
right-hand side caused by an external agent that was sud-
denly switched on? When confronted with series such as this
that appear to behave differently over different intervals, it is
often tempting to invoke the action of a statistically nonsta-
tionary process. This is equivalent to the conviction that no
conceivable (or at least plausible) unique physical process
following the same laws at all times could have produced the
series.
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Table B1. A comparison of various wavelets along with their frequency (Fourier) representation and low- and high-frequency behaviours. On
the right, the range of H ′ over which they are useful is indicated. For the anomaly fluctuation, see the text. The normalization for quadratic
Haar is chosen to make it close to the Mexican hat.

Name Wavelet Frequency domain Small ω Large ω H ′ range

Poor man’s wavelet (first difference) δ (t − 1/2)− δ (t + 1/2) 2sin(ω/2) ≈ 0 ≈ 0 0<H ′ < 1

Second difference 1
2

(
δ
(
t + 1

2

)
+ δ

(
t − 1

2

))
− δ (t) sin2 (ω/4) ≈ 0 ≈ 0 0<H ′ < 2

Anomaly I[−1/2,1/2] (t)−
I[−τ/2,τ/2](t)

τ ; τ � 1 2
ω

(
sin
(
ω
2
)
− τ−1 sin

(
ωτ
2
)) 2sin

(
ωτ
2
)

ωτ ≈ 0; ωτ � 1 ≈ ω−1
−1<H ′ < 0

Haar 9 (t)=
1/2; 0≤ t < 1/2
−1/2; −1/2≤ t < 0

0; otherwise
2iω−1sin2 (ω/4) ≈ ω ≈ ω−1

−1<H ′ < 1

Quadratic Haar 9 (t)=

−1/3;
2/3;
−1/3;

0;

1/3< t < 1
−1/3≤ t < 1/3
−1≤ t <−1/3

otherwise

2
3ω (sin(ω/3)− sinω) ≈ ω2

≈ ω−1
−1<H ′ < 2

Mexican hat 9 (t)∝ d2

dt2
e−t

2/2 ω2e−ω
2/2

≈ ω2 e−ω
2/2

∞<H ′ < 2

Figure B4. The power-spectrum filters for the higher-order
wavelets/fluctuations discussed in the text, along with reference
lines indicating the asymptotic power-law behaviours. Note that the
Mexican hat (second derivative of the Gaussian) decays exponen-
tially at high frequencies, equivalent to an exponent −∞.

Figure B5. The theoretical calibration constant C for the rms sec-
ond moment (Eq. B15). Note for H ′ ≈> 0.1 that it is close to the
canonical value C = 2.

It is worth discussing stationarity in more detail since it is
a frequent source of confusion: indeed, all manner of “wan-
dering” signals lead to claims of nonstationarity. Adding to
this is the fact that common stochastic processes – such as
drunkard’s walks (Brownian motion) – are strictly speaking
nonstationary (see however below).

What is going on? The first thing to be clear about is that
statistical stationarity is not a property of a series or even of
a finite number of series, but rather of the stochastic process
generating the series. It is a property of an infinite ensem-
ble of series. It simply states that the statistical properties
are translationally invariant along the time axis, i.e. that they
do not depend on t . Statistical stationarity is simply the hy-
pothesis that the underlying physical processes that generate
the series are the same at all instants in time. In reality, the
“wandering” character of an empirical signal is simply an in-
dication that the realization of the process has low-frequency
components with large amplitudes and that, over the (finite)
available range, it tends to be dominated by them (this is a
characteristic of all scaling processes with H > 0).

However, once one assumes that the process comes from
a certain theoretical framework – such as random walks –
then the situation is quite different because this more specific
hypothesis can be tested. However, let us take a closer look.
A theoretical Brownian motion process x(t) (defined for all
t ≥ 0) is an example of a process with stationary increments:
the rule for the drunk to go either to the left or to the right (an
incremental change in position) is always the same, 1x(1t)
indeed independent of t . The only reason that x(t) is nonsta-
tionary is that the drunkard’s starting location is special – let
us say x(0)= 0 – so that the statistics of x(t) depend on t .
However, on any finite domain it is a trivial matter to make
the process perfectly stationary: one need only randomize the
drunk’s starting location x(0). Note that this method does not
work for purely mathematically defined Brownian motions
that are defined on the infinite x axis because it is impos-
sible to define a uniform random starting position between
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±∞. However, real processes always have finite bounds and
– more to the point – real scaling processes always have outer
scales, so that, in practice (i.e. over finite intervals), even
classical random walks can be made stationary.

B5 Non-wavelet fluctuations: detrended fluctuation
analysis

We mentioned that the DFA technique was valid for −1≤
H ≤ n (with n usually 1; linear DFA). Since it is valid for
some negative H , it is an improvement over simply using
differences and has been used in climate analyses (e.g. Kan-
telhardt et al., 2001; Koscielny-Bunde et al., 2006; Monetti
et al., 2003). Unfortunately, the determination of the DFA
fluctuations is not simple, nor is its interpretation, so that of-
ten the units of the fluctuation function are not even given.
Other difficulties with the DFA method have been discussed
in Varotsos and Efstathiou (2017).

To understand the DFA, take the running sum s(t) of
the empirical time series (in DFA jargon, the “profile”; see
Fig. B6). Then break s(t) into blocks of length 1t and per-
form regressions with nth-order polynomials (in Fig. B7, 1t
was taken as half the total interval length, and linear regres-
sions were used, i.e. n= 1). For each interval length 1t , one
then determines the standard deviation F of the regression
residues (see Fig. B8). Since F is a fluctuation in the summed
series, the DFA fluctuation in the original series (1T )DFA is
given by

(1T )DFA =
F

1t
. (B16)

In words, (1T )DFA is the standard deviation of the residues
of polynomial regressions on the running sums of the series
divided by the interval length. Note that the usual DFA treat-
ments do not return to the fluctuations in the original series:
they analyse F (not F/1t), which is the fluctuation of the
running sum, not the original series. Due to its steeper slope
(increased by 1), plots of logF -log1t look more linear than
log(F/1t)-log1t . For series with poor scaling – or with a
transition between two scaling regimes – this has the effect of
giving the illusion of good scaling and may have contributed
to the popularity of the technique. However, in at least several
instances in the literature, DFA of daily weather data (with
a minimum resolution of 2 d) failed to detect the weather–
macroweather transition – breaks in the scaling were spuri-
ously hidden from view at the extremely small 1t end of the
analysis.

Finally, the usual DFA approach defines the basic expo-
nent a, not from the mean DFA fluctuation, but rather from
the rms DFA fluctuation:〈
F 2 (1t)

〉1/2
≈1ta . (B17)

Comparing this to the previous definitions and using 1T ≈
(1T )DFA, we see (Eq. B12) that

a = 1+H ′ = 1+H −K (2)/2. (B18)

Figure B6. A simulation of a (multifractal) process withH =−0.3,
C1 = 0.1, and α = 1.8 showing the tendency for fluctuations to can-
cel.

Figure B7. The running sum s(t) of the previous realization with
H = 1+ (−0.3)= 0.7; note the wandering character. Also shown
are the two regression lines used to define the fluctuations of the
detrended fluctuation analysis technique; for fluctuations with lags
1t , half of the length is shown. For each regression, the fluctuation
is estimated by the rms of the residues from the lines; see Fig. B8.

Interpretations of the DFA exponent a typically (and usually
only implicitly) depend on the quasi-Gaussian assumption.
For example, one sometimes discusses “persistence” and
“antipersistence”. These behaviours can be roughly thought
of as types of “cancelling” or “wandering” but with respect
to Gaussian white noises (i.e. with H =−1/2) rather than
(as here) with respect to the mean fluctuations that are deter-
mined by the sign of H , which is equivalent to instead char-
acterizing the scaling of the process with respect to the “con-
servative” (pure multiplicative, H = 0) multifractal process.
A “persistent” Gaussian process is one in which the succes-
sive increments are positively correlated, so that the variance
of the process grows more quickly than for Brownian mo-
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Figure B8. TheH =−0.3 series of Fig. B6 with the residues of the
two regression lines in Fig. B7 used to determine the DFA fluctua-
tions for lags1t half of the length shown (blown up by factors of 3,
green and red). For each regression, the fluctuation is estimated by
the rms of the residues from the lines.

tion noise, i.e. a > 1/2, while an “antipersistent” process by
contrast has successive increments that are negatively corre-
lated, so that it grows more slowly (a < 1/2; see Eq. B18
with K(2)= 0, which holds for Gaussian processes). For
Gaussian processes this distinction is associated with pre-
cise mathematical convergence/divergence issues. However,
if the process is non-Gaussian, this criterion is not relevant
and the classification itself is not very helpful, whereas the
sign of the fluctuation exponent H remains fundamental (in
particular, in the more general multifractal case). In terms
of interpretation, the drawback of the a > 1/2, a < 1/2 clas-
sification is that the neutral (reference) case of persistence
and antipersistence (a = 1/2) is white noise, which itself is
highly cancelling (it has H =−1/2), so that, even for Gaus-
sian processes, the persistence/antipersistence classification
is not very intuitive.

In applications of the DFA method, much is said about
the ability of the method to remove nonstationarities. Indeed,
it is easy to see that an nth-order DFA analysis removes an
nth-order polynomial in the summed series, i.e. an n− 1th-
order polynomial in the original series. In this, it is no dif-
ferent from the “Mexican hat” or other wavelets and their
higher-order derivatives (or from the simple polynomial ex-
tensions of fluctuations such as the quadratic Haar fluctua-
tion discussed above). In any case, it removes such trends at
all scales, not only at the largest ones, so that it is mislead-
ing to describe it as removing nonstationarities. In addition,
the stationarity assumption is still made with respect to the
residuals from the polynomial regression – just as with the
wavelet-based fluctuations. If one only wants to remove non-
stationarities, this should be done as a “pretreatment”: i.e.
trends should only be removed over the entire series and not

Figure B9. Comparison of the bias in estimates of the second-order
structure function δξ (2), obtained from numerical multifractal sim-
ulations with parameters α = 1.8 and C1 = 0.1 and with the fluc-
tuation H as indicated. Theoretically, the (unbiased) second-order
structure function exponent is ξ (2)= 2H−K(2), and with these pa-
rameters, K(2)= 0.18. For each value of H from −9/10 to +9/10
(at intervals of 1/10), 50 realizations of the process were anal-
ysed, each of length 214

= 16 384 points. Difference fluctuations
were only applied to the H > 0 cases and anomaly fluctuations for
H < 0. Spectra, Haar, and multifractal detrended fluctuation anal-
ysis (MFDFA) were applied over the whole range. We see that the
latter methods are quite accurate (to within about −0.05) over the
range ≈−0.7<H <≈ 0.7. Over this range in particular, the Haar
fluctuations have a bias of about +0.01, while the MFDFA has a
bias of about −0.02. In comparison, the difference and anomaly
fluctuations have stronger biases (of about ±0.1) near the limits
of their ranges, i.e. when |H | ≈< 0.2. Adapted from Lovejoy and
Schertzer (2012).

over each interval or over each segment within the series.
Finally, the most common and strongest geophysical nonsta-
tionarities are due to the diurnal and annual cycles, and none
of these techniques removes oscillations.

We conclude that the only difference between analysing a
data series with the DFA or with wavelet-based fluctuation
definitions is the extra and needless complexity of the DFA –
the regression part – that makes its interpretation and mathe-
matical basis unnecessarily obscure. Indeed, Fig. B9 numer-
ically compares spectra, (Haar) wavelets, and DFA exponent
estimates, showing that Haar wavelets are at least as accu-
rate as DFA but have the added advantage of simplicity of
implementation and simplicity of interpretation.

If the underlying process is multifractal, one naturally ob-
tains huge fluctuations (in space, huge structures, “singu-
larities”), but these are totally outside the realm of quasi-
Gaussian processes, so that when they are inappropriately in-
terpreted in a quasi-Gaussian framework, they will often be
mistakenly treated as nonstationarities (in space, mistakenly
as inhomogeneities).
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