Articles | Volume 27, issue 3
https://doi.org/10.5194/npg-27-391-2020
https://doi.org/10.5194/npg-27-391-2020
Research article
 | 
08 Jul 2020
Research article |  | 08 Jul 2020

Anthropocene climate bifurcation

Kolja Leon Kypke, William Finlay Langford, and Allan Richard Willms

Related authors

Climate bifurcations in a Schwarzschild equation model of the Arctic atmosphere
Kolja L. Kypke, William F. Langford, Gregory M. Lewis, and Allan R. Willms
Nonlin. Processes Geophys., 29, 219–239, https://doi.org/10.5194/npg-29-219-2022,https://doi.org/10.5194/npg-29-219-2022, 2022
Short summary
An energy balance model for paleoclimate transitions
Brady Dortmans, William F. Langford, and Allan R. Willms
Clim. Past, 15, 493–520, https://doi.org/10.5194/cp-15-493-2019,https://doi.org/10.5194/cp-15-493-2019, 2019
Short summary

Related subject area

Subject: Bifurcation, dynamical systems, chaos, phase transition, nonlinear waves, pattern formation | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere | Techniques: Theory
Climate bifurcations in a Schwarzschild equation model of the Arctic atmosphere
Kolja L. Kypke, William F. Langford, Gregory M. Lewis, and Allan R. Willms
Nonlin. Processes Geophys., 29, 219–239, https://doi.org/10.5194/npg-29-219-2022,https://doi.org/10.5194/npg-29-219-2022, 2022
Short summary
Effects of rotation and topography on internal solitary waves governed by the rotating Gardner equation
Karl R. Helfrich and Lev Ostrovsky
Nonlin. Processes Geophys., 29, 207–218, https://doi.org/10.5194/npg-29-207-2022,https://doi.org/10.5194/npg-29-207-2022, 2022
Short summary
Review article: Hilbert problems for the climate sciences in the 21st century – 20 years later
Michael Ghil
Nonlin. Processes Geophys., 27, 429–451, https://doi.org/10.5194/npg-27-429-2020,https://doi.org/10.5194/npg-27-429-2020, 2020
Short summary
Baroclinic and barotropic instabilities in planetary atmospheres: energetics, equilibration and adjustment
Peter Read, Daniel Kennedy, Neil Lewis, Hélène Scolan, Fachreddin Tabataba-Vakili, Yixiong Wang, Susie Wright, and Roland Young
Nonlin. Processes Geophys., 27, 147–173, https://doi.org/10.5194/npg-27-147-2020,https://doi.org/10.5194/npg-27-147-2020, 2020
Short summary

Cited articles

Ashwin, P., Wieczorek, S., Vitolo, R., and Cox, P.: Tipping points in open systems: bifurcation, noise-induced and rate-dependent examples in the climate system, Philos. T. Roy. Soc. A, 370, 1166–1184, 2012. a
Barron, E. J., Thompson, S. L., and Schneider, S. H.: An ice-free Cretaceous? Results from climate model simulations, Science, 212, 10–13, 1981. 
Bathiany, S., Dijkstra, H., Crucifix, M., Dakos, V., Brovkin, V., Williamson, M. S., Lenton, T. M., and Scheffer, M.: Beyond bifurcation: using complex models to understand and predict abrupt climate change, Dyn. Stat. Clim. Syst., 1, 1–31, https://doi.org/10.1093/climsys/dzw004, 2016. a
Short summary
The climate of Earth is governed by nonlinear processes of geophysics. This paper presents energy balance models (EBMs) embracing these nonlinear processes which lead to positive feedback, amplifying the effects of anthropogenic forcing and leading to bifurcations. We define bifurcation as a change in the topological equivalence class of the system. We initiate a bifurcation analysis of EBMs of Anthropocene climate, which shows that a catastrophic climate change may occur in the next century.