Articles | Volume 29, issue 2
https://doi.org/10.5194/npg-29-207-2022
https://doi.org/10.5194/npg-29-207-2022
Research article
 | Highlight paper
 | 
15 Jun 2022
Research article | Highlight paper |  | 15 Jun 2022

Effects of rotation and topography on internal solitary waves governed by the rotating Gardner equation

Karl R. Helfrich and Lev Ostrovsky

Related authors

Evolution of small-scale turbulence at large Richardson numbers
Lev Ostrovsky, Irina Soustova, Yuliya Troitskaya, and Daria Gladskikh
Nonlin. Processes Geophys., 31, 219–227, https://doi.org/10.5194/npg-31-219-2024,https://doi.org/10.5194/npg-31-219-2024, 2024
Short summary
Dynamics of turbulence under the effect of stratification and internal waves
O. A. Druzhinin and L. A. Ostrovsky
Nonlin. Processes Geophys., 22, 337–348, https://doi.org/10.5194/npg-22-337-2015,https://doi.org/10.5194/npg-22-337-2015, 2015
Short summary
The study of the effect of small-scale turbulence on internal gravity waves propagation in a pycnocline
O. A. Druzhinin, L. A. Ostrovsky, and S. S. Zilitinkevich
Nonlin. Processes Geophys., 20, 977–986, https://doi.org/10.5194/npg-20-977-2013,https://doi.org/10.5194/npg-20-977-2013, 2013

Related subject area

Subject: Bifurcation, dynamical systems, chaos, phase transition, nonlinear waves, pattern formation | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere | Techniques: Theory
Review article: Interdisciplinary perspectives on climate sciences – highlighting past and current scientific achievements
Vera Melinda Galfi, Tommaso Alberti, Lesley De Cruz, Christian L. E. Franzke, and Valerio Lembo
Nonlin. Processes Geophys., 31, 185–193, https://doi.org/10.5194/npg-31-185-2024,https://doi.org/10.5194/npg-31-185-2024, 2024
Short summary
Variational techniques for a one-dimensional energy balance model
Gianmarco Del Sarto, Jochen Bröcker, Franco Flandoli, and Tobias Kuna
Nonlin. Processes Geophys., 31, 137–150, https://doi.org/10.5194/npg-31-137-2024,https://doi.org/10.5194/npg-31-137-2024, 2024
Short summary
Sensitivity of the polar boundary layer to transient phenomena
Amandine Kaiser, Nikki Vercauteren, and Sebastian Krumscheid
Nonlin. Processes Geophys., 31, 45–60, https://doi.org/10.5194/npg-31-45-2024,https://doi.org/10.5194/npg-31-45-2024, 2024
Short summary
High-frequency Internal Waves, High-mode Nonlinear Waves and K-H Billows on the South China Sea's Shelf Revealed by Marine Seismic Observation
Linghan Meng, Haibin Song, Yongxian Guan, Shun Yang, Kun Zhang, and Mengli Liu
EGUsphere, https://doi.org/10.5194/egusphere-2024-92,https://doi.org/10.5194/egusphere-2024-92, 2024
Short summary
Existence and influence of mixed states in a model of vegetation patterns
Lilian Vanderveken, Marina Martínez Montero, and Michel Crucifix
Nonlin. Processes Geophys., 30, 585–599, https://doi.org/10.5194/npg-30-585-2023,https://doi.org/10.5194/npg-30-585-2023, 2023
Short summary

Cited articles

Alford, M., Lien, R.-C., Simmons, H., Klymak, J., Ramp, S., Yang, Y. J., Tang, D., and Chang, M.-H.: Speed and evolution of nonlinear internal waves transiting the South China Sea, J. Phys. Oceano., 121, 1338–1355, https://doi.org/10.1175/2010JPO4388.1, 2010. a
Alias, A., Grimshaw, R. H. J., and Khusnutdinova, K. R.: Coupled Ostrovsky equations for internal waves in a shear flow, Phys. Fluids, 26, 126603, https://doi.org/10.1063/1.4903279, 2014. a, b
Apel, J. R., Ostrovsky, L. A., Stepanyants, Y. A., and Lynch, J. F.: Internal solitons in the ocean and their effect on underwater sound, J. Acoust. Soc. Am., 121, 695–722, https://doi.org/10.1121/1.2395914, 2007. a
Farmer, D., Li, Q., and Park, J.-H.: Internal wave observations in the South China Sea: the role of rotation and nonlinearity, Atmos.-Ocean, 47, 267–280, https://doi.org/10.3137/OC313.2009, 2009. a
Grimshaw, R., He, J.-M., and Ostrovsky, L.: Terminal damping of a solitary wave due to radiation in rotational systems, Stud. Appl. Math, 101, 197–210, 1998a. a, b
Download
Short summary
Internal solitons are an important class of nonlinear waves commonly observed in coastal oceans. Their propagation is affected by the Earth's rotation and the variation in the water depth. We consider an interplay of these factors using the corresponding extension of the Gardner equation. This model allows a limiting soliton amplitude and the corresponding increase in wavelength, making the effects of rotation and topography on a shoaling wave especially significant.