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Abstract. The Eulerian point of view is the traditional theo-
retical and numerical tool to describe fluid mechanics. Some
modern computational fluid dynamics codes allow for the
efficient simulation of particles, in turn facilitating a La-
grangian description of the flow. The existence and persis-
tence of Lagrangian coherent structures in fluid flow has been
a topic of considerable study. Here we focus on the ability
of Lagrangian methods to characterize mixing in geophysi-
cal flows. We study the instability of a strongly non-linear
double-jet flow, initially in geostrophic balance, which forms
quasi-coherent vortices when subjected to ageostrophic per-
turbations. Particle clustering techniques are applied to study
the behavior of the particles in the vicinity of coherent vor-
tices. Changes in inter-particle distance play a key role in
establishing the patterns in particle trajectories. This paper
exploits graph theory in finding particle clusters and regions
of dense interactions (also known as subclusters). The meth-
ods discussed and results presented in this paper can be used
to identify mixing in a flow and extract information about
particle behavior in coherent structures from a Lagrangian
point of view.

1 Introduction

There are two different geometric approaches to fluid me-
chanics, the Eulerian and the Lagrangian approach. In the
Eulerian approach, field values are obtained on a spatial grid,
for example from numerical simulation output. In the La-
grangian approach measurement data are obtained following
the fluid, as in the case of temperature measurements by a
weather balloon. Many naturally occurring flows are com-
plex, three-dimensional and, at least to some extent, turbu-

lent. Such flows are characterized by a richness of vortic-
ity and the rapid mixing of passive tracers as discussed in
(Davidson, 2015, chap. 3). At the same time, satellite im-
agery suggests that large-scale flows exhibit prominent co-
herent patterns, and this is theoretically supported by the
so-called inverse cascade of two-dimensional turbulence in
which energy moves to larger scales while enstrophy moves
to smaller scales (Davidson, 2015, chap. 10).

Even three-dimensional turbulent flows are known to con-
tain quasi-deterministic coherent structures (Hussain, 1983).
Coherent structures can be thought of as turbulent fluid
masses having temporal correlation in vorticity over some
spatial extent (e.g., a shear layer in a flow). Figure 1 shows
the evolution of the enstrophy field of a two-dimensional
double jet initially in geostrophic balance, subjected to
ageostrophic perturbations. The evolution depicts the forma-
tion of vortices due to instability of the geostrophic flow.
Coherent structures like vortices and filaments undergo fre-
quent stretching and folding. The identification of coherent
structures in turbulent flows gave the revolutionary notion in
fluid mechanics that turbulent flows are not completely ran-
dom but can contain orderly organized structures, and these
coherent structures in specific regions can influence mixing,
transport and other physically relevant features (Kline et al.,
1967).

The study of coherent flow structures has received signif-
icant interest in the recent past. The existing methods for
detecting coherent behavior mathematically are either geo-
metric or probabilistic; Allshouse and Peacock (2015) dis-
cuss and compare the different methods. Geometric methods
aim to find distinct boundaries between the coherent struc-
tures, whereas probabilistic methods use the concept of sets
with minimal dispersion moving in a flow to identify coher-
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Figure 1. The enstrophy field showing the evolution of the unstable double jet with time. The bright areas indicate regions of high enstrophy
which are found between the two jets at early times.

ent structures. Padberg-Gehle and Schneide (2017) in their
introduction, however, note that existing methods for find-
ing coherent structures require the full knowledge of the flow
field and the underlying dynamical system. This, in turn, re-
quires high-resolution trajectory data. This can be numeri-
cally expensive as well as challenging to find in applications.
Hadjighasem et al. (2017), in their review of various La-
grangian techniques for finding coherent structures, say that
the Lagrangian diagnostic scalar field methods are incapable
of providing a strict definition of coherent flow structures
and are also not effective in establishing a precise mathe-
matical connection between the geometric features and the
flow structures. Such diagnostic methods include the finite-
time Lyapunov exponent (FTLE), finite-size Lyapunov ex-
ponent (FSLE), mesochronic analysis, trajectory length, tra-
jectory complexity and shape coherence. Hadjighasem et al.
(2017) also describe the various methods of applying math-
ematical coherence principles to locate coherent structures.
However, these principles only apply for finite-time inter-
vals from the beginning of the flow evolution; it is not guar-
anteed that the coherence principles comply with observed

coherent patterns at later times. Examples of mathematical
coherence principles include transfer operator methods like
the probabilistic transfer operator (Froyland, 2013) and the
dynamic Laplace operator (Froyland, 2015). These meth-
ods identify maximally coherent or minimally dispersive (not
dispersive in the sense of wave theory) regions over a finite-
time interval. Such regions are expected to minimally mix
with the surrounding phase space and are named “almost-
invariant sets” for autonomous systems and “coherent sets”
for non-autonomous systems. A different mathematical ap-
proach is the hierarchical coherent pairs method (Froyland
et al., 2010), which initially splits a given domain into a pair
of coherent sets using the transfer operator method and then
subsequently refines the coherent sets iteratively. This is ac-
complished using the probabilistic transfer operator. The it-
eration is carried out until a reference measure of the prob-
ability, µ, falls below a user-defined cutoff. A third cate-
gory of mathematical approaches for finding coherent struc-
tures based on Lagrangian data is clustering. Hadjighasem
et al. (2017) reviews the fuzzy C-means clustering of trajec-
tories by Froyland and Padberg-Gehle (2015), which uses the
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traditional fuzzy C-means clustering to identify finite-time-
coherent structures and mixing in a flow. This method uses
trajectories of Lagrangian particles over discrete time inter-
vals and applies the fuzzy C-means algorithm to locate coher-
ent sets as clusters of trajectories according to the dynamic
distances between trajectories. Another similar method for
locating coherent structures is the spectral clustering of tra-
jectories, as proposed by Hadjighasem et al. (2016) and im-
plemented by Padberg-Gehle and Schneide (2017). Mancho
et al. (2004) discusses algorithms to compute hyperbolic tra-
jectories from data sets on oceanographic flows and how
to locate their stable and unstable manifolds. Mendoza and
Mancho (2010) also discuss how phase portraits obtained us-
ing Lagrangian descriptors can provide a representation of
the interconnected features of the underlying dynamical sys-
tem. Rose et al. (2015) uses a coupled implementation of a
mix of Eulerian and Lagrangian models for simulating the
full life cycles of fish species anchovy and sardine in the Cal-
ifornia Current systems. The Lagrangian model used is an
individual fish-based model which tracks each fish of every
species. Padberg-Gehle and Schneide (2017) used a general-
ized graph Laplacian eigenvalue problem to extract coherent
sets from several fabricated examples (e.g., Bickley jet) as
well as measured data. The authors also highlighted regions
of strong mixing in flow, using local network measures like
node degree and the local clustering coefficient. These local
network measures provide information for each Lagrangian
particle.

Inspired by these, we wish to extract regions of dense
mixing in flow using a graph theoretic network approach
and compare the results with those obtained from spectral
clustering. We also wish to use an evolving simulation for
which coherent regions evolve dynamically through stretch-
ing and folding and are not known a priori. The trajectory
encounter volume idea of Rypina and Pratt (2017) is similar
to our methodology, but the volume in which particles are
pre-identified is chosen based on features that are assumed
to be already present in the flow (i.e., eddies). Moreover, the
authors state that the method breaks down for sparse grids,
since it is dependent on being able to define an effective den-
sity of particles. Detailed comparison with our method is thus
left to future work.

From an Eulerian point of view, mixing can be character-
ized by studying the advection–diffusion equation for a pas-
sive tracer θ (Salmon, 1998),

∂θ

∂t
+ v ·∇θ = κ∇2θ , (1)

where v is the fluid velocity and κ is the diffusion coefficient.
Mixing and stirring depends on the gradient of θ , and hence
the extent of mixing and stirring in a given domain for a given
flow can be measured by the spatial variability index

C =
1
2

∫ ∫
∇θ ·∇θdx. (2)

Taking the time derivative of C, and following the simplifi-
cation procedure in Salmon (1998), we obtain

dC
dt
=

∫ ∫ [
(v ·∇θ)∇2θ − κ(∇2θ)2

]
dx. (3)

Fundamentally, mixing is a result of molecular diffusion, and
hence the diffusive (second) term in Eq. (3) represents the ef-
fect of mixing, while the first term containing the gradient of
θ represents the effect of stirring. This implies that an initial
high value of ∇θ will promote mixing and hence diffusion,
which in turn will to lead to a decrease in ∇θ . This can also
be verified from a dynamical system’s point of view. Prants
(2014), in his review paper, describes mixing as follows. Let
us consider the basin A with a circulation where there is a
domain B with a dye occupying, at t = 0, the volume V (B0).
Let us consider a domain C in A. The volume of the dye in
the domain C at time t is V (Bt ∩C), and its concentration
in C is given by the ratio V (Bt ∩C)/V (C). Full mixing is
defined in the sense that in the course of time, for any do-
main C ∈ A, the concentration of the dye is the same as in
every other region in A. However, calculating the true three-
dimensional Eulerian flow field, and the distribution of θ , for
an actual geophysical flow (e.g., a hurricane) is an impos-
sible task. This is due to the immense range of scales that
typifies naturally occurring fluid motions. If one considers a
hurricane, active scales range from hundreds of kilometers
to sub-millimeter scales. Many models in geophysical fluid
dynamics thus focus on representing the coherent scales of
motion. In such cases the fundamentally three-dimensional
motions that would carry out efficient mixing are filtered out
during the theoretical derivation of the governing equations.
A Lagrangian approach to mixing, based on particle prox-
imity, may thus be more profitable. This is because it allows
for an idealized representation of the three-dimensional tur-
bulence that is ignored by the governing equations.

Klimenko (2009) provides an example of this approach to
describe mixing. His idea is stochastic, where each particle
has a deterministic component of motion governed by the
known flow field and a random walk component. The parti-
cles are assigned scalar properties which can change due to
mixing. The random walk component depends on the joint
probability distribution of the particle as functions of posi-
tion and the scalar properties. In his equation (36) the au-
thor defines the intensity of mixing between two particles as
proportional to the distance between the particles in physical
space. Inspired by Klimenko (2009), we use a numerically
inexpensive version of this idea by loosely saying that there is
some non-zero probability of mixing with exchange of prop-
erties taking place between two particles that approach be-
low a given threshold, and a qualitative measure of mixing
is given by interaction among particles. Interaction, once oc-
curred, is counted as a unit of mixing, and our hypothesis
says that if we have three particles, say, A, B and C, and
if particle A interacts with particle B and if particle B inter-
acts with particleC, then, indirectly, particleA has interacted
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with particle C to some extent. We then extend this idea to
the assumption that a region comprising of a higher num-
ber of interacting particles corresponds to one with higher
probabilities of mixing. The technical details are discussed
in Sect. 2.3.

The remaining parts of the paper are structured in the fol-
lowing manner. Section 2 discusses the methods used in our
work including the governing equations and description of
the numerical code used to solve them. This is followed by
the methods for clustering particles (Sect. 2.2), identifying
regions of mixing (Sect. 2.3) and the methods for spectral
clustering (Sect. 2.4). Section 3 presents a detailed discussion
of the results obtained by implementing each of the methods
above and also draws relevant comparisons as needed. The
final section, Sect. 4, concludes the work and highlights the
major findings.

2 Methods

2.1 Governing equations and numerical methods

We consider the shallow water equations on the f -plane
(Kundu et al., 2008). All simulations are carried out with a
code developed in house using CUDA, called CUDA Shal-
low Water and Particles (cuSWAP), which provides numeri-
cal solutions to the shallow water equations. CUDA is a par-
allel computing platform based on C, developed by NVIDIA
to harness the computational power of GPUs (graphics pro-
cessing units; Garland et al., 2008). We choose to solve
these equations using spectral methods to take advantage of
the cuFFT library (NVIDIA Corporation, 2010). This code
solves the governing equations in a doubly periodic domain
with variable topography. The input–output is handled us-
ing NETCDF. The time-stepping scheme is the low-memory
Huen method (Ascher and Petzold, 1998). This code also has
a Lagrangian attribute which performs particle tracking us-
ing cubic interpolation and symplectic Euler time stepping
(Al-Kahby et al, 2000). Additionally this code dynamically
calculates and outputs neighbors of a particle based on inter-
particle distance. These data represent particle interactions
and are used to construct adjacency matrices relevant to our
work, as described in Sect. 2.2.

The shallow water equations, written out in the form
amenable to numerical solution with an FFT-based (FFT –
fast Fourier transform) method, express the conservation of
mass,

∂η

∂t
+ (H + η)

(
∂u

∂x
+
∂v

∂y

)
+ u

(
∂H

∂x
+
∂η

∂x

)
+ v

(
∂H

∂y
+
∂η

∂y

)
= 0,

and the conservation of linear momentum,

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− f v =−g

∂η

∂x
,

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ f u=−g

∂η

∂y
,

where η(x,y, t) is the perturbation height field, H(x,y) is
the bottom topography (taken as constant throughout the
present work), (u(x,y, t),v(x,y, t)) is the velocity field, f
is the rotation rate taken as constant (i.e., the f -plane) and g
is the acceleration due to gravity. The pressure field is hydro-
static.

The initial conditions consist of a geostrophically balanced
jet and an ageostrophic perturbation with a radially symmet-
ric form. The exact functional form of the perturbation was
not found to be important for triggering the instability of the
jet. The functional form of the initial conditions is given by

u(x,y,0)= 2ga0
tanh(y)

cosh2(y)
,

v(x,y,0)= 0,

η(x,y,0)= a0

(
1

cosh2(y)
+

1

cosh8(
√
x2+ y2/2)

)
,

where a0 = 0.1H0. The two relevant dimensionless numbers
are the Froude number and Rossby number,

Fr=
U
√
gH
≈ 0.17,

Ro=
U

fL
≈ 0.3775.

Results will be reported in dimensionless form. The simu-
lation is thus carried out in a square domain with side di-
mension 10. The resolution used is 2048× 2048, and the
number of particles tracked is 400×400, initially distributed
uniformly in a grid pattern. The resolution is fine enough to
represent both the primary, vortex-generating instability and
the filaments formed from the interaction between vortices.
We carried out a number of resolution checks, and indeed
the 2048× 2048 grid over-resolves the relevant phenomena.
A decrease of a factor of 4 leaves the results essentially un-
changed. While mixing is a small-scale phenomenon, it is not
believed the results reported below are affected by the numer-
ical discretization. Moreover, on a grid of fixed side, the spec-
tral method employed is very close to the optimal numerical
method available. Indeed a far more serious question down
the line is how to represent the transition from large-scale,
nearly two-dimensional flow to three-dimensional flow; this
is a change that would require a fundamental shift in the soft-
ware used.

2.2 Clustering particles

Clustering the particles in a flow means that we group the
particles based on some form of particle behavior we wish to
identify. In this paper we target the phenomenon of mixing
in a flow by measuring instances of particle–particle prox-
imity below a threshold. The inter-particle interactions we
employ fall under the category of binary classification, i.e.,
two particles have either interacted or they have not. We set
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a threshold inter-particle distance ε such that at some given
time, if the distance between any two particles becomes less
than ε, those two particles will be said to have interacted with
each other at that time. For mixing, it is natural to demand
that the value of ε is less than grid spacing (though note that
Padberg-Gehle and Schneide, 2017, in fact demand ε to be
greater than the grid spacing for spectral clustering). Thus,
for every time step, we search for particles which are within
a radial distance of ε from every particle. A natural mathe-
matical way to represent this information is to build a matrix.
These matrices are known as adjacency matrices, which are
symmetric square matrices with dimensions (number of par-
ticles squared). Each row in an adjacency matrix corresponds
to a particle, and the columns correspond to all the particles
that this particle may interact with. If particle “i” is said to
have interacted with particle “j”, then the adjacency matrix,
an initially zero matrix, will be 1 in cells (i,j) and (j, i).
Figure 2 demonstrates a tutorial example of how to construct
an adjacency matrix from particle interactions. There are two
ways in which we create an adjacency matrix in our work:

Cumulative adjacency matrix. One interaction between
two particles in the entire time span will yield a perma-
nent 1 in the corresponding cells of the particles in the
matrix.

Instantaneous adjacency matrix. One interaction be-
tween two particles at a particular time will yield a tem-
porary 1 in the corresponding cells of the particles in
the matrix. This type of matrix is refreshed every out-
put time, and new 1s and 0s are registered for the new
output time.

Before we describe how we cluster these particles based
on their interactions, we quickly introduce graphs from dis-
crete mathematics. A graph is a structure which has a set of
objects, and some objects may be related to each other in
some way. The objects are called nodes, and if two nodes are
related to each other in some way, they are connected by an
edge. Mathematically, a graph is represented in the form of
an ordered pair G= (V ,E), where V is a set of vertices or
nodes and E is set of edges which consists of two element
subsets of V . An adjacency matrix can be converted into a
graph with the particles forming the nodes and the interac-
tions forming the edges. Looking at Fig. 2a, we construct a
corresponding graph shown in Fig. 2b.

A graph formed from an adjacency matrix of particle in-
teractions can be used to cluster the particles by finding con-
nected components in a graph. We demonstrate this concept
in Fig. 2c. It is seen that the graph can be visually split into
two parts. These are two separate, connected components in
our imaginary graph. The connected components in a graph
can be mined by using a standard depth first-search algo-
rithm. We carry out this procedure on the graph in our prob-
lem using MATLAB. The different connected components
in the graph form the different clusters. In regards to our ear-

lier point of mixing we see that each cluster has particles
that have interacted with at least another particle inside the
cluster, and thus odds are high that some mixing may be hap-
pening among particles within these clusters. This gives us a
level-one classification of particles, which will later help us
track down regions of mixing.

2.3 Mining dense subclusters from a cluster

Until this point, clusters have been based on inter-particle
interactions. Though, these clusters tell us about which par-
ticles interacted, they do not tell us anything about the de-
gree or intensity of interaction. We want to find regions in the
flow where there are higher intensities of mutual interactions
among particles compared to rest of the flow. We consider a
cumulative cluster, which is a connected graph, and use the
pruning algorithm Quick described by Liu and Wong (2008)
to look for dense subclusters within this cluster.

If you have variables with more than one letter, they are
considered to be abbreviations. So if you have a value that
consists of an abbreviation, it should be roman, as the rule
for abbreviations becomes effective first.

A clique is a graph whose nodes are all connected to each
other; hence a clique is 100 % dense. The minimum degree of
a graph is the minimum number of neighbors that a node has
in the graph. Let the minimum degree be denoted by degmin
and N be the size of the graph. A γ quasi-clique is a graph
which satisfies

degmin ≥ γ [N − 1], (4)

where γ ∈ (0,1). The density of a sub-graph is based on the
following parameters:

– The density parameter γ is such that (Eq. 4) is satisfied.

– Minimum size of a subgraph is such that the algorithm
will only look for solutions whose sizes are greater
than or equal to the specified minimum size parameter,
min_size.

All subgraphs mined, hence, have a minimum degree greater
than or equal to γ (min_size−1). These two parameters drive
how many minimum particles we want from a dense subclus-
ter to have interacted with a particle in the same dense sub-
cluster. We search for subclusters throughout the entire flow
with a minimum size of 20 and γ = 0.25 so that the min-
imum degree is at least 5 at t = 50. There are cases where
subsets of a bigger γ quasi-clique are also γ quasi-cliques.
The algorithm Quick makes sure that it mines only the max-
imal γ quasi-cliques for a specified γ . The algorithm is de-
scribed in the next subsection.

Figure 2d shows an example of how dense subclusters are
mined. The connected graph in Fig. 2d can be a considered
to be a small illustration of an actual cumulative cluster of
particles. For an arbitrary γ = 0.4 and minimum size of the
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Figure 2. (a) Idealized Lagrangian paths of six particles, showing where they have interacted along the course of their paths. (b) Adjacency
matrix and graph corresponding to the particle interactions shown in (a). (c) Graph split into its connected components. (d) A connected
graph symbolizing a scaled-down version of a cumulative cluster; the black dotted circles denote the dense sub-graphs for an arbitrary
min_size= 3 and γ = 0.4.

sub-graphs equal to 3, the algorithm shows that the nodes in-
side the dotted circles are dense sub-graphs inside the graph.
In the context of Lagrangian fluid mechanics, interactions
among particles in these subclusters are much denser than
other regions in the flow.

2.3.1 Description of the Quick algorithm

We will now introduce graph theoretic terminology that will
be required in the following section. This work is based on
Liu and Wong (2008).

A graph G is an ordered pair of sets (V , E), where V
is a set of vertices and E is a set of edges joining the
vertices.

Neighbors of a vertex v in G are denoted by NG(v)

values, which are the nodes adjacent to v in G.

The degree of a vertex v in G, denoted by degG(v), is
the number of neighbors of v, |NG(v)|.

The distance between two vertices u and v inG, denoted
by distG(u,v), is the number of edges on the shortest
path from u to v.

For a vertex v in V ,NG
k (v)= {u|distG(u,v)≤ k} values

denote the k-nearest neighbors of v.

The diameter of a graph G, denoted by diam(G), is de-
fined as maxu,v∈V distG(u,v).

For any vertex set {X|X ⊂ V }, cand_exts(X) represents
the set which contains vertices that can be used to ex-
tend the set X in order to form a γ quasi-clique.

For a vertex u in a vertex set X, indegX(u) represents
the number of neighbors of u in X, and exdegX(u)
represents the number of neighbors of u in the set
cand_exts(X).

The minimal degree of vertices in X, denoted by
degmin(X), is min{indegX(v)+ exdegX(v)|v ∈X}.

It follows from the definition of a γ quasi-clique that
the maximal number of vertices in cand_exts(X) that
can be added to X concurrently is less than Umin

X =

bdegmin(X)/γ c+ 1− |X|.

In another case, where vertex u ∈X and indegX(u) <
dγ (|X|−1)e, it becomes apparent that at least some ver-
tices must be added to X so it can be extended to form a
γ quasi-clique. This lower bound is denoted by Lmin

X . If
we let indegmin(X)=min{indegX(v)|v ∈X}, thenLXmin
is defined as min{t |indegmin(X)+ t ≥ dγ (|X|+ t−1)e.

Quick uses several effective pruning techniques to elim-
inate vertices from cand_exts(X) of a vertex set X. Valid
extensions are added to X to check if the new vertex set
(X∪cand_exts(X)) satisfies the γ quasi-clique criterion. The
following pruning techniques form an essential part of the
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Quick algorithm; the proof of the lemmas used by these tech-
niques can be found in Liu and Wong (2008):

- Depending on γ , we find a k such that vertices not in⋂
v∈XN

G
k (v) are removed from cand_exts(X). This is

called pruning based on diameter.

- We use the Cocain algorithm (Zeng et al., 2006) to elim-
inate all such vertices u from cand_exts(X) that satisfy
indegX(u)+ exdegX(u) < dγ (|X| + exdegX(u))e. This
is because neither such a vertex u nor any of its neigh-
bors in cand_exts(X), if added, will satisfy the γ quasi-
clique criterion.

- We set an upper bound Ux based on Umin
X such that

UX =max{t |
∑
v∈XindegX(v)+

∑
1≤i≤t indegX(vi)≥

|X|dγ (|X| + t − 1)e,1≤ t ≤ Umin
X }, where vi values

are vertices in cand_exts(X) sorted in descending order
of their indegX value. If vertex u ∈ cand_exts(X) and
indegX(u)+UX − 1< dγ (|X| +UX − 1)e, such a
vertex u can be pruned from cand_exts(X). Otherwise,
if u ∈X and indegX(u)+UX < dγ (|X| +UX − 1)e,
then γ quasi-cliques cannot be generated by extending
X.

- We set a lower bound LX based on Lmin
X such that

LX =min{t |
∑
v∈XindegX(v)+

∑
1≤i≤t indegX(vi)≥

|X|dγ (|X| + t − 1)e,Lmin
X ≤ t ≤ n}, if such t ex-

ists, or else Lx = |cand_exts(X)| + 1. If vertex
u ∈ cand_exts(X) and indegX(u)+ exdegX(u) <
dγ (|X| +LX − 1)e, such a vertex u can be pruned
from cand_exts(X). Otherwise, if u ∈X and
indegX(u)+ exdegX(u) < dγ (|X| +LX − 1)e, then
γ quasi-cliques cannot be generated by extending X.
Before performing the above checks, we also check if
LX >UX, and if this is true there is no need to extend
X further.

- In a vertex set X, if we have a vertex v ∈X such that
indegX(v)+ exdegX(v)= dγ (|X|+LX−1)e, then v is
called a critical vertex of X. If G(Y) is a γ quasi-clique
and v is a critical vertex, we have {u|(u,v) ∈ E ∧ u ∈
cand_exts(X)} ⊆ Y . Hence, whenever we encounter a
critical vertex in our vertex set X, we instantly add its
neighbors present in cand_exts(X) to X.

- We are mining exclusively maximal γ quasi-cliques,
and it can be proved that if u is a vertex in cand_exts(X)
such that indegX(u)≥ dγ |X|e, and if for any v ∈X

such that (u,v) 6∈ E, we have indegX(v)≥ dγ |X|e,
then for any vertex set Y such that G(Y) is a γ

quasi-clique and Y ⊆ (X∪ (cand_exts(X)∩NG(u)∩

(
⋂
v∈X∧(u,v) 6∈EN

G(v)))), G(Y) cannot be a maximal
γ quasi-clique. So we use CX(u)= (cand_exts(X)∩
NG(u)∩ (

⋂
v∈X∧(u,v) 6∈EN

G(v))) to denote the vertices
covered by u, and u is called the cover vertex of X. We
find u such that it maximizes CX(u), put the vertices

in CX(u) at the end of cand_exts(X) and then use the
vertices in cand_exts(X)−CX(u) to extend X.

2.4 Spectral clustering

Spectral clustering is based on the normalized cut criterion of
solving a graph segmentation problem (Shi and Malik, 2000).
Here we explore a different method of subclustering a cumu-
lative cluster that does not require the threshold spacing ε to
be greater than the grid spacing. Once we identify a cumu-
lative cluster, we extract the portion of the adjacency matrix
corresponding to particles exclusively within it. Let’s sup-
pose we name this adjacency matrix A. We find the degree
matrix, D which is a diagonal matrix with Dii = di , where
di is the degree of the node xi , i.e., Dii =

∑n
j=1Aij , the

number of neighbors of node i. The non-normalized graph
Laplacian is given by L= D−A, and the normalized graph
Laplacian is given by L= In−D−

1
2 AD−

1
2 . The eigenval-

ues of L are real and non-negative and are on the order
of 0= λ1 ≤ λ2 ≤ λ3 ≤ . . . ≤ λn. The second smallest eigen-
value λ2 is called the algebraic connectivity (Fiedler, 1973)
of a graph and can only be non-zero if the graph is connected.
We expect that to be true in our case, as the cumulative clus-
ter corresponds to a connected graph. Spectral clustering is
expected to help find coherent structures in fluid transport,
which in layman’s terms means particles whose trajectories
stay close to each other or interact more often. The mathe-
matics in this section is the outcome of solving a balanced
cut problem in a network (Hadjighasem et al., 2016). So the
idea is if λ2 is the only eigenvalue close to zero then the graph
is nearly decoupled into two communities. Similarly if all λi ,
i = 2and3, . . . k values for some k < n are close to zero and
there is a spectral gap between λk and λk+1, then the clus-
ter is nearly separated into k communities. The correspond-
ing eigenvectors carry information about the division of these
particles. Hence, we capture these eigenvectors, performing
a dimensional reduction on our data, and apply unsupervised
clustering on them. We employ the standard k-means cluster-
ing algorithm (Lloyd, 1982) on the reduced data to identify
the different communities. Since we are already in a cumu-
lative cluster, and the further clustering is supposed to reveal
the coherent structures in the flow, we expect to find the re-
gions with a comparatively higher intensity of interaction.
However, since we use k-means clustering, we do not expect
it to identify precise locations of solely high-intensity inter-
actions because k-means clustering will produce communi-
ties whose union is exhaustive.
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Figure 3. Cumulative clusters identified at time 50 with threshold distance for interaction ε = 40 % of initial separation of particles on
uniform rectangular grid and their evolution tracked at later time steps (52, 54 and 58). Changing colors denote the merging of two clusters
when particles from two clusters interact.

3 Results

3.1 Cumulative clusters

Figure 3 shows the different cumulative clusters, found at
time 50–58 in the simulation, in different colors. By this time
the double jet has undergone instability, and coherent vor-
tices, as well as vorticity filaments, are formed (Fig. 1). As
explained earlier, cumulative clusters are formed by particle–
particle interactions that occur up to a particular time. The
threshold separation ε for interaction between two particles
is 40 % of the grid spacing in this case. We can see in this
figure how different clusters merge during their evolutions.
An example for this is the transition from time 52 to 54 in
Fig. 3, where the green and magenta clusters merge into one
magenta cluster. Two clusters merge into one when a particle
from one cluster interacts with a particle from another clus-
ter. A question that follows is the following: can new clusters
take the place of old clusters when they merge? The answer
is yes; we can easily show the formation of new clusters hav-
ing size of the same order. We create another figure, Fig. 4,
which is identical to Fig. 3, except for the threshold inter-
action distance ε set to equal 20 % of the initial spatial grid
spacing now. Comparing Figs. 3 and 4, we see that the clus-
ters in the latter are smaller than those in the first. This is
obvious because fewer particles interact with a threshold dis-
tance equal to 20 % of the grid spacing. In particular, par-
ticles in the clusters shown in Fig. 4 interact more strongly

than those in Fig. 3, and hence the clusters do not evolve
the same way in the two cases. Specifically the clusters in
the smaller 20 % case do not change size or merge, and their
paths are more or less periodically moving around the coher-
ent vortex.

3.2 Dense subclusters

Figure 5 shows the four largest cumulative clusters with ε =
40 % of the grid spacing, found at time 50 (particles in black),
and also plots the dense subclusters mined from within these
clusters (particles in blue). We number these clusters as clus-
ter 1, 2, 3 and 4 in descending order of their sizes. Recall-
ing the graph theoretic terminology from Sect. 2.3.1, we
know that each of these subclusters is a graph with a min-
imum degree of 5. Dense subclusters locate the regions in
a cluster where there are many interactions among particles
significantly more than regions which are not blue. In sim-
pler words these are places where particle interactions are
at their peak. Particles in a dense cluster, if from sources
with varying properties, are an example of localized mix-
ing. Otherwise, if they are from the same source, the prop-
erties of that source remain preserved in that dense cluster.
Mining γ quasi-cliques is thus useful for studying the traits
of mixing specific to a problem. Interestingly, the blue re-
gions in this figure have many similarities with the clusters in
Fig. 4, which represents the stronger interactions. This tells
us that the regions of stronger interactions are not very dif-
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Figure 4. Cumulative clusters found at time 50 with threshold distance for interaction ε = 20 % of initial separation of particles on uniform
rectangular grid and tracked at later time steps (52, 54 and 58). Changing colors denote the merging of two clusters when particles from two
clusters interact.

Figure 5. Top four (1 being the largest) cumulative clusters (black) with their dense subclusters (blue) found at time 50. Spatially separated
blue regions are distinct subclusters, with each of them having a minimum degree of 5 within themselves and hence being called dense.
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Figure 6. Local clustering coefficient (a) and node degree (b) for
the top four cumulative clusters at output time 50.

ferent from the regions of denser interactions in our double-
jet flow. In Fig. 6, we show the local clustering coefficient
and the node degree for the top four cumulative clusters at
output time 50. Comparing with Fig. 5, it is not surprising
to find that some particles from the dense subclusters have
a large node degree and clustering coefficient, meaning that
they have potential to form local clusters.

Figures 7, 8 and 9 show the temporal evolution of cumu-
lative clusters 1, 2 and 3 respectively and the temporal evo-
lution of the particles in the dense-clusters. Figure 8 is dif-
ferent from Figs. 7 and 9 in the sense that some particles
forming the dense subclusters in this figure appear to split
from other particles in the dense subgroups. This means that
particles from these regions of dense interactions move out
of their more or less periodic paths and mix with particles
in other regions of the flow. We measure the displacement of
the particles in dense clusters within clusters 1, 2 and 3 from
their positions at t = 50 and plot them versus output times in
Fig. 10. It is seen the paths are periodic with decreasing am-
plitude but have the same mean for clusters 1 and 2, meaning
that the mean position of the particles slowly spirals toward
the center of the vortex. For the second cluster, as mentioned
earlier, the mean displacement increases, implying that some
of the particles have escaped from their original vortex. In
this particular case, this is an indication that these particles
that have undergone dense and strong interactions have ex-
changed physical properties among themselves, and when
they move out of their periodic paths to mix with outside
particles in the flow, there is a chance that they transfer their
properties in this foreign part of the flow by interaction.

3.3 Characteristics of dense subclusters

In this section we explore a few characteristics of the dense
subclustering technique. The runtime of the Quick algorithm
depends on the number of vertices V in the graph, the av-
erage degree d of the vertices, the minimum degree thresh-
old γ , the size of quasi-cliques present and the number of
quasi-cliques present. The data mining problem in this con-
text does not have an a priori estimate. Hence the user has
no control over the size and the number of quasi-cliques
present. Liu and Wong (2008) study the effect of changing
parameters on the runtime of the algorithm. The runtime,
trun, varies exponentially with respect to the parameters as
trun ∼ 10kvV 10kdd10−kγ γ for some constants kv, kd and kγ ,
depending on the graph.

We wish to report the effects of changing ε and how to
determine “the” ε for a problem. For the double-jet prob-
lem, increasing ε increases the size of the cumulative clus-
ters considerably when compared at a fixed output time.
An increase in the size of a cluster increases the computa-
tional complexity for Quick to mine the quasi-cliques ex-
ponentially. Let N be the total number of particles, and let
C40 and C60 denote the particles in the biggest cumulative
clusters for ε = 40 % and ε = 60 % respectively. Since N
is fixed, C40 ⊂ C60. To avoid excessive computational time
and to draw comparisons on the same grounds, we look at
the induced subgraph C60[C40]. The density of connections
in C60[C40] is more than C40; specifically, the average de-
gree of nodes rises to 8.1 from 5.0. Again, to compare sets
of the same class, we propose that γ (min_size−1)

average_degree is constant.
Thus parameter min_size is kept constant , and γ is increased
from 0.25 to 0.4. However, changing ε essentially changes
the network, and the connections do not scale linearly. In
Fig. 11, we look at dense clusters in cumulative clusters 1
and 2 with ε = 60 %. The top left panel shows that the dense
clusters mined with γ = 0.4 and ε = 60 % are a subset of
those with γ = 0.25 and ε = 40 %. The remaining particles
in the ε = 60 % clusters cannot meet the tighter threshold cri-
teria of the ε = 40 % case. The bottom left panel shows the
results with γ = 0.3. Relaxing the minimum degree criteria
yields more dense clusters, but some of them like those at
the bottom of the vortex belong to a different class. This is
because γ = 0.3 does not scale properly with ε = 60 %. This
helps us understand the scenarios of increasing ε further, i.e.,
scaling up γ to make sure we remain consistent with our
dense clusters. Otherwise, we are just mining densely con-
nected graphs without physical meaning and taking a very
long computational time to do so. The top and bottom right
panels in the figure show the same results but for cumulative
cluster 2 obtained with ε = 60 %. It is interesting to observe
in this case that improper scaling of γ might lead to reposi-
tioning of some of the maximal quasi-cliques; e.g., the dense
cluster particles present in the left vortex of the γ = 0.4 case
are absent from the γ = 0.3 case. This is because relaxing
the threshold criteria caused the corresponding dense cluster
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Figure 7. Multiple time images of cumulative cluster 1 (black) with its dense subclusters (blue). Blue circles at later times represent particles
that were parts of a dense subcluster at time 50.

Figure 8. Multiple time images of cumulative cluster 2 (black) with its dense subclusters (blue). Blue circles at later times represent particles
that were parts of a dense subcluster at time 50.
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Figure 9. Multiple time images of cumulative cluster 3 (black) with its dense subclusters (blue). Blue circles at later times represent particles
that were parts of a dense subcluster at time 50.

Figure 10. Displacement averaged over particles in dense clusters
from clusters 1, 2 and 3 (DC 1, DC 2 and DC 3) measured from
positions at output time 50 vs. output time.

to get bigger and exclude some of its previous residents. We
also performed dense cluster analysis on ε = 20 %, where the
cumulative clusters are so small that almost all of them be-
long to the dense clusters. Hence, we suggest that the ideal
ε be kept around half of the grid spacing and the ideal γ be
kept as high as sufficient to obtain satisfactory quantity and
quality of the dense clusters in a reasonable computational

time. This requires some intuition on the part of the user but
leads to the most robust results.

Increasing min_size would simply eliminate the dense
clusters, which no longer meet the necessary criteria. How-
ever, it is important to note that it is necessary to tweak the
min_size parameter for different cumulative clusters for best
results. We show results of varying γ , keeping min_size con-
stant in Fig. 12. Increasing γ beyond 0.4 does not yield any
dense clusters in this case. The results themselves are quite
intuitive and self-explanatory.

We tested the extent to which our dense clusters are sensi-
tive to perturbations of initial particle distribution. Figure 13
shows the evolution of the dense clusters with uniformly
distributed, random perturbations to the initial position of
the particles. These had a maximum extent of 15 % of the
grid spacing in each direction and ε = 40 % in this case.
The resulting dense clusters and their evolution are shown in
Fig. 14. Comparing these two figures, we see that perturbing
the particle positions changes the network and the location
of the dense clusters, which is somewhat trivial. However,
considering that this study is purely Lagrangian, the dense
clusters from the perturbed case consistently convey quali-
tatively unchanged information about regions of potentially
dense localized mixing (e.g., the ring of dense subclusters
around the central vortex which can be traced backwards in
time to the flanks of the geostrophically balanced jet).
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Figure 11. Dense clusters with ε = 60 % in cumulative clusters 1 and 2 at t = 50.

Figure 12. Dense clusters with ε = 40 % for varying γ at t = 50.
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Figure 13. Dense clusters with ε = 40 % and particles on uniform rectangular grid.

Figure 14. Dense clusters with ε = 40 % and particles on rectangular grid with perturbations.
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Figure 15. Spectral clusters found at multiple times from within cluster 1.

3.4 Spectral clusters

In this section we show the results of spectral clustering de-
scribed in Sect. 2.4. Figure 15 shows the different spectral
subclusters that this algorithm splits the largest cumulative
cluster (cluster 1) into. Figure 16 shows the temporal evo-
lution of the spectral clusters of cluster 1 found at time 50.
Giving a quick recap, the spectral clustering technique is re-
sponsible for dividing the set of particles into k communities,
with k being 5 in the results shown. A spectral subcluster is
expected to have more inter-particle interactions inside itself
than outside because the clustering is applied on the adja-
cency matrix of particle interactions. The spectral subclusters
are exhaustive, and hence unlike the dense subclusters, all of
them are not equivalently rich in particles with high degrees
of interaction. This can be seen from Fig. 16, where most of
the particles in the subclusters of cluster 1 stay within the
central vortex while some others take different paths over the
course of the flow’s evolution. This can be explained by our
hypothesis that the paths of the densely interactive particles
in cluster 1 tend to stay nearly periodic with time. Examining
Fig. 15, we realize that the spatial distribution of these clus-
ters shares similarities to some extent with the dense subclus-
ters from the last subsection, especially around the coherent
central vortex. This validates that these coherent structures
are home to all the blue regions around the central vortex
in Fig. 7, representing dense interactions and thereby strong

mixing. Spectral clustering relies on k-means clustering and
hence is highly sensitive to change in data distribution, e.g.,
different output times or small perturbations to initial parti-
cle distribution. Spectral clustering also returns subclusters
of incomparable sizes, leaving us no way to compare the de-
gree of mixing among the subclusters mined. The dense sub-
clustering method, on the other hand, controls the density of
connections and hence all subclusters mined belong to the
same class of mixing.

4 Conclusions

In this paper we have outlined a Lagrangian-particle-based
technique to gain insight into mixing in non-linear geophysi-
cal flows. Our literature survey showed that clustering of par-
ticles based on inter-particle distances has been used to char-
acterize mixing from a Lagrangian point of view. Local net-
work measures like node degree and the local clustering co-
efficient of a particle, employed by previous researchers, e.g.,
Padberg-Gehle and Schneide (2017), gives an idea about the
number of other particles that a chosen particle has interacted
with, or “neighbors”. We have taken this approach one step
further by finding subclusters representing regions of dense
interactions. The findings of our work can be partly summa-
rized by Fig. 17. In this figure we examine the output time 80,
at which the double jet has broken up into a number of quasi-
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Figure 16. Spectral clusters in cluster 1 found at time 50 and tracked forward and backward.

Figure 17. Enstrophy field with particles at output time 80. The green dots represent particles from the three largest cumulative clusters, and
the blue regions represent particles having dense interactions within these cumulative clusters.
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coherent vortices, as well as filaments of vorticity. The en-
strophy field, scaled by its maximum, is shaded in the figure,
with green dots superimposed to show particles from a few
of the largest cumulative clusters. This gives us an indica-
tion of particles that have passed through regions where mix-
ing has taken place. The algorithm Quick is used to identify
subclusters of particles with dense mutual interactions (i.e.,
strongest mixing). These particles are plotted in blue. These
particles, and their path history, identify regions where the
degree of mixing is relatively higher (regulated by a density
parameter γ ) than other portions of the cumulative clusters.
In summary, this figure tells us that the outskirts of the large,
coherent vortices involve the strongest mixing. The vorticity
filaments away from the quasi-coherent vortices are marked
as belonging to regions of mixing but not the strongest mix-
ing. The subclustering method thus provides a way to gain
further detail on mixing intensity from a Lagrangian point of
view.

We have compared our results with the coherent structures
identified by spectral clustering. Spectral clustering shows
that the location of the coherent structures is around the vor-
tices but fails to point out the regions of strong mixing. As
discussed in Sect. 2.4, the method of finding dense clusters
is more precise and robust.

Summarizing the major findings in our work, we have seen
that the size of cumulative clusters depends on the threshold
interaction distance ε. In fact previous works like Padberg-
Gehle and Schneide (2017) have only used values of ε larger
than the grid spacing in order to make the entire graph con-
nected and then apply techniques like spectral clustering to
extract coherent sets. Our approach has allowed us to set ε
to be smaller than the grid spacing (i.e., to demand stronger
interactions as a proxy for more mixing) and observe the dif-
ferences in cluster structure. We have inferred that cluster
merging is possible beyond a threshold ε. Regions of strong
and dense mixing are concentrated along the outskirts of
the quasi-coherent vortices that develop spontaneously in the
simulation, implying that coherent behavior can induce a lot
of mixing, as demonstrated in Fig. 17. The highly interactive
particles from the dense subclusters usually stay as a part of
their original coherent vortex. However, interesting dynam-
ics are present when some of these particles deviate out of
their typical paths and mix with other regions in the flow, as
discussed in Sect. 2.3. Indeed, results from spectral cluster-
ing show that some particles showing coherent behavior may
become incoherent over time. The striking similarities be-
tween the behavior of the coherent spectral clusters and the
dense subclusters indicate that dense interaction, and thereby
inferred mixing, is a characteristic of coherent structures. A
study of the effects of parameter variation on the dense sub-
clustering technique showed that ε should be chosen small
enough to produce a satisfactory amount of information con-
tent about the regions of mixing. The smaller the minimum
degree of interaction, the stronger the mixing represented by
the mined regions. The minimum degree is controlled by pa-

rameters min_size and γ , where min_size is really a choice
of the user based on the application and γ can be tuned to
hit the optimal minimum degree value. The technique thus
requires some tuning from the user.

Future work divides into algorithmic improvements and
applications. On the algorithmic side, we would like to au-
tomate the selection of search parameters (γ and min_size)
in Quick, based on the adjacency matrix. A GPU-based im-
plementation of the shallow-water-equation solver, the La-
grangian particle tracking and dynamic calculation of the
inter-particle interactions will also be presented in a fu-
ture paper. On the application side, the central future chal-
lenge is how to appropriately think of particles, and hence
Lagrangian-based mixing ideas, in more complex models.
For example, should particles migrate across isopycnal layer
boundaries in multilayer models?
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