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Abstract. Stationarity is a critical assumption in the eddy-
covariance method that is widely used to calculate turbulent
fluxes. Many methods have been proposed to diagnose non-
stationarity attributed to external non-turbulent flows. In this
paper, we focus on intrinsic non-stationarity (IN) attributed
to turbulence randomness. The detrended fluctuation analysis
is used to quantify IN of CO2 turbulent fluxes in the down-
town of Beijing. Results show that the IN is common in CO2
turbulent fluxes and is a small-scale phenomenon related to
the inertial sub-range turbulence. The small-scale IN of CO2
turbulent fluxes can be simulated by the Ornstein–Uhlenbeck
(OU) process as a first approximation. Based on the simula-
tion results, we find that the flux-averaging time should be
greater than 27 s to avoid the effects of IN. Besides, the non-
stationarity diagnosis methods that do not take into account
IN would possibly make a wrong diagnosis with some pa-
rameters.

1 Introduction

The vertical transport of carbon dioxide plays an impor-
tant role in estimating the exchange of carbon dioxide be-
tween the atmosphere and other systems, including the land
(Horgby et al., 2019), the sea (Andersson et al., 2019), and
the biosphere (Sean et al., 2021; Heiskanen et al., 2021). The
vertical transport of carbon dioxide, dominated by turbulence
mixing, can be quantified by the turbulent flux of carbon
dioxide, which is normally obtained by the eddy-covariance
method using high-frequency wind velocity and carbon diox-
ide concentration measurements (Stull, 1988):

w′c′ = (w−〈w〉)(c−〈c〉), (1)

wherew′c′ is the instantaneous turbulent flux of carbon diox-
ide, w is the vertical wind velocity, c is the carbon diox-
ide concentration, and 〈w〉 and 〈c〉 are the corresponding
Reynolds averages. The notation 〈·〉 denotes the ensemble
average, i.e. averaging data collected from many indepen-
dent experiments with the same conditions. It is difficult to
calculate the ensemble average in practice. However, if data
are nearly stationary and the average time is long enough,
the ensemble average can be estimated by the time average
(Stull, 1988; Lenschow et al., 1994). Therefore, stationarity
is a critical assumption for the eddy-covariance method, and
many methods are proposed to diagnose non-stationarity in
the time series of instantaneous turbulent fluxes before cal-
culating their averages (Foken and Wichura, 1996).

The non-stationarity attributed to various non-turbulent
flows or external forcings has gained much attention in
the literature (Mahrt and Bou-Zeid, 2020, and references
therein). The non-turbulent flows or external forcings include
the time changes in surface heat fluxes (Halios and Barlow,
2018; Angevine et al., 2020), the time-dependent horizontal
pressure gradients (Momen and Bou-Zeid, 2017), the sub-
meso motions in the stable boundary layer (Mahrt, 2014; Sun
et al., 2015; Cava et al., 2019; Stefanello et al., 2020), and so
on. In fact, there is another kind of non-stationarity attributed
to randomness. This kind of non-stationarity would not dis-
appear even if the non-turbulent flows or the external forcings
are absent or removed and is thus called the diffusion-like in-
trinsic non-stationarity or just intrinsic non-stationarity (IN)
(Höll et al., 2016). To our knowledge, the IN of carbon diox-
ide fluxes is less noticed.

In this paper, we focus on the IN of carbon dioxide turbu-
lent fluxes in the urban boundary layer. We firstly illustrate
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124 L. Liu et al. : Intrinsic non-stationarity of carbon dioxide fluxes

Figure 1. Illustration of intrinsic non-stationarity by the Brownian motion. (a) Two time series of the Brownian motion. The standard
deviation of gi in Eq. (2) is set to 1. The time series length is 36 000. (b) The spectra analysis of the two series, where the power spectral
density S(f ) is plotted as a function of frequency f . (c) The detrended fluctuation analysis of the two series, where the fluctuation function
F(s) is plotted as a function of timescale s. The theoretical predictions are shown by broken lines in panels (b) and (c).

the IN by a simple stochastic model in Sect. 2.1. Then, a
method, called the detrended fluctuation analysis used to de-
tect and quantify the IN in time series, is briefly introduced
in Sect. 2.2. In Sect. 3.1 and 3.2, the IN of carbon dioxide
turbulent fluxes in the urban boundary layer is analysed and
simulated. Finally, we discuss the possible impacts of the IN
on the calculation of carbon dioxide fluxes in Sect. 3.3.

2 Method and data

2.1 Illustration of intrinsic non-stationarity

The IN can be simply illustrated by the Brownian motion.
A discrete time series of the Brownian motion is generated
by cumulatively summing the independent Gaussian samples
with zero mean and the same standard deviation σ (Lawler,
2018):

B(t =N1t)=

N∑
i=0

gi, (2)

where gi is a Gaussian sample and 1t is the sampling inter-
val. The Brownian motion B(t) is non-stationary because its
standard deviation scales as σ

√
t .

Two discrete time series of the Brownian motion are
shown in Fig. 1a. The two series are generated by the same

Brownian motion; i.e. the statistical distributions of gi are
the same for the two series. However, they have different
non-stationary trends: sample A has a decreasing trend from
t ≈ 104, while sample B has a wave-like trend. We call these
non-stationary trends the stochastic trends because they are
not attributed to any external forcings but are only attributed
to randomness of the time series. As a distinction, the non-
stationary trends related to external forcings are called the
dynamical trends. Although the stochastic trends are differ-
ent, the power spectral densities S(f ) of two time series are
not changed (see Fig. 1b): both of them agree well with the
theoretical prediction that S(f )∼ f−2 (Krapf et al., 2018).
Unlike the stochastic trends, different dynamical trends indi-
cate that systems would probably be dominated by different
external forcings, and the corresponding power spectral den-
sities could also be different.

2.2 Detrended fluctuation analysis

The fluctuation analysis (FA) was firstly proposed to detect
and quantify possible intrinsic non-stationarity in time se-
ries or other sequence data (Peng et al., 1992). However, the
intrinsic non-stationarity and the non-stationarity caused by
external forcing always coexist in a real time series. The FA
cannot distinguish between the two kinds of non-stationarity.
The detrended fluctuation analysis (DFA) method was then
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Figure 2. The DFA of (a) the Brownian motion and (b) the 1 h time series of carbon dioxide turbulent fluxes with the Reynolds average time
of 900 s. The results with different degrees n of the polynomial in the DFA are shown by different colour lines clarified in the legend. For the
Brownian motion, the standard deviation of gi (see Eq. 2) is set to 1. The broken line indicates the theoretical prediction (Höll and Kantz,
2015).

proposed to resolve this problem by eliminating large-scale
trends in the data (Kantelhardt et al., 2001).

The DFA of a time series xk (k = 1,2, · · ·,N ) is briefly
listed as follows. In the first step, the profile of xk is calcu-
lated by

Yi =

i∑
k=1

xk − x, (3)

where x is the time average of xk over the whole time period.
In the second step, the profile Yi (i = 1,2, · · ·,N ) is cut into
Ns non-overlapping segments with equal timescale s =m1t ,
where 1t is the sampling interval of xk and m is a positive
integer (1≤m≤N ). In the third step, the profile Yi in each
segment is fitted by a polynomial pni,j , where j is the segment
index and n is the degree of the polynomial. Then, the fitted
polynomial in each segment is removed from the profile:

Yi,j = Yi −p
n
i,j . (4)

In this step, the dynamical trends modeled by the polynomi-
als are removed, but the IN stochastic trends are left (Höll
et al., 2016). Generally, the choice of degree n would affect
the results when dynamical trends exist in the time series.
However, we test the Brownian motion without dynamical
trends and the carbon dioxide fluxes with dynamical trends
already removed by the Reynolds average and find that the
results are not substantially affected by the choice of n. Fig-
ure 2 shows the impact of the choice of n on DFA. Results
show that the choice of n from 1 to 4 does not affect the con-
clusion of the DFA (Fig. 2a). For the Brownian motion, the
fluctuation exponents are almost the same with different de-
grees of n. For the carbon dioxide turbulent fluxes, the vari-
ations of the fluctuation functions also do not vary substan-
tially with n (Fig. 2b). Thus, we set n= 1 in this study. In the

fourth step, the variance of Yi,j in each segment is calculated
by

F 2
j =

1
m

m∑
i=1

Y 2
(j−1)m+i,j . (5)

Then, the variance F 2
j is averaged over all segments:

F(s)=

√√√√ 1
Ns

Ns∑
j=1

F 2
j , (6)

where F(s) is called the fluctuation function.
Generally, the fluctuation function behaves as a power

function:

F(s)∼ sα, (7)

where the fluctuation exponent α can be used to diagnose
and quantify IN in the time series of xk (Kantelhardt, 2012;
Løvsletten, 2017). In practice, large statistical errors will oc-
cur at large s. Thus, the largest fitting scale is normally set
to the position where the F(s) begins to fluctuate around
the power function significantly. If the fluctuation exponent
α > 1, the IN exists in the time series. The more the α devi-
ates from 1, the more significant the IN is. If 1/2< α < 1, the
time series is stationary and long-term correlated. If α = 1/2,
the time series is stationary and independent (or short-term
correlated). Figure 1c shows the DFA of the Brownian mo-
tion. The fluctuation exponent is close to the theoretical value
of 1.5 (Höll and Kantz, 2015), which is consistent with the
fact that the Brownian motion has IN. Besides, the example
also shows that the IN will not be removed in the third step
of the DFA.
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Figure 3. The intrinsic non-stationarity in the 1 h time series of carbon dioxide turbulent fluxes. (a) The 1 h time series of instantaneous
turbulent fluxes of carbon dioxide with the Reynolds average time τ = 900, 300, and 6 s. (b) The detrended fluctuation analysis of these
time series. For comparison, the time series are normalized to zero mean and unit variance. The power functions with the fitted fluctuation
exponents are shown by the broken lines. (c) The power spectral densities of these time series. The Kolmogorov −5/3 law is shown by the
broken line.

2.3 Data

The data were collected on a 325 m meteorological tower
in the downtown of Beijing, China (39.97◦ N, 116.37◦ E).
Within 5 km of the tower, there are buildings with a height of
about 10–60 m. About 200 m away to the west of the tower,
there are a north–south highway bridge and a ring road.
About 150 m away to the north of the tower, there is an east–
west busy road. The 10 Hz turbulence data, including wind
velocity and carbon dioxide concentration, were collected by
an ultrasonic anemometer (Windmaster Pro, Gill, UK) and
an open-path CO2/H2O analyser (LI-7500, LI-COR, USA)
deployed at the 80 m level. Data collected from 28 July to
28 August 2020 are analysed in this study.

Based on the estimation of mean building height (Oke
et al., 2017), the height of the inertia sublayer around the
tower is about 45–135 m (Cheng et al., 2018). The constant
flux layer (i.e. the inertial sublayer) is observed to extend to
140 m, and the 80 m height is located in the constant flux
layer (Cheng et al., 2018). According to Cheng et al. (2011),
the turbulent fluctuations (with scales less than 1 min) ob-
served on the tower are nearly isotropic, and large-scale mo-

tions (with scales greater than 1 min and less than 10 min) are
anisotropic. More details about the meteorological tower, the
typical meteorological conditions, urban geometry effects,
and potential sources of carbon dioxide around the observa-
tion site can also be found in Cheng et al. (2018) and Liu
et al. (2021).

The quality control methods proposed by Vickers and
Mahrt (1997) are used to find problematic data, including
spikes, dropouts, data with discontinuities, data violating ab-
solute limits, data with the amplitude resolution problem,
and data with unphysical high-order moments. Their method
used automated tests to identify instrumentation problems
and physically plausible but unusual situations in tower time
series. Besides, they also proposed automated tests to iden-
tify flux sampling problems, such as the non-stationary prob-
lem that will be discussed in the following sections. The time
series seriously contaminated by the problematic data are re-
moved in the analysis. The time series seriously contami-
nated by high-frequency white noises are also removed. After
quality controlling, a total of 520 1 h time series are left. The
instrument reference frame is transformed to the streamline
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reference frame by the double rotation (Kaimal and Finnigan,
1994).

3 Results

3.1 Characteristics of intrinsic non-stationarity of
carbon dioxide fluxes

The 1 h time series of carbon dioxide turbulent fluxes is ob-
tained by Eq. (1), where the ensemble average is replaced by
the time average. In order to remove dynamical trends, the
Reynolds average time is usually set to be equal to or smaller
than 30 min (Foken et al., 2004). We analyse the intrinsic
non-stationarity for all the 1 h time series of carbon dioxide
turbulent fluxes, and a typical example is shown in Fig. 3. To
analyse the impact of the Reynolds average time on IN in the
1 h time series of carbon dioxide turbulent fluxes, we here
choose the Reynolds average times τ = 900 s and 300 s that
are commonly used in the eddy-covariance method (Doran,
2004; Metzger et al., 2007; Li and Bou-Zeid, 2011; Dona-
teo et al., 2017). In order to show the effect of very small
Reynolds average times in sharp contrast, we also choose a
timescale of 6 s in the analysis.

The DFA is shown in Fig. 3b. Two scaling regimes are
found in the fluctuation functions. At a large timescale s, the
fluctuation exponent is found to be less than 1; at a small
timescale s, the fluctuation exponent is found to be greater
than 1. Results indicate that the time series of carbon dioxide
turbulent fluxes have IN at small timescales but are station-
ary at large timescales, whatever the Reynolds average time
is. As shown in Fig. 3a, the small-scale variations of these
time series are evidently non-stationary, although the large-
scale dynamical trends have been removed by subtracting
the Reynolds average from the data. Besides, one can note
that the fluctuation functions with τ = 900 and 300 s are al-
most the same but are different from that with τ = 6 s. The
crossover scale in the case with τ = 6 s (at s ≈ 2 s) is smaller
than that in cases with τ = 900 and 300 s (at s ≈ 20 s). The
power spectral densities of these time series are shown in
Fig. 3c. The spectra with τ = 900 and 300 s are almost the
same but are also different from that with τ = 6 s. The case
with τ = 6 s is found to have a much shorter inertial sub-
range than cases with τ = 900 and 300 s. The inertial sub-
range is recognized by the Kolmogorov −5/3 law (Kol-
mogorov, 1941). Results indicate that the IN is a small-scale
phenomenon which is intimately related to the inertial sub-
range turbulence. The choice of a very small Reynolds av-
erage time could partly remove the IN, but the turbulence
contribution to fluxes is also partly removed. It is believed
that if the sampling frequency is improved and the flux-
averaging time is further reduced, the stationary assumption
of the eddy-covariance method can be better guaranteed. Our
findings indicate that the above consideration may not be

Figure 4. Small-scale non-stationarity and large-scale stationarity
in the same OU process. (a) The 1 h time series of the OU process
with a = 0.15, b = 1, and 1t = 0.1 s. (b) The average time series
of the OU process with the same parameters as in (a). The average
time is set to 1 min.

right because the further reduction of the flux-averaging time
would face the intrinsic non-stationarity.

3.2 Simulation of intrinsic non-stationarity

The Ornstein–Uhlenbeck (OU) process, which is well stud-
ied and used to model many physical and chemical pro-
cesses (Gardiner, 1985), is a simple model of small-scale IN.
The OU process has similar crossover characteristic as car-
bon dioxide fluxes. Besides, many statistical properties (in-
cluding the fluctuation exponents) of the OU process can be
solved analytically (Czechowski and Telesca, 2016). We here
use this model to simulate the IN of carbon dioxide fluxes.

The discrete time series of the OU process is generated by
the iterative equation:

y(t +1t)= y(t)− ay(t)1t + b
√
1tξ, (8)

where a and b are model parameters, 1t is the sampling in-
terval, and ξ is an independent random variable with the nor-
mal distribution. For the OU process, the fluctuation function
F(s)∼ s0.5 at large scales and F(s)∼ s1.5 at small scales
(Höll and Kantz, 2015; Czechowski and Telesca, 2016;
Løvsletten, 2017). This indicates that the OU process has IN
at small scales but is stationary at large scales, as clearly il-
lustrated by an example in Figs. 4 and 5. Figure 4a shows the
1 h time series of the OU process generated by Eq. (8). Due
to the small-scale IN, the time series seems to be intermittent.
However, the large-scale variations of the same OU process,
obtained by averaging the time series in Fig. 4a with an av-
erage time much greater than the crossover scale, seem to be
like a stationary white noise (Fig. 4b). The DFA shows that
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Figure 5. The DFA of the time series shown in Fig. 4. The fluctu-
ation functions of the unaveraged and averaged time series are de-
noted by blue circles and red rectangles, respectively. The theoreti-
cal predictions of the OU process are also denoted by broken lines
(Höll and Kantz, 2015; Czechowski and Telesca, 2016; Løvsletten,
2017).

the fluctuation exponent of the averaged time series is about
0.5, as the fluctuation exponent of the unaveraged time se-
ries at large scales (Fig. 5). This indicates that the averaged
time series with a large average time, reflecting the large-
scale variations of the OU process, is stationary.

The DFA of 520 1 h time series of instantaneous carbon
dioxide fluxes is shown in Fig. 6. The Reynolds average time
is set to 5 min. Results show that the fluctuation functions
of carbon dioxide turbulent fluxes typically have two scal-
ing regimes, as shown in Fig. 3. The fluctuation exponents
are generally greater than 1 at small scales and less than 1 at
large scales. The OU process can fit the data as a first approx-
imation, although the fluctuation exponent of data seems to
be greater at large scales and less at small scales compared
with the OU process. The details of the fitting procedure are
listed as follows. In the first step, choose the parameters of
the OU process a and b from the same set (0.1,0.2, · · ·,1)
and set 1t = 0.1 s. The 1 h time series of the OU process is
generated by Eq. (8) with the chosen parameters. In the sec-
ond step, compute the fluctuation function of the generated
1 h time series. In the third step, go back to the first step and
choose another new value of a or b in the set (0.1,0.2, · · ·,1).
If all possible combinations of a and b are used, go to the
fourth step. In the fourth step, the root mean relative square
error for the ith combination of a and b is computed:

RMRSi =

√√√√ 1
Nj

Nj∑
j=1

[
Fi(sj )−Fdata(sj )

Fi(sj )

]2

, (9)

where Nj is the number of discrete timescales sj , Fi is the
fluctuation function of the OU process with the ith combina-
tion of a and b, and Fdata is the averaged fluctuation function

Figure 6. The detrended fluctuation analysis of all 1 h time series of
carbon dioxide fluxes. The Reynolds average time is set to 5 min to
calculate fluxes. The sample-averaged fluctuation function is shown
by the red line and uncertainties estimated by the standard deviation
are shown by the red shading. The fitted fluctuation function of the
OU process is shown by the blue line. The fitted parameters are a =
0.2, b = 0.7, and 1t = 0.1 s. The vertical broken line indicates the
crossover scale estimated by Eq. (10). For comparison, the function
of F(s)= s is also shown by the broken line.

of carbon dioxide turbulent fluxes (shown by the red line in
Fig. 6). In the fifth step, the parameters of a and b corre-
sponding to the minimum of RMRSi are considered the op-
timal fitting parameters.

The fluctuation exponent of the OU process at large scales
equals 0.5. The fact that the fluctuation exponent of data is
greater than that of the OU process but less than 1 at large
scales indicates that the data are stationary and long-term cor-
related at large scales. This could be related to the large-scale
coherent structure of scalar turbulence (Celani and Seminara,
2005; Liu and Hu, 2020). The fluctuation exponent of the OU
process at small scales equals that of the Brownian motion.
The fluctuation exponent of data seems to be less than that of
the OU process at small scales, which indicates that the data
deviate from the Brownian motion at small scales. This could
be related to the non-Gaussian intermittency of turbulence
in the inertial subrange (Liu et al., 2019). As we have dis-
cussed in Sect. 3.1, the IN is intimately related to the inertial
sub-range turbulence, which is usually considered to be pro-
duced by the cascade mechanism (Kolmogorov, 1941). The
OU process is a very simple mathematical model that does
not include the cascade mechanism. It is believed that the fit-
ting results would be improved by adding the cascade mech-
anism to the OU process. This paper focuses on the main
characteristics of the IN, and further extensions of the OU
process will be investigated in a future study.
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3.3 Impacts of intrinsic non-stationarity on flux
calculation

There are at least two impacts of IN on the calculation of
average carbon dioxide turbulent fluxes.

First, the IN could affect the short-term averaged turbu-
lent flux normally used in the analysis of plant photosyn-
thesis efficiency (Van Kesteren et al., 2013). To avoid IN at
small scales, the average time-averaging instantaneous tur-
bulent fluxes (i.e. the flux-averaging time) should be much
greater than the crossover scale in the fluctuation function,
because crossover scale separates the IN at small scales and
stationarity at large scales. Note that the flux-averaging time
is not necessarily the same as the Reynolds average time (Fo-
ken et al., 2004). The former is denoted by T in the follow-
ing discussion. For the OU process (Czechowski and Telesca,
2016), the crossover scale is

s× ≈
5.4
a
. (10)

According to the fitting results in Fig. 6, the crossover scale
of carbon dioxide turbulent fluxes is about 27 s. The errors of
fluxes averaged with T.s× ≈ 27 s would be large due to the
existence of small-scale IN.

Second, the IN could affect the diagnosis methods of non-
stationarity. For example, Vickers and Mahrt (1997) used a
dimensionless index RN to diagnose non-stationarity:

RN=
δx

x
, (11)

where δx is the difference between the beginning and the
end of the linear regression trend of the diagnosed time se-
ries and x is the time average of the same time series. If RN
is greater than a predefined threshold, the time series is diag-
nosed as non-stationary and is not recommended to be aver-
aged by time. We here use the RN method for the OU pro-
cess. Because the OU process is stationary at large scales,
it is meaningful to calculate its average with a large average
time. Thus, we hope that the OU process can be diagnosed as
stationary by the RN method. The proportion of diagnosed
stationarity for the OU process is plotted as a function of
threshold in Fig. 7. Results show that once the threshold is
less than a critical value, the RN method has a certain proba-
bility of making a wrong diagnosis. With the decrease in the
threshold, the probability of misdiagnosis will increase. The
critical threshold increases as the parameter a decreases. In
the limit case with a = 0, the OU process with small-scale IN
becomes the Brownian motion with full-scale IN (see Eq. 8).
We thus hope that the proportion of diagnosed stationarity for
the Brownian motion is 0; however, the RN method has the
probability of misdiagnosis almost at any threshold. In an-
other limit case of the white noises without non-stationarity,
the RN method performs well, and the probability of misdi-
agnosis is 0 for most thresholds. The results remind us that
the parameters of diagnosis methods must be carefully cho-
sen when diagnosing carbon dioxide fluxes with IN.

Figure 7. The impact of IN on the non-stationarity diagnosis
method proposed by Vickers and Mahrt (1997). The proportion of
diagnosed stationarity is plotted as a function of threshold. The
functions for the white noise, the OU process with a = 0.2 and
b = 0.7, the OU process with a = 0.05 and b = 0.7, and the Brow-
nian motion are shown by different colour lines, as listed in the leg-
end. The number of generated time series of each model is 1000. To
avoid the zero denominator in Eq. (11), the averages of all generated
time series are set to 1.

4 Conclusions

We analyse the time series carbon dioxide fluxes observed by
the eddy-covariance system in the downtown of Beijing and
find a new kind of non-stationarity less discussed in the lit-
erature. As illustrated by the Brownian motion, the new kind
of non-stationarity has nothing to do with non-stationarity
attributed to non-turbulent flows or external forcings; there-
fore, it is called the intrinsic non-stationarity (IN). The de-
trended fluctuation analysis (DFA) is a useful method to mea-
sure IN in real time series where IN always coexists with
non-stationarity by external forcings. The DFA shows that
the instantaneous turbulent fluxes of carbon dioxide have IN
at small timescales. Combined with the spectral analysis, the
IN is found to be related to inertial sub-range turbulence. The
small-scale IN can be simulated by the Ornstein–Uhlenbeck
(OU) process as a first approximation. The potential impacts
of IN on the calculation of turbulent fluxes are also discussed.
According to the OU process, the crossover scale, which is
the characteristic scale under which the IN cannot be ignored,
is estimated to be about 27 s. Thus, the IN could contribute
systematical errors to short-term averaged fluxes when the
average time is not much greater than the crossover time. Be-
sides, we also find that there may be a probability of misdiag-
nosis when applying some non-stationarity diagnosis method
to the time series with IN. Thus, IN should be seriously con-
sidered when designing new diagnosis methods.

This work only focuses on the main characteristics of IN
of carbon dioxide fluxes in the urban boundary layer. It is
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interesting to discuss the difference characteristics of IN be-
tween the urban and rural boundary layer. The relationships
between the IN characteristics (e.g. the crossover scale and
fluctuation exponents) and urban boundary layer parameters
(e.g. stability, roughness, boundary-layer height) should be
systematically studied. The extensions of the OU process
should be tried to obtain a better fitting with data. Except
for the carbon dioxide turbulent flux, is there IN in other tur-
bulent fluxes with different terrains? The above problems re-
main to be resolved in the future study.

Code and data availability. The Matlab code of the
DFA is provided by Martin Magris (downloadable at
https://www.mathworks.com/matlabcentral/fileexchange/
67889-detrended-fluctuation-analysis-dfa, last access:
9 March 2022; Magris, 2022). A total of 520 1 h time series
of carbon dioxide turbulent fluxes used in this study are available
online at https://doi.org/10.4121/14790084.v1 (Liu, 2022).
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