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Abstract. The nonlinear Schrödinger (NLS) equation de-
scribing the propagation of weakly rotational wave packets
in an infinitely deep fluid in Lagrangian coordinates has been
derived. The vorticity is assumed to be an arbitrary func-
tion of Lagrangian coordinates and quadratic in the small
parameter proportional to the wave steepness. The vorticity
effects manifest themselves in a shift of the wave number
in the carrier wave and in variation in the coefficient mul-
tiplying the nonlinear term. In the case of vorticity depen-
dence on the vertical Lagrangian coordinate only (Gouyon
waves), the shift of the wave number and the respective co-
efficient are constant. When the vorticity is dependent on
both Lagrangian coordinates, the shift of the wave number
is horizontally inhomogeneous. There are special cases (e.g.,
Gerstner waves) in which the vorticity is proportional to the
squared wave amplitude and nonlinearity disappears, thus
making the equations for wave packet dynamics linear. It is
shown that the NLS solution for weakly rotational waves in
the Eulerian variables may be obtained from the Lagrangian
solution by simply changing the horizontal coordinates.

1 Introduction

The nonlinear Schrödinger (NLS) equation was first de-
rived by Zakharov in 1967 (English edition; Zakharov,
1968), who used the Hamiltonian formalism for a descrip-
tion of wave propagation in deep water; see also Benney and
Newell (1967). Hasimoto and Ono (1972) and Davey (1972)
obtained the same result independently. Like Benney and

Newell (1967), they used the method of multiple-scale ex-
pansions in Euler coordinates. Yuen and Lake (1975), in turn,
derived the NLS equation on the basis of the averaged La-
grangian method. Benney and Roskes (1969) extended those
two-dimensional theories to the case of three-dimensional
wave perturbations in a finite-depth fluid and obtained equa-
tions that are now known as the Davey–Stewartson equa-
tions. In this particular case, the equation proves the exis-
tence of the transverse instability of a plane wave, which is
much stronger than a longitudinal one. This circumstance di-
minishes the role and meaning of the NLS equation for sea
applications. Meanwhile, the one-dimensional NLS equation
has been successfully tested many times in laboratory wave
tanks, and natural observations have been compared with nu-
merical calculations in the framework of this equation.

In all the cited papers, wave motion was considered to
be potential. However, wave formation and propagation fre-
quently occur against the background of a shear flow pos-
sessing vorticity. Wave train modulations upon arbitrary
vertically sheared currents were studied by Benney and
Maslowe (1975). Using the method of multiple scales, John-
son (1976) examined the slow modulation of a harmonic
wave moving at the surface of an arbitrary shear flow with a
velocity profile U (y), where y is the vertical coordinate. He
derived the NLS equation with coefficients that depend in a
complicated way on a shear flow (Johnson, 1976). Oikawa et
al. (1987) considered the properties of instability in weakly
nonlinear three-dimensional wave packets in the presence
of a shear flow. Their simultaneous equations reduce to the
known NLS equation for the case of purely two-dimensional
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wave evolution. Li et al. (1987) and Baumstein (1998) stud-
ied the modulation instability of the Stokes wave train and
derived an NLS equation for a uniform shear flow in deep
water when U (y) =�0y and �z =�0 is constant vorticity
(z is the horizontal coordinate normal to the x,y plane of the
flow; the wave propagates in the x direction).

Thomas et al. (2012) generalized their results for a finite-
depth fluid and confirmed that a linear shear flow may sig-
nificantly modify the stability properties of weakly nonlin-
ear Stokes waves. In particular, for the waves propagating in
the direction of the flow, the Benjamin–Feir (modulational)
instability can vanish in the presence of positive vorticity
(�0 < 0) for any depth.

In the traditional Eulerian approach to the propagation of
weakly nonlinear waves against the background current, a
shear flow determines vorticity in a zero approximation. De-
pending on the flow profile U (y), it may be arbitrary and
equal to −U ′ (y). At the same time, the vorticity of wave
perturbations �n, n≥ 1, i.e., the vorticity in the first and
subsequent approximations in the wave steepness parame-
ter ε = kA0 (k is wave number and A0 is wave amplitude),
depends on its form. In Eulerian coordinates, the vorticity
of wave perturbations is a function not only of y, but of x
and t variables as well. Plane waves on a shear flow with a
linear vertical profile are regarded to be an exception (Li et
al., 1987; Baumstein, 1998; Thomas et al., 2012). For such
waves the vorticity is constant in a zero approximation, and
all the vorticities in wave perturbations are equal to zero. For
an arbitrary vertical profile of the shear flow (Johnson, 1976),
expressions for the functions�n can hardly be predicted even
qualitatively.

The Lagrangian method allows for the application of a dif-
ferent approach. In the plane flow, the vorticity of fluid parti-
cles is preserved and can be expressed via Lagrangian coor-
dinates only. Thus, not only the vertical profile of the shear
flow defining the vorticity in a zero approximation, but also
the expressions for the vorticity of the following orders of
smallness can be arbitrary. The expression for the vorticity is
written in the form

�(a,b)=−U ′ (b)+
∑
n≥1
εn�n (a,b) ,

where a,b are the horizontal and vertical Lagrangian coor-
dinates, respectively, U (b) is the vertical profile of the shear
flow, and the particular conditions for defining the �n func-
tions can be found. For the given shear flow, this approach al-
lows for the study of wave perturbations under the most gen-
eral law of the distribution of vorticities�n. In this paper, we
do not consider shear flow and vorticity in the linear approx-
imation (U = 0; �1 = 0), whereas vorticity in the quadratic
approximation is an arbitrary function. This corresponds to
the rotational flow proportional to ε2. We can define both the
shear flow and the localized vortex.

The dynamics of plane wave trains on the background
flows with arbitrary low vorticity have not been studied be-

fore. The idea to study wave trains with quadratic (with re-
spect to the wave steepness parameter) vorticity was real-
ized earlier for the spatial problems in the Euler variables.
Hjelmervik and Trulsen (2009) derived the NLS equation for
vorticity distribution as

�y
/
ω =O

(
ε2
)
, (�x,�z)

/
ω =O

(
ε3
)
,

where ω is the wave frequency. The vertical vorticity of wave
perturbations exceeds the other two vorticity components by
a factor of 10. This vorticity distribution corresponds to the
low (of order ε) velocity of the horizontally inhomogeneous
shear flow. Hjelmervik and Trulsen (2009) used the NLS
equation to study the statistics of rogue waves on narrow
current jets, and Onorato et al. (2011) used that equation to
study the opposite flow rogue waves. The effect of low vor-
ticity (ε2 order of magnitude) in the paper by Hjelmervik and
Trulsen (2009) is reflected in the NLS equation. This fact,
like the NLS nonlinear term for plane potential waves, may
be attributed to the presence of an average current nonuni-
form over the fluid depth.

Colin et al. (1995) considered the evolution of three-
dimensional vortex disturbances in a finite-depth fluid for a
different type of vorticity distribution:

�y = 0 , (�x,�z)
/
ω =O

(
ε2
)
.

They reduced the problem to a solution for the Davey–
Stewartson equations by means of the multiple-scale expan-
sion method in Eulerian variables. In this case, vorticity com-
ponents are calculated after the solution to the problem. Sim-
ilarly to the traditional Eulerian approach (Johnson, 1976),
the form of the quadratic vorticity distribution is very special
and does not cover all of its numerous possible distributions.

In this paper, we consider the plane problem of nonlin-
ear wave packets propagating in an ideal incompressible fluid
with the following form of vorticity distribution:

�z
/
ω =O

(
ε2
)
.

In contrast to Hjelmervik and Trulsen (2009), Onorato
et al. (2011), and Colin et al. (1996), the flow is two-
dimensional (�x =�y = 0). The propagation of a packet of
potential waves gives rise to a weak counterflow underneath
the free water surface with velocity proportional to the square
of the wave steepness (McIntyre, 1982). In the considered
problem, this potential flow is superimposed with the rota-
tional one of the same order of magnitude. This results in the
appearance of an additional term in the NLS equation and
in a change of the coefficient in the nonlinear term. So, the
difference from the NLS solutions derived for a strictly po-
tential fluid motion was revealed.

The examination is made in the Lagrangian variables.
The Lagrangian variables are rarely used in fluid mechan-
ics because of a more complex type of nonlinear equation
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in Lagrangian form. However, when considering the vortex-
induced oscillations of a free fluid surface, the Lagrangian
approach has two major advantages. First, unlike the Euler
description method, the shape of the free surface is known
and determined by the condition of the equality to zero (b =
0) of the vertical Lagrangian coordinate. Second, the vortical
motion of liquid particles is confined within the plane and is a
function of Lagrangian variables �z =�z (a,b), so the type
of vorticity distribution in the fluid can be preset. The Eule-
rian approach does not allow this. In this case, the second-
order vorticity is defined as a known function of Lagrangian
variables.

Here, hydrodynamic equations are solved in Lagrangian
form through the multiple-scale expansion method. A non-
linear Schrödinger equation with variable coefficients is de-
rived. Possible ways of reducing it to the NLS equation with
constant coefficients are studied.

The paper is organized as follows. Section 2 describes the
Lagrangian approach to studying wave oscillations at the free
surface of a fluid. The zero of the Lagrangian vertical coor-
dinate corresponds to the free surface, thus simplifying the
formulation of the pressure boundary conditions. The spe-
cific feature of the proposed approach is the introduction of
a complex coordinate of a fluid particle trajectory. In Sect. 3,
a nonlinear evolution equation is derived on the basis of the
method of multiple-scale expansion. Different solutions to
the NLS equation adequately describing various examples of
vortex waves are considered in Sect. 4. The transform from
of the Lagrangian coordinates to the Euler description of the
solutions to the NLS equation is shown in Sect. 5. Section 6
summarizes the obtained results.

2 Basic equations in Lagrangian coordinates

Consider the propagation of a packet of gravity surface waves
in a rotational infinitely deep fluid. Two-dimensional hydro-
dynamic equations of an incompressible inviscid fluid in La-
grangian coordinates have the following form (Lamb, 1932;
Abrashkin and Yakubovich, 2006; Bennett, 2006):

D(X,Y )

D (a,b)
= [X,Y ]= 1 , (1)

Xt tXa + (Yt t + g) Ya =−
1
ρ
pa, (2)

Xt tXb+ (Yt t + g) Yb =−
1
ρ
pb, (3)

where X,Y are the horizontal and vertical Cartesian coordi-
nates, a,b are the horizontal and vertical Lagrangian coor-
dinates of fluid particles, t is time, ρ is fluid density, p is
pressure, g is acceleration due to gravity, and the subscripts
mean differentiation with respect to the corresponding vari-
able. The square brackets denote the Jacobian. The b axis
is directed upwards, and b = 0 corresponds to the free sur-
face. Equation (1) is a volume conservation equation. Equa-

Figure 1. Problem geometry: vx is the average current.

tions (2) and (3) are momentum equations. The geometry of
the problem is presented in Fig. 1.

By making use of cross differentiation, it is possible to
exclude pressure and obtain the condition of the conservation
of vorticity along the trajectory (Lamb, 1932; Abrashkin and
Yakubovich, 2006; Bennett, 2006):

XtaXb+YtaYb−XtbXa −YtbYa =� (a,b) . (4)

This equation is equivalent to the momentum Eqs. (2) and
(3) but involves the explicit vorticity of liquid particles, �,
which in the case of two-dimensional flows is the function of
Lagrangian coordinates only.

We introduce a complex coordinate of a fluid particle
trajectory W =X+ iY

(
W =X− iY

)
, where the overline

means complex conjugation. In the new variables, Eqs. (1)
and (4) take the form[
W,W

]
=−2i, (5)

Re
[
Wt ,W

]
=�(a,b) . (6)

After simple algebraic manipulations, Eqs. (2) and (3) reduce
to the following single equation:

Wt t =−ig+ iρ
−1 [p,W ] . (7)

Equations (5) and (6) will be further used to find the coor-
dinates of the complex trajectories of fluid particles, and Eq.
(7) determines the pressure of the fluid. The boundary condi-
tions are the non-flowing condition at the bottom (Yt → 0
at b→−∞) and constant pressure at the free surface (at
b = 0).

The Lagrangian coordinates mark the position of fluid
particles. In the Eulerian description, the displacement of
the free surface Ys (X, t) is calculated in an explicit form,
but in the Lagrangian description it is defined parametri-
cally by the following equalities: Ys(a, t)= Y (a, b = 0, t)
and Xs(a, t)=X(a, b = 0, t), where the Lagrangian hori-
zontal coordinate a plays the role of a parameter. Its value
along the free surface b = 0 varies in the (−∞;∞) range.
In Lagrangian coordinates, the function Ys(a, t) defines the
displacement of the free surface.
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3 Derivation of evolution equation

Let us represent the function W using the multiple-scale
method in the following form:

W = a0+ ib+w(al,b, tl) ,

al = ε
la, tl = ε

l t; l = 0,1,2, (8)

where ε is the small parameter of wave steepness. All un-
known functions and the given vorticity can be represented
as a series in this parameter:

w =
∑
n=1
εnwn;p = p0− ρgb+

∑
n=1
εnpn;

�=
∑
n=1
εn�n (a,b) . (9)

In the formula for the pressure, the term with hydrostatic
pressure is selected, and p0 is the constant atmospheric pres-
sure at the fluid surface. The representations (8) and (9) are
substituted into Eqs. (5)–(7).

3.1 Linear approximation

In a first approximation in the small parameter, we have the
following system of equations:

Im
(
iw1a0 +w1b

)
= 0, (10)

Re
(
iw1a0 +w1b

)
t0
=− �1, (11)

w1t0t0 + ρ
−1 (p1a0 + ip1b

)
= igw1a0 . (12)

The solution satisfying the continuity Eq. (10) and the
equation of the conservation of vorticity (11) describes a
monochromatic wave (for definiteness, we consider the wave
propagating to the left) and the average horizontal current:

w1 =A(a1,a2, t1, t2) exp [i (ka0+ω t0)+ kb]
+ψ1 (a1,a2,b, t1, t2) , �1 = 0. (13)

Here, A is the complex amplitude of the wave, ω is its fre-
quency, and k is the wave number. The function ψ1 is real
and will be found in the next approximation.

The substitution of solution (13) into Eq. (12) yields the
equation for the pressure,

ρ−1 (p1a0 + ip1b
)
=

(
ω2
− gk

)
A exp [i (ka0+ω t0)+ kb] , (14)

which is solved analytically as

p1 =−Re
i
(
ω2
− gk

)
k

ρAexp [i (ka0+ω t0)+ kb]

+C1 (a1,a2, t1, t2) , (15)

where C1 is an arbitrary function. The boundary condition at
the free surface is p1|b=0 = 0, which leads to ω2

= gk and
C1 = 0. Thus, in the first approximation the pressure correc-
tion p1 is equal to zero.

3.2 Quadratic approximation

The equations of the second order of the perturbation theory
can be written as follows:

Im
(
iw2a0 +w2b+ iw1a1 −w1a1w1b

)
= 0, (16)

Re
[
iw2t0a0 +w2t0b+ i

(
w1t0a1 +w1t1a0

)
−w1t0a0w1b+w1t1b+w1t0bw1a0

]
=−�2, (17)

w2t0t0 + ρ
−1 (p2a0 + ip2b

)
= ig

(
w2a0 +wa1

)
− 2w1t1t0 . (18)

By substituting expression (13) for w1 into Eq. (16), we ob-
tain

Im

[
iw2a0 +w2b− i

(
kψ1bA−Aa1

)
exp [i (ka0+ω t0)+ kb]

− ik2
|A|2e2kb

+ iψ1a1

]
= 0, (19)

which is integrated as follows:

w2 =i
(
kAψ1− bAa1

)
exp [i (ka0+ω t0)+ kb]

+ψ2+ if2, (20)

where ψ2, f2 are the functions of slow coordinates and the
Lagrangian vertical coordinate b, and

f2b = k
2
|A|2 exp 2kb−ψ1a1 , (21)

where ψ2 is an arbitrary real function. It will be determined
in a solution in the cubic approximation.

When Eqs. (13) and (20) are substituted into Eq. (17), the
sum of the terms containing the exponential factor becomes
equal to zero, and the remaining terms satisfy the equation

ψ1t1b =−2k2ω|A|2 exp(2kb)−�2. (22)

The expression for the function ψ1 can be found by simple
integration. It should be emphasized that the vorticity in the
second approximation, which is part of Eq. (22), is an ar-
bitrary function of slow horizontal and vertical Lagrangian
coordinates so that �2 = �2 (a1,a2,b).

Taking into account the solutions in the first two approxi-
mations, we can write Eq. (18) as

ρ−1 (p2a0 + ip2b
)
= i

(
gAa1 − 2ωAt1

)
exp [i (ka0+ω t0)+ kb]

+ igψ1a1 . (23)

Its solution determines the pressure correction:

p2 =Re

[
1
k

(
gAa1 − 2ωAt1

)
exp [i (ka0+ω t0)+ kb]

]

+ ρg

b∫
0

ψ1a1db+C2 (a1,a2, t1, t2) . (24)

The integration limits in the penultimate term are chosen so
that this integral term equals zero at the free surface. Due to
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the boundary condition for pressure, (p2 (b = 0)= 0),C2 =

0, and

At1 − cgAa1 = 0; cg =
g

2ω
=

1
2

√
g

k
, (25)

where cg is the group velocity of wave propagation in deep
water, which in this approximation is independent of fluid
vorticity. As expected, in this approximation the wave moves
with group velocity cg to the left (the “minus” sign in Eq. 24).

3.3 Cubic approximation

The equation of continuity and the condition of the conserva-
tion of vorticity in the third approximation are written in the
form

Im
[
iw2a0 +w3b+ i

(
w1a2 +w2a1 +w2a0

)
−
(
w1a1 +w2a2

)
w1b−w1a0w2b

]
= 0, (26)

Re
[
iw3t0a0 +w3t0b+ i

(
w1t2a0 +w1t1a1 +w1t0a2 +w2t1a0

+w2t0a1

)
+w1t2b−w2bw1t0a0 −

+w2t1b−w1b
(
w1t0a1 +w1t1a0+w2t0a0

)
+ (27)

+w1a0

(
w1t1b+w2t0b

)
+ w1t0b

(
w1a1 +w2a0

)]
=−�3.

We substitute the solutions in the first and second approxi-
mations into the simultaneous equations:

Im
[
iw3a0 +w3b+ i

(
ψ1a2 +ψ2a1

)
+ 2k(kb+ 1)AAa1e

2b

+Gbe
i(ka0+ω t0)+kb

]
= 0, (28)

Re

{[
iw3a0 +w3b+

(
Gb+ 2kψ1t1bω

−1A
)
ei(ka0+ω t0)+kb

]
t0

+ψ2t1b+ψ1t2b+ (29)

+iωk (4kb+ 5)AAa1e
2kb
}
=− �3,

G= ibAa2 +
b2

2
Aa1a1 − (kb+ 1)ψ1Aa1

−

(
ikψ2+ kf2−

k2

2
ψ2

1

)
A. (30)

We seek a solution for the third approximation in the follow-
ing form:

w3 =(G1−G)e
i(ka0+ω t0)+kb+G2e

−i(ka0+ω t0)+kb

+ψ3+ if3, (31)

where G1,G2,ψ3, and f3 are functions of slow coordinates
and b. By substituting this expression into Eqs. (28) and (29),
we immediately find

f3b +ψ2a1 +ψ1a2 + k(kb+ 1)
(
AAa1 −AAa1

)
e2kb
= 0, (32)

ψ2t1b +ψ1t2b +
1
2
(4kb+ 5)ωk

(
AAa1 −AAa1

)
e2kb
=−�3. (33)

The function ψ2 according to Eq. (33) is determined by
known solutions forA andψ1 and by the given distribution of

�3. The expression for the function f3 is then derived from
Eq. (32). These functions determine the horizontal and ver-
tical average motion, respectively. But in this approximation
they are not included in the evolution equation for the wave
envelope. The function ψ3 will be found in the next approxi-
mation.

When solving Eqs. (28) and (29), we found

G1 =−kω
−1ψ1t1A,

G2 = kω
−1

2ke−2kb

b∫
−∞

ψ1t1e
2kb′db′ − ψ1t1

A. (34)

These relationships should be substituted into Eq. (7), which
in this approximation has the form

w3t0t0 − igw3a0 = iρ
−1 [i (p2a1 +p3a0

)
−p3b−p2bw1a0

+ρg
(
w1a2 +w2a1

)]
−−2w1t2t0 −w1t1t1 − 2w2t0t1 . (35)

Taking into account Eqs. (13), (20), (24), (31), and (34), we
rewrite it as follows:

ρ−1 (p3a0 + ip3b
)
=

(
−2iω

∂A

∂ t2
+ ig

∂A

∂ a2
−
∂2A

∂t21
+ 2ωkψ1t1A

)
ei(ka0+ω t0)+kb+

+ 2ω2G2Ae
−i(ka0+ω t0)+kb+ ig

(
ψ2a1 +ψ1a2

)
+ I,

I =−g

f2a1 −

0∫
b

ψ1a1a1db

−ψt1t1 . (36)

By virtue of the relationships (21), (22), and (25), the deriva-
tive of I along the vertical Lagrangian coordinate is zero
(Ib = 0), so I is the only function of the slow coordinates and
time - al, tl, l ≥ 1. The contribution of the term I (al, tl) 6= 0
to the pressure is complex, so it demands I = 0.

The solution to Eq. (36) yields the expression for the pres-
sure perturbation in the third approximation:

p3

ρ
= Reik−1

(
2iω

∂A

∂ t2
− ig

∂A

∂ a2
+
∂2A

∂t21

−4ωk2Ae−2kb

b∫
−∞

ψ1t1e
2kb′ db′

ei(ka0+ω t0)+kb+

+ ρg

b∫
0

(
ψ2a1 +ψ1a2

)
db′. (37)

In Eq. (37), the integration limits for the second integral term
have been preset to satisfy the boundary condition at the free
surface (the pressure p3 should turn to zero). Then the factor
before the exponent should be equal to zero:

2iω
∂A

∂ t2
− ig

∂A

∂ a2
+
∂2A

∂t21
− 4ωk2A

0∫
−∞

ψ1t1e
2kb db = 0. (38)
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By introducing the “running” coordinate ζ2 = a2+ cgt2, we
can reduce Eq. (38) to a compact form:

i
∂A

∂ a2
−
k

ω2
∂2A

∂t21
+

4k3A

ω

0∫
−∞

ψ1t1e
2kb db = 0. (39)

Further, it will be shown that the variables in Eqs. (38) and
(39) have been chosen so that they could be easily reduced
(under particular assumptions) to the classical NLS equation.

The explicit form of the function ψ1t1 is found by integrat-
ing Eq. (22):

ψ1t1 =−kω|A|
2e2kb

−

b∫
−∞

�2
(
a2,b

′
)

db′−U (a2, t1) . (40)

This expression includes three terms. All of them describe
a certain component of the average current. The first one is
proportional to the square of the amplitude modulus and de-
scribes the classical potential drift of fluid particles (see Hen-
derson et al., 1999, for example). The second one is caused
by the presence of low vorticity in the fluid. Finally, the third
item, including U (a2, t1), describes an additional potential
flow. It appears in the integration of Eq. (22) over the verti-
cal coordinate b and will evidently not disappear in the case
of A= 0. This is a certain external flow that is chosen de-
pending on a specific problem. Note that a term of that kind
arises in the Eulerian description of potential wave oscilla-
tions of the free surface as well. In the paper by Stocker and
Peregrine (1999), U = U∗ sin(kx−ω t) was chosen and in-
terpreted as a harmonically changing surface current induced
by an internal wave. We shall further take U = 0.

After the substitution of Eq. (40), Eq. (39) may be written
in the final form

i
∂A

∂ a2
−
k

ω2
∂2A

∂t21
− k

(
k2
|A|2+β (a2)

)
A= 0,

β (a2)=
4k2

ω

0∫
−∞

e2kb

 b∫
−∞

�2
(
a2,b

′
)

db′

db.
(41)

It is the nonlinear Schrödinger equation for the packet of
surface gravity waves propagating in the fluid with vortic-
ity distribution�= ε2�2 (a2,b). The function�2 (a2,b) de-
termining flow vorticity may be an arbitrary function setting
the initial distribution of vorticity. On integrating it twice, we
find the vortex component of the average current, which is in
no way related to the average current induced by the potential
wave.

4 Examples of the waves

Let us consider some special cases following from Eq. (41).

4.1 Potential waves

In this case, �2 = 0 and Eq. (41) becomes the classical non-
linear Schrödinger equation for waves in deep water. Three
kinds of analytical solutions to the NLS equation are usu-
ally discussed regarding water waves. The first one is the
Peregrine breather propagated in space and time (Peregrine,
1983). This wave may be considered as a long wave limit of
a breather, which is a pulsating mode of infinite wavelength
(Grimshaw et al., 2010). The two others are the Akhmediev
breather, which is the solution periodic in space and local-
ized in time (Akhmediev et al., 1985), and the Kuznetsov–Ma
breather, which is the solution periodic in time and localized
in space (Kuznetsov, 1977; Ma, 1979). Both of the latter so-
lutions evolve against the background of an unperturbed sine
wave.

4.2 Gerstner waves

The exact Gerstner solution in complex form is written as
(Lamb, 1932; Abrashkin and Yakubovich, 2006; Bennett,
2006)

W = a+ ib+ iA exp [i (ka+ωt)+ kb] . (42)

It describes a stationary traveling rotational wave with a tro-
choidal profile. Its dispersion characteristic coincides with
the dispersion of linear waves in deep water ω2

= gk. The
fluid particles move in circles and there is no drift current.

Equation (42) is the exact solution to the problem. Follow-
ing Eqs. (8) and (9), the Gerstner wave should be written as

W = a0+ ib+
∑
n≥1
εn · iA exp [i (ka0+ωt0)+ kb] . (43)

All of the functions wn in Eqs. (8) and (9) have the same
form. To derive the vorticity of the Gerstner wave, Eq. (43)
should be substituted into Eq. (6). Then one can find that
in the linear approximation, the Gerstner wave is potential
(�1 = 0), but in the quadratic approximation it possesses
vorticity:

�2Gerstner =−2ωk2
|A|2e2kb. (44)

For this type of vorticity distribution, the sum of the first
two terms in the parentheses in Eq. (41) is equal to zero.
From the physical point of view, this is due to the fact that
the average current induced by the vorticity compensates ex-
actly for the potential drift. The packet of weakly nonlinear
Gerstner waves in this approximation is not affected by their
nonlinearity, and the effect of the modulation instability for
the Gerstner wave does not occur.

Generally speaking, this result is quite obvious. As there is
no particle drift in the Gerstner wave, the function ψ1 equals
zero. So, the multiplier of the wave amplitude in Eqs. (38)
and (39) may be neglected without finding the vorticity of
the Gerster wave.
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Let us consider some particular consequences of the ob-
tained result. For the irrotational (�2 = 0) stationary (A=
|A| = const) wave, Eq. (40) for the velocity of the drifting
flow takes the form

ψ1t1 =−ωkA
2e2kb. (45)

It coincides with the expression for the Stokes drift in La-
grangian coordinates (in the Eulerian variables the profile of
the Stokes current may be obtained by the substitution of b
for y). Thus, our result may be interpreted as a compensation
of the Stokes drift by the shear flow induced by the Gerstner
wave in a quadratic approximation. This conclusion is also
fair in the “differential” formulation for vorticities. From Eq.
(22), it follows that the vorticity of the Stokes drift equals the
vorticity of the Gerstner wave with the inverse sign.

The absence of a nonlinear term in the NLS equation for
the Gerstner waves obtained here in the Lagrangian formula-
tion is a robust result and should appear in the Euler descrip-
tion as well. This follows from the famous Lighthill criterion
for the modulation instability because the dispersion relation
for the Gerstner wave is linear and does not include terms
proportional to the wave amplitude.

4.3 Gouyon waves

As shown by Dubreil-Jacotin (1934), the Gerstner wave is a
special case of a wide class of stationary waves with vortic-
ity �= ε�∗ (ψ), where �∗ is an arbitrary function and ψ
is a stream function. Those results were later developed by
Gouyon (1958), who explicitly represented the vorticity in

the form of a power series �=
∞∑
n=1

εn�n (ψ) (see also the

monograph by Sretensky, 1977).
When a plane steady flow is considered in the Lagrangian

variables, the stream lines ψ coincide with the isolines
of the Lagrangian vertical coordinate b (Abrashkin and
Yakubovich, 2006; Bennett, 2006). We consider a steady-
state wave at the surface of indefinitely deep water. Assume
that there is no undisturbed shear current, but the wave dis-
turbances have vorticity. Then, the formula for the vortic-

ity is written as �=
∞∑
n=1

εn�n (b) . Here we will refer to the

steady-state waves propagating in such a low-vorticity fluid
as Gouyon waves. The properties of the Gouyon wave for
the first two approximations were studied by Abrashkin and
Zen’kovich (1990) in the Lagrangian description.

In our case,�1 = 0 and�2 6= 0; assuming the function�2
to be independent of the coordinate a, we can describe the
Gouyon waves. The vorticity �2 depends on the coordinate
b only and has the following form:

�2Goyuon = ωk
2
|A|2H (kb), (46)

whereH (kb) is an arbitrary function. In the case ofH (kb)=
−2 exp(2kb), the vorticities of the Gerstner and Gouyon

waves in the quadratic approximation coincide (compare
Eqs. 44 and 46). In the considered approximation, the
Gouyon wave generalizes the Gerstner wave. From Eq. (22),
it follows that the function ψt1 is equal to zero only when the
vorticity of the Gouyon wave is equal to the vorticity of the
Gerstner wave. Except for this case, the average current ψt1
will always be present in the modulated Gouyon waves.

The substitution of the ratio (46) into Eq. (41) yields the
NLS equation for the modulated Gouyon wave:

i
∂A

∂ a2
−
k

ω2
∂2A

∂t21
−βGk

3
|A|2A= 0,

βG = 1+ 4
0∫
−∞

e2b̃

(
b̃∫
−∞

H
(̃
b′
)

db̃′
)

db̃, b̃ = kb,

(47)

where b̃ is a dimensionless vertical coordinate. The coeffi-
cient of the nonlinear term in the NLS equation varies when
the wave vorticity is taken into account. For the Gerstner
wave it may be equal to zero like for the Gouyon wave when
the following condition is satisfied:

0∫
−∞

e2b̃

 b̃∫
−∞

H
(̃
b′
)

db̃′

db̃ =−
1
4
. (48)

Clearly, an infinite number of distributions of the vorticity
H(̃b) meeting this condition are possible. However, the re-
alization of one of them seems hardly probable. In the real
ocean, distributions of the vorticity with a certain sign of
βG are more likely to be implemented. Its negative values
correspond to the defocusing NLS equation and the positive
ones are related to the focusing NLS equation. In the latter
case, the maximum value of the increment and the width of
the modulation instability zone of a uniform train of vortex
waves vary depending on the value of βG.

Equations (39) and (47) will be focusing forψ1t1 < 0, b ≤
0 and defocusing if ψ1t1 > 0, b ≤ 0. The case of the sign–
variable function ψ1t1 requires additional research. From the
physical viewpoint, the sign of this function is defined by
the ratio of the velocity of the Stokes drift (45) to the veloc-
ity of the current induced by the vorticity (the integral term
in Eq. 40). For ψ1t1 < 0, the Stokes drift either dominates
over a vortex current or both of them have the same direc-
tion. When ψ1t1 > 0, the vortex current dominates over the
counter Stokes drift. In the case of the sign variable ψ1t1 ,
the ratio of these currents varies at different vertical levels,
thereby requiring a direct calculation of βG.

4.4 Waves with inhomogeneous vorticity distribution
along both coordinates

Neither a vorticity expression nor methods of its defini-
tion were discussed when deriving the NLS equation. Sec-
tions 4.2 and 4.3 are devoted to the problems of the Gerstner
and Gouyon waves; the vorticity was set to be proportional to

www.nonlin-processes-geophys.net/24/255/2017/ Nonlin. Processes Geophys., 24, 255–264, 2017



262 A. Abrashkin and E. Pelinovsky: Lagrange form of the nonlinear Schrödinger equation

a square modulus of the wave amplitude. Note that waves can
propagate against the background of some vortex current, for
example, the localized vortex. In this case, the vorticity may
be presented in the form

�2 (a2,b)= ω
[
φv (a2,b)+ k

2
|A|2φw (a2,b)

]
,

where the function ωφv defines the vorticity of the back-
ground vortex current and the function ωk2|A|2φw defines
the vorticity of waves. In the most general case, both func-
tions depend on the horizontal Lagrangian coordinate as
well. Then, Eq. (41) takes the form

i
∂A

∂ a2
−
k

ω2
∂2A

∂t21
− kβv (a2)A− k

3 (1+βw (a2)) |A|
2A= 0,

βv,w (a2)= 4

0∫
−∞

e2b̃

 b̃∫
−∞

φv,w
(
a2, b̃

′
)

db̃′

db̃. (49)

The substitution

A∗ = A exp

−ik a2∫
−∞

βv (a2) da2

 (50)

reduces Eq. (49) to the NLS equation with a nonuniform mul-
tiplier for the nonlinear term:

i
∂A∗

∂ a2
−
k

ω2
∂2A∗

∂t21
− k3 (1+βw (a2))

∣∣A∗∣∣2A∗ = 0. (51)

Let us consider the propagation of the Gouyon wave when
βw = const= βG− 1, and Eq. (51) turns into the classical
NLS equation (47). As shown in Sect. 4.3, it describes the
modulated Gouyon waves. Therefore, based on the substi-
tution of Eq. (50) one can conclude that the propagation of
the Gouyon waves against the background of the nonuniform
vortex current results in the variation in the wave number of
the carrier wave. For βw = 0, Eq. (51) describes the propaga-
tion of a packet of potential waves against the background of
the nonuniform weakly vortical current. The specific features
of the wave propagation related to the variable βw require
special investigation.

5 On the equivalence of Lagrangian and Eulerian
approaches

Consider the correlation between the Eulerian and the La-
grangian description of wave packets. To obtain the value for
the elevation of the free surface we substitute the expressions
(8), (9), and (13) and b = 0 into the equation for Y = Im W
written in the following form:

YL = εImA(a2, t1) exp i (ka0+ω t0) ,

where A(a2, t1) is the solution to Eq. (41). This expres-
sion defines the wave profile in Lagrangian coordinates. To
rewrite this equation in the Eulerian variables, it is necessary
to define a via X. From the relation (8), it follows that

X = a+ εRe

(
w1+

∑
n=2
εn−1wn

)
= a+O (ε),

and the elevation of the free surface in the Eulerian variables
YE will be written as

YE =εImA(X2, t1) exp i (kX0+ω t0) +O
(
ε2
)
,

Xl = ε
lX.

The coordinate a plays the role of X, so the following sub-
stitutions are valid for the Lagrangian approach:

a0→X0; a1→X1; a2→X2.

This result may be called an “equivalence principle” between
the Lagrange and the Euler descriptions for solutions in the
linear approximation. This principle is valid for both the po-
tential and rotational waves.

To express the solution to Eq. (41) in the Eulerian vari-
ables, it is necessary to use the equivalence principle and to
replace the horizontal Lagrangian coordinate a2 with the X2
coordinate. So, there are no discrepancies between the Eule-
rian and the Lagrangian estimations of the NLS equation for
the free surface elevation.

Taking this into account, we can conclude that the result
will be the same in the Eulerian description if the vorticity
�2 is a function of the x,y coordinates. So, when studying
the wave packet dynamics in the vortical liquid in the Eu-
lerian variables, it is necessary to replace (for example, in
Eqs. 41 and 51) the horizontal Lagrangian coordinate with
the Eulerian one.

Equation (47) can also be derived in Eulerian variables.
The key idea is to take into consideration a weak shear flow.
This approach is similar to the method used in the paper
by Hjelmervik and Trulsen (2009), where the wave propa-
gates along a weak horizontal shear current. Shrira and Slun-
yaev (2014) used this technique to study trapped waves in
a uniform jet stream. They derived the NLS equation for a
single mode. Later, Slunyaev (2016) generalized the result to
the case of a vortex jet flow. Our result was obtained with
a weak vertical shear flow taken into account. In particu-
lar, to describe modulated Guyon waves, the Johnson ap-
proach (1976) should be modified, assuming a shear flow of
the order of epsilon.

The solutions to the considered problem in the Lagrange
and the Euler forms in the quadratic and cubic approxima-
tions differ from each other. To obtain a full solution in the
Lagrange form, one should find the functions ψ1,ψ2,ψ3,f2,
and f3. This problem should be considered within a special
study.
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6 Conclusions

We have derived the vortex-modified nonlinear Schrödinger
equation using the method of multiple-scale expansions in
the Lagrangian variables. The fluid vorticity� is specified as
an arbitrary function of the Lagrangian coordinates, which is
quadratic in the small parameter of the wave steepness. The
calculations have been performed by introducing a complex
coordinate of the fluid particle trajectory.

The nonlinear evolution equation for the wave packet in
the form of the nonlinear Schrödinger equation has been de-
rived as well. From the mathematical viewpoint, the novelty
of this equation is related to the emergence of a new term
proportional to the envelope amplitude and the variance of
the coefficient of the nonlinear term. If the vorticity depends
on the vertical Lagrangian coordinate only (Gouyon waves),
this coefficient is constant. There are special cases when the
coefficient of the nonlinear term equals zero and the resulting
nonlinearity disappears. The Gerstner wave belongs to the
latter case. Another effect revealed in the present study is the
relation of the vorticity to the wave number shift in the carrier
wave. This shift is constant for the modulated Gouyon wave.
If the vorticity depends on both Lagrangian coordinates, the
shift of the wave number is horizontally inhomogeneous. It
is shown that the solution to the NLS equation for weakly
rotational waves in the Eulerian variables may be obtained
from the Lagrangian solution with an ordinary change in the
horizontal coordinates.
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