Articles | Volume 26, issue 3
https://doi.org/10.5194/npg-26-307-2019
https://doi.org/10.5194/npg-26-307-2019
Research article
 | 
16 Sep 2019
Research article |  | 16 Sep 2019

Particle clustering and subclustering as a proxy for mixing in geophysical flows

Rishiraj Chakraborty, Aaron Coutino, and Marek Stastna

Related authors

A robust numerical method for the generation and simulation of periodic finite-amplitude internal waves in natural waters
Pierre Lloret, Peter J. Diamessis, Marek Stastna, and Greg N. Thomsen
EGUsphere, https://doi.org/10.5194/egusphere-2024-1121,https://doi.org/10.5194/egusphere-2024-1121, 2024
Short summary
A new approach to understanding fluid mixing in process-study models of stratified fluids
Samuel George Hartharn-Evans, Marek Stastna, and Magda Carr
Nonlin. Processes Geophys., 31, 61–74, https://doi.org/10.5194/npg-31-61-2024,https://doi.org/10.5194/npg-31-61-2024, 2024
Short summary
The effect of strong shear on internal solitary-like waves
Marek Stastna, Aaron Coutino, and Ryan K. Walter
Nonlin. Processes Geophys., 28, 585–598, https://doi.org/10.5194/npg-28-585-2021,https://doi.org/10.5194/npg-28-585-2021, 2021
Short summary
Multi-scale phenomena of rotation-modified mode-2 internal waves
David Deepwell, Marek Stastna, and Aaron Coutino
Nonlin. Processes Geophys., 25, 217–231, https://doi.org/10.5194/npg-25-217-2018,https://doi.org/10.5194/npg-25-217-2018, 2018
Short summary
On the interaction of short linear internal waves with internal solitary waves
Chengzhu Xu and Marek Stastna
Nonlin. Processes Geophys., 25, 1–17, https://doi.org/10.5194/npg-25-1-2018,https://doi.org/10.5194/npg-25-1-2018, 2018
Short summary

Related subject area

Subject: Nonlinear Waves, Pattern Formation, Turbulence | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
Explosive instability due to flow over a rippled bottom
Anirban Guha and Raunak Raj
Nonlin. Processes Geophys., 26, 283–290, https://doi.org/10.5194/npg-26-283-2019,https://doi.org/10.5194/npg-26-283-2019, 2019
Short summary
Internal waves in marginally stable abyssal stratified flows
Nikolay Makarenko, Janna Maltseva, Eugene Morozov, Roman Tarakanov, and Kseniya Ivanova
Nonlin. Processes Geophys., 25, 659–669, https://doi.org/10.5194/npg-25-659-2018,https://doi.org/10.5194/npg-25-659-2018, 2018
Short summary
On the phase dependence of the soliton collisions in the Dyachenko–Zakharov envelope equation
Dmitry Kachulin and Andrey Gelash
Nonlin. Processes Geophys., 25, 553–563, https://doi.org/10.5194/npg-25-553-2018,https://doi.org/10.5194/npg-25-553-2018, 2018
Short summary
Laboratory and numerical experiments on stem waves due to monochromatic waves along a vertical wall
Sung Bum Yoon, Jong-In Lee, Young-Take Kim, and Choong Hun Shin
Nonlin. Processes Geophys., 25, 521–535, https://doi.org/10.5194/npg-25-521-2018,https://doi.org/10.5194/npg-25-521-2018, 2018
Short summary
Exceedance frequency of appearance of the extreme internal waves in the World Ocean
Tatyana Talipova, Efim Pelinovsky, Oxana Kurkina, Ayrat Giniyatullin, and Andrey Kurkin
Nonlin. Processes Geophys., 25, 511–519, https://doi.org/10.5194/npg-25-511-2018,https://doi.org/10.5194/npg-25-511-2018, 2018
Short summary

Cited articles

Al-Kahby, H., Dannan, F., and Elaydi, S.: Non-standard discretization methods for some biological models. Applications of nonstandard finite difference schemes, World Scientific, Singapore, 155–180, 2000. a
Allshouse, M. R. and Peacock, T.: Lagrangian based methods for coherent structure detection, Chaos, 25, 097617, https://doi.org/10.1063/1.4922968, 2015. a
Ascher, U. M. and Petzold, L. R.: Computer methods for ordinary differential equations and differential-algebraic equations, SIAM, 61, 37–61, 1998. a
Davidson, P.: Turbulence: an introduction for scientists and engineers, Oxford University Press, North York, ON, Canada, 2015. a, b
Fiedler, M.: Algebraic connectivity of graphs, Czech. Math. J., 23, 298–305, 1973. a
Download
Short summary
In this paper, we highlight a specific example of large-scale flows. We discuss a graph-theory-based Lagrangian technique for identifying regions of strong mixing (in the sense of diffusion) in the flow and compare it to previous Lagrangian approaches used in this context.