Articles | Volume 24, issue 2
https://doi.org/10.5194/npg-24-255-2017
https://doi.org/10.5194/npg-24-255-2017
Research article
 | 
06 Jun 2017
Research article |  | 06 Jun 2017

Lagrange form of the nonlinear Schrödinger equation for low-vorticity waves in deep water

Anatoly Abrashkin and Efim Pelinovsky

Related authors

Probabilistic characteristics of narrow-band long-wave run-up onshore
Sergey Gurbatov and Efim Pelinovsky
Nat. Hazards Earth Syst. Sci., 19, 1925–1935, https://doi.org/10.5194/nhess-19-1925-2019,https://doi.org/10.5194/nhess-19-1925-2019, 2019
Short summary
Exceedance frequency of appearance of the extreme internal waves in the World Ocean
Tatyana Talipova, Efim Pelinovsky, Oxana Kurkina, Ayrat Giniyatullin, and Andrey Kurkin
Nonlin. Processes Geophys., 25, 511–519, https://doi.org/10.5194/npg-25-511-2018,https://doi.org/10.5194/npg-25-511-2018, 2018
Short summary
Numerical modeling of the 2013 meteorite entry in Lake Chebarkul, Russia
Andrey Kozelkov, Andrey Kurkin, Efim Pelinovsky, Vadim Kurulin, and Elena Tyatyushkina
Nat. Hazards Earth Syst. Sci., 17, 671–683, https://doi.org/10.5194/nhess-17-671-2017,https://doi.org/10.5194/nhess-17-671-2017, 2017
Short summary
Subharmonic resonant excitation of edge waves by breaking surface waves
Nizar Abcha, Tonglei Zhang, Alexander Ezersky, Efim Pelinovsky, and Ira Didenkulova
Nonlin. Processes Geophys., 24, 157–165, https://doi.org/10.5194/npg-24-157-2017,https://doi.org/10.5194/npg-24-157-2017, 2017
Short summary
The role of diffraction effects in extreme run-up inundation at Okushiri Island due to 1993 tsunami
K. O. Kim, D. C. Kim, B. H. Choi, K. T. Jung, J. H. Yuk, and E. Pelinovsky
Nat. Hazards Earth Syst. Sci., 15, 747–755, https://doi.org/10.5194/nhess-15-747-2015,https://doi.org/10.5194/nhess-15-747-2015, 2015
Short summary

Related subject area

Subject: Nonlinear Waves, Pattern Formation, Turbulence | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
Particle clustering and subclustering as a proxy for mixing in geophysical flows
Rishiraj Chakraborty, Aaron Coutino, and Marek Stastna
Nonlin. Processes Geophys., 26, 307–324, https://doi.org/10.5194/npg-26-307-2019,https://doi.org/10.5194/npg-26-307-2019, 2019
Short summary
Explosive instability due to flow over a rippled bottom
Anirban Guha and Raunak Raj
Nonlin. Processes Geophys., 26, 283–290, https://doi.org/10.5194/npg-26-283-2019,https://doi.org/10.5194/npg-26-283-2019, 2019
Short summary
Internal waves in marginally stable abyssal stratified flows
Nikolay Makarenko, Janna Maltseva, Eugene Morozov, Roman Tarakanov, and Kseniya Ivanova
Nonlin. Processes Geophys., 25, 659–669, https://doi.org/10.5194/npg-25-659-2018,https://doi.org/10.5194/npg-25-659-2018, 2018
Short summary
On the phase dependence of the soliton collisions in the Dyachenko–Zakharov envelope equation
Dmitry Kachulin and Andrey Gelash
Nonlin. Processes Geophys., 25, 553–563, https://doi.org/10.5194/npg-25-553-2018,https://doi.org/10.5194/npg-25-553-2018, 2018
Short summary
Laboratory and numerical experiments on stem waves due to monochromatic waves along a vertical wall
Sung Bum Yoon, Jong-In Lee, Young-Take Kim, and Choong Hun Shin
Nonlin. Processes Geophys., 25, 521–535, https://doi.org/10.5194/npg-25-521-2018,https://doi.org/10.5194/npg-25-521-2018, 2018
Short summary

Cited articles

Abrashkin, A. A. and Yakubovich, E. I.: Vortex Dynamics in the Lagrangian Description, Fizmatlit, Moscow, 2006 (in Russian).
Abrashkin, A. A. and Zen'kovich, D. A.: Vortical stationary waves on shear flow, Izvestiya, Atmos. Ocean. Phys., 26, 35–45, 1990.
Akhmediev, N. N., Eleonskii, V. M., and Kulagin, N. E.: Generation of periodic trains of picosecond pulses in an optical fiber: exact solutions, J. Exp. Theor. Phys., 89, 1542–1551, 1985.
Baumstein, A. I.: Modulation of gravity waves with shear in water, Stud. Appl. Math., 100, 365–390, 1998.
Bennett, A.: Lagrangian Fluid Dynamics, Cambridge University Press, Cambridge, 2006.
Download
Short summary
The nonlinear Schrödinger equation describing weakly rotational wave packets in a fluid in the Lagrangian coordinates is derived. Rogue effects are possible in low-vorticity waves, and the effect of vorticity is manifested in a shift of the wave number in the carrier wave. Special attention is paid to Gouyon and Gerstner waves. It is shown that this equation in the Eulerian variables can be obtained from the Lagrangian solution with an ordinary change in the horizontal coordinates.