Agterberg, F. P., Cheng, Q., Brown, A., and Good, D.: Multifractal modeling of
fractures in the Lac du Bonnet batholith, Manitoba, Comput. Geosci., 22,
497–507, 1996.
Bai, J., Porwal, A., Hart, C., Ford, A., and Yu, L.: Mapping geochemical
singularity using multifractal analysis: application to anomaly definition
on stream sediments data from Funin Sheet, Yunnan, China, J. Geochem.
Explor., 104, 1–11, 2010.
Beane, R. E.: Hydrothermal alteration in silicate rocks, in: Advances in
Geology of the Porphyry Copper Deposits, Southwestern North America, edited by: Titley,
S. R., The University of Arizona Press, Tucson, 117–137, 1982.
Berger, B. R., Ayuso, R. A., Wynn, J. C., and Seal, R. R.: Preliminary Model
of Porphyry Copper Deposits, USGS, Open-File Report, 1321 pp., 2008.
Bolviken, B., Stokke, P. R., Feder, J., and Jossang, T.: The fractal nature
of geochemical landscapes, J. Geochem. Explor., 43, 91–109, 1992.
Boyce, A. J., Fulgnati, P., Sbrana, A., and Fallick, A. E.: Fluids in early
stage hydrothermal alteration of high-sulfidation epithermal systems: a view
from the volcano active hydrothermal system (Aeolian Island, Italy), J. Volcanol. Geoth. Res., 166, 76–90, 2007.
Carranza, E. J. M.: Geochemical Anomaly and Mineral Prospectivity Mapping in
GIS, Handbook of Exploration and Environmental Geochemistry, 11,
Elsevier, Amsterdam, 351 pp., 2008.
Carranza, E. J. M.: Controls on mineral deposit occurrence inferred from
analysis of their spatial pattern and spatial association with geological
features, Ore Geol. Rev., 35, 383–400,
https://doi.org/10.1016/j.oregeorev.2009.01.001, 2009.
Carranza, E. J. M.: From predictive mapping of mineral prospectivity to
quantitative estimation of number of undiscovered prospects, Resour. Geol., 61, 30–51, 2010.
Carranza, E. J. M.: Analysis and mapping of geochemical anomalies using
logratio-transformed stream sediment data with censored values, J. Geochem.
Explor., 110, 167–185, https://doi.org/10.1016/j.gexplo.2011.05.007, 2011.
Carranza, E. J. M., Owusu, E. A., and Hale, M.: Mapping of prospectivity and
estimation of number of undiscovered prospects for lode gold, southwestern
Ashanti Belt, Ghana, Miner. Deposita, 44, 915–938,
https://doi.org/10.1007/s00126-009-0250-6, 2009.
Cheng, Q.: Spatial and scaling modelling for geochemical anomaly separation,
J. Geochem. Explor., 65, 175–194,
https://doi.org/10.1016/S0375-6742(99)00028-X, 1999.
Cheng, Q.: Multifractal modelling and spectrum analysis: methods and
applications to gamma ray spectrometer data from southwestern Nova Scotia,
Canada, Sci. China Ser. D, 49, 283–294, 2006.
Cheng, Q.: Mapping singularities with stream sediment geochemical data for
prediction of undiscovered mineral deposits in Gejiu, Yunnan Province,
China, Ore Geol. Rev., 32, 314–324,
https://doi.org/10.1016/j.oregeorev.2006.10.002, 2007.
Cheng, Q., Agterberg, F. P., and Ballantyne, S. B.: The separation of
geochemical anomalies from background by fractal methods, J. Geochem.
Explor., 51, 109–130, https://doi.org/10.1016/0375-6742(94)90013-2, 1994.
David, M.: Geostatistical Ore Reserve Estimation, Elsevier, Amsterdam, 283
pp., 1970.
Deng, J., Wang, C. M., and Li, G. J.: Style and process of the superimposed
mineralization in the Sanjiang Tethys, Acta Petrol. Sin., 28,
1349–1361, 2012 (in Chinese with English abstract).
Deng, J., Wang, Q. F., Li, G. J., and Santosh, M.: Cenozoic tectono-magmatic
and metallogenic processes in the Sanjiang region, southwestern China, Earth
Sci. Rev., 138, 268–299, https://doi.org/10.1016/j.earscirev.2014.05.015,
2014a.
Deng, J., Wang, Q. F., Li, G. J., Li, C. S., and Wang, C. M.: Tethys tectonic
evolution and its bearing on the distribution of important mineral deposits
in the Sanjiang region, SW China, Gondwana Res., 26, 419–437,
https://doi.org/10.1016/j.gr.2013.08.002, 2014b.
Deng, J., Wang, Q. F., Li, G. J., Hou, Z. Q., Jiang, C. Z., and Danyushevsky,
L.: Geology and genesis of the giant Beiya porphyry–skarn gold deposit,
northwestern Yangtze Block, China, Ore Geol. Rev., 70, 457–485,
https://doi.org/10.1016/j.oregeorev.2015.02.015, 2015.
Faure, K., Matsuhisa, Y., Metsugi, H., Mizota, C., and Hayashi, S.: The
Hishikari Au–Ag epithermal deposit, Japan: oxygen and hydrogen isotope
evidence in determining the source of paleo hydrothermal fluids, Econ.
Geol., 97, 481–498, https://doi.org/10.2113/gsecongeo.97.3.481, 2002.
Goncalves, M. A., Mateus, A., and Oliveira, V.: Geochemical anomaly
separation by multifractal modeling, J. Geochem. Explor., 72, 91–114,
https://doi.org/10.1016/S0375-6742(01)00156-X, 2001.
Goovaerts, P.: Geostatistics for Natural Resources Evaluation, Oxford
University Press, New York, 496 pp., 1997.
Leng, C. B., Zhang, X. C., Hu, R. Z., Wang, S. X., Zhong, H., Wang, W. Q., and
Bi, X. W.: Zircon U–Pb and molybdenite Re–Os geochronology and
Sr–Nd–Pb–Hf isotopic constraintson the genesis of the Xuejiping porphyry
copper deposit in Zhongdian, Northwest Yunnan, China, J. Asian Earth
Sci., 60, 31–48, 2012.
Li, C., Ma, T., and Shi, J.: Application of a fractal method relating
concentrations and distances for separation of geochemical anomalies from
background, J. Geochem. Explor., 77, 167–175,
https://doi.org/10.1016/S0375-6742(02)00276-5, 2003.
Li, W. C., Zeng, P. S., Hou, Z. Q., and White, N. C.: The Pulang porphyry copper
deposit and associated felsic intrusions in Yunnan Province, Southwest
China, Econ. Geol., 106, 79–92,
https://doi.org/10.2113/econgeo.106.1.79, 2011.
Li, W. C., Yu, H. J., and Yin, G. H.: Porphyry metallogenic system of Geza arc in the Sanjiang region, southwestern China, Acta Petrol. Sin., 29, 1129–1144, 2013 (in Chinese with English abstract).
Liu, X. L., Li, W. C., Yin, G. H., and Zhang, N.: The geochronology, mineralogy
and geochemistry study of the Pulang porphyry copper deposits in Geza arc of
Yunnan Province, Acta Petrol. Sin., 29, 3049–3064, 2013 (in Chinese with
English abstract).
Lowell, J. D.: Geology of the Kalamazoo orebody, San Manuel district,
Arizona, Econ. Geol., 63, 645–654,
https://doi.org/10.2113/gsecongeo.63.6.645, 1968.
Lowell, J. D. and Guilbert, J. M.: Lateral and vertical
alteration-mineralization zoning in porphyry ore deposits, Econ. Geol.,
65, 373–408, https://doi.org/10.2113/gsecongeo.65.4.373, 1970.
Mandelbrot, B. B.: The Fractal Geometry of Nature, W. H. Freeman, San
Fransisco, 468 pp., 1983.
Mao, J. W., Zhou, Z. H., Feng, C. Y., Wang, Y. T., Zhang, C. Q., Peng, H. J., and
Yu, M.: A preliminary study of the Triassic large-scale mineralization in
China and its geodynamic setting, Geol. China, 39, 1437–1471, 2012 (in
Chinese with English abstract).
Mao, J. W., Pirajno, F., Lehmann, B., Luo, M. C., and Berzina, A.:
Distribution of porphyry deposits in the Eurasian continent and their
corresponding tectonic settings, J. Asian Earth Sci., 79, 576–584, https://doi.org/10.1016/j.jseaes.2013.09.002, 2014.
Mao, Z., Peng, S., Lai, J., Shao, Y., and Yang, B.: Fractal study of geochemical
prospecting data in south area of Fenghuanshan copper deposit, Tongling
Anhui, J. Earth Sci. Environ., 26, 11–14, 2004.
Melfos, V., Vavelidis, M., Christodes, G., and Seidel, E.: Origin and
evolution of the Tertiary Maronia porphyry copper–molybdenum deposit,
Thrace, Greece, Miner. Deposita, 37, 648–668,
https://doi.org/10.1007/s00126-002-0277-4, 2002.
Pang, Z. S., Du, Y. S., Wang, G. W., Guo, X., Cao, Y., and Li, Q.: Single-grain
zircon U–Pb isotopic ages, geochemistry and its implication of Pulang
complex in Yunnan Province, China, Acta Petrol. Sin., 25, 159–165, 2009
(in Chinese with English abstract).
Sadeghi, B., Moarefvand, P., Afzal, P., Yasrebi, A. B., and Saein, L. D.:
Application of fractal models to outline mineralized zones i
n the Zaghia
iron ore deposit, Central Iran, J. Geochem. Explor., 122, 9–19,
https://doi.org/10.1016/j.gexplo.2012.04.011, 2012.
Schwartz, G. M.: Hydrothermal alteration in the “porphyry copper” deposits,
Econ. Geol., 42, 319–352, https://doi.org/10.2113/gsecongeo.42.4.319,
1947.
Shi, J. and Wang, C.: Fractal analysis of gold deposits in China: implication
for giant deposit exploration, Earth Sci. J. China Univ. Geosci., 23,
616–618, 1998 (in Chinese with English abstract).
Sillitoe, R. H.: Characteristics and controls of the largest porphyry
copper–gold and epithermal gold deposits in the circum-pacific region,
Aust. J. Earth Sci., 44, 373–388,
https://doi.org/10.1080/08120099708728318, 1997.
Sillitoe, R. H. and Gappe, I. M.: Philippine porphyry copper deposits:
geologic setting and characteristics, Common Coordination Joint Resource
(CCOP), 14, 1–89, 1984.
Soltani, F., Afzal, P., and Asghari, O.: Delineation of alteration zones
based on Sequential Gaussian Simulation and concentration–volume fractal
modeling in the hypogene zone of Sungun copper deposit, NW Iran, J. Geochem.
Explor., 140, 64–76, https://doi.org/10.1016/j.gexplo.2014.02.007, 2014.
Sun, T. and Liu, L.: Delineating the complexity of Cu-Mo mineralization in a
porphyry intrusion by computational and fractal modeling: A case study of
the Chehugou deposit in the Chifeng district, Inner Mongolia, China, J.
Geochem. Explor., 144, 128–143,
https://doi.org/10.1016/j.gexplo.2014.02.015, 2014.
Turcotte, D. L.: A fractal approach to the relationship between ore grade and
tonnage, Econ. Geol., 18, 1525–1532, 1986.
Turcotte, D. L.: Fractals in geology and geophysics, Pure Appl. Geophys.,
131, 171–196, 1989.
Turcotte, D. L.: Fractals and Chaos in Geophysics, second edn., 81–99, Cambridge
University Press, Cambridge UK, 1996.
Wang, G. W., Carranza, E. J. M., Zuo, R., Hao, Y. L., Du, Y. S.,
Pang, Z. S., and Sun, Y.: Mapping of district-scale potential targets using
fractal models, J. Geochem. Explor., 122, 34–46,
https://doi.org/10.1016/j.gexplo.2012.06.013, 2012.
Wang, Q. F., Deng, J., Liu, H., Wang, Y., Sun, X., and Wan, L.: Fractal
models for estimating local reserves with different mineralization qualities
and spatial variations, J. Geochem. Explor., 108, 196–208,
https://doi.org/10.1016/j.gexplo.2011.02.008, 2011.
Wang, Q. F., Deng, J., Li, C. S., Li, G. J., Yu, L., and Qiao, L.: The boundary
between the Simao and Yangtze blocks and their locations in Gondwana and
Rodinia: constraints from detrital and inherited zircons, Gondwana Res.,
26, 438–448, https://doi.org/10.1016/j.gr.2013.10.002, 2014.
Wilson, A. J., Cooke, D. R., Harper, B. J., and Deyell, C. L.: Sulfur
isotopic zonation in the Cadia district, southeastern Australia: exploration
significance and implications for the genesis of alkalic porphyry
gold–copper deposits, Miner. Deposita, 42, 465–487,
https://doi.org/10.1007/s00126-006-0071-9, 2007.
Yamamoto, J. K.: Comparing Ordinary Kriging Interpolation Variance and Indicator Kriging Conditional Variance for Assessing Uncertainties at Unsampled Locations, in: Application of Computers and Operations Research in the Mineral Industry, edited by: Dessureault, S., Ganguli, R., Kecojevic, V., and Girard-Dwyer, J., Balkema, 2005.
Yunnan Diqing Nonferrous Metal Co. Ltd.: Exploration Report of Pulang Copper
Deposit, Diqing, Yunnan, China, Yunnan Diqing Nonferrous Metal Co. Ltd.,
Diqing Tibetan Autonomous Prefecture, 2009 (in Chinese).
Zeng, P. S., Hou, Z. Q., Li, L. H., Qu, W. J., Wang, H. P., Li, W. C., Meng, Y. F.,
and Yang, Z. S.: Age of the Pulang porphyry copper deposit in NW Yunnan and
its geological significance, Geological Bulletin of China, 23,
1127–1131, 2004 (in Chinese with English abstract).
Zuo, R. and Wang, J.: Fractal/multifractal modeling of geochemical data: A
review, J. Geochem. Explor., 164, 33–41,
https://doi.org/10.1016/j.gexplo.2015.04.010, 2016.
Zuo, R., Cheng, Q., and Xia, Q.: Application of fractal models to
characterization of vertical distribution of geochemical element
concentration, J. Geochem. Explor., 102, 37–43,
https://doi.org/10.1016/j.gexplo.2008.11.020, 2009.