Articles | Volume 29, issue 1
Nonlin. Processes Geophys., 29, 123–131, 2022
https://doi.org/10.5194/npg-29-123-2022
Nonlin. Processes Geophys., 29, 123–131, 2022
https://doi.org/10.5194/npg-29-123-2022
Research article
24 Mar 2022
Research article | 24 Mar 2022

Characteristics of intrinsic non-stationarity and its effect on eddy-covariance measurements of CO2 fluxes

Lei Liu et al.

Related authors

Extreme fluctuations of vertical velocity in the unstable atmospheric surface layer
L. Liu, F. Hu, and X.-L. Cheng
Nonlin. Processes Geophys., 21, 463–475, https://doi.org/10.5194/npg-21-463-2014,https://doi.org/10.5194/npg-21-463-2014, 2014

Related subject area

Subject: Scaling, multifractals, turbulence, complex systems, self-organized criticality | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere | Techniques: Theory
How many modes are needed to predict climate bifurcations? Lessons from an experiment
Bérengère Dubrulle, François Daviaud, Davide Faranda, Louis Marié, and Brice Saint-Michel
Nonlin. Processes Geophys., 29, 17–35, https://doi.org/10.5194/npg-29-17-2022,https://doi.org/10.5194/npg-29-17-2022, 2022
Short summary
Non-linear hydrologic organization
Allen Hunt, Boris Faybishenko, and Behzad Ghanbarian
Nonlin. Processes Geophys., 28, 599–614, https://doi.org/10.5194/npg-28-599-2021,https://doi.org/10.5194/npg-28-599-2021, 2021
Short summary
The impact of entrained air on ocean waves
Juan M. Restrepo, Alex Ayet, and Luigi Cavaleri
Nonlin. Processes Geophys., 28, 285–293, https://doi.org/10.5194/npg-28-285-2021,https://doi.org/10.5194/npg-28-285-2021, 2021
Short summary
Approximate multifractal correlation and products of universal multifractal fields, with application to rainfall data
Auguste Gires, Ioulia Tchiguirinskaia, and Daniel Schertzer
Nonlin. Processes Geophys., 27, 133–145, https://doi.org/10.5194/npg-27-133-2020,https://doi.org/10.5194/npg-27-133-2020, 2020
Short summary

Cited articles

Andersson, A., Sjöblom, A., Sahlée, E., and Falck, E., and Rutgersson, A.: Enhanced Air–Sea Exchange of Heat and Carbon Dioxide Over a High Arctic Fjord During Unstable Very-Close-to-Neutral Conditions, Bound.-Lay. Meteorol., 170, 471–488, 2019. a
Angevine, W. M., Edwards, J. M., Lothon, M., LeMone, M. A., and Osborne, S. R.: Transition periods in the diurnally-varying atmospheric boundary layer over land, Bound.-Lay. Meteorol., 177, 205–223, 2020. a
Cava, D., Mortarini, L., Giostra, U., Acevedo, O., and Katul, G.: Submeso motions and intermittent turbulence across a nocturnal low-level jet: A self-organized criticality analogy, Bound.-Lay. Meteorol., 172, 17–43, 2019. a
Celani, A. and Seminara, A.: Large-scale Structure of Passive Scalar, Phys. Rev. Lett., 94, 214503, https://doi.org/10.1103/PhysRevLett.94.214503, 2005. a
Cheng, X. L., Zeng, Q. C., and Hu, F.: Characteristics of gusty wind disturbances and turbulent fluctuations in windy atmospheric boundary layer behind cold fronts, J. Geophys. Res.-Atmos., 116, D06101, https://doi.org/10.1029/2010JD015081, 2011. a
Download
Short summary
We find a new kind of non-stationarity. This new kind of non-stationarity is caused by the intrinsic randomness. Results show that the new kind of non-stationarity is widespread in small-scale variations of CO2 turbulent fluxes. This finding reminds us that we need to handle the short-term averaged turbulent fluxes carefully, and we also need to re-screen the existing non-stationarity diagnosis methods because they could make a wrong diagnosis due to this new kind of non-stationarity.