Articles | Volume 23, issue 4
Nonlin. Processes Geophys., 23, 285–305, 2016
https://doi.org/10.5194/npg-23-285-2016
Nonlin. Processes Geophys., 23, 285–305, 2016
https://doi.org/10.5194/npg-23-285-2016

Research article 18 Aug 2016

Research article | 18 Aug 2016

Limiting amplitudes of fully nonlinear interfacial tides and solitons

Borja Aguiar-González and Theo Gerkema

Related authors

Residual circulation and freshwater transport in the Dutch Wadden Sea: a numerical modelling study
M. Duran-Matute, T. Gerkema, G. J. de Boer, J. J. Nauw, and U. Gräwe
Ocean Sci., 10, 611–632, https://doi.org/10.5194/os-10-611-2014,https://doi.org/10.5194/os-10-611-2014, 2014
Numerical modelling of physical processes governing larval transport in the southern North Sea
M. C. H. Tiessen, L. Fernard, T. Gerkema, J. van der Molen, P. Ruardij, and H. W. van der Veer
Ocean Sci., 10, 357–376, https://doi.org/10.5194/os-10-357-2014,https://doi.org/10.5194/os-10-357-2014, 2014

Related subject area

Subject: Nonlinear Waves, Pattern Formation, Turbulence | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
Particle clustering and subclustering as a proxy for mixing in geophysical flows
Rishiraj Chakraborty, Aaron Coutino, and Marek Stastna
Nonlin. Processes Geophys., 26, 307–324, https://doi.org/10.5194/npg-26-307-2019,https://doi.org/10.5194/npg-26-307-2019, 2019
Short summary
Explosive instability due to flow over a rippled bottom
Anirban Guha and Raunak Raj
Nonlin. Processes Geophys., 26, 283–290, https://doi.org/10.5194/npg-26-283-2019,https://doi.org/10.5194/npg-26-283-2019, 2019
Short summary
Internal waves in marginally stable abyssal stratified flows
Nikolay Makarenko, Janna Maltseva, Eugene Morozov, Roman Tarakanov, and Kseniya Ivanova
Nonlin. Processes Geophys., 25, 659–669, https://doi.org/10.5194/npg-25-659-2018,https://doi.org/10.5194/npg-25-659-2018, 2018
Short summary
On the phase dependence of the soliton collisions in the Dyachenko–Zakharov envelope equation
Dmitry Kachulin and Andrey Gelash
Nonlin. Processes Geophys., 25, 553–563, https://doi.org/10.5194/npg-25-553-2018,https://doi.org/10.5194/npg-25-553-2018, 2018
Short summary
Laboratory and numerical experiments on stem waves due to monochromatic waves along a vertical wall
Sung Bum Yoon, Jong-In Lee, Young-Take Kim, and Choong Hun Shin
Nonlin. Processes Geophys., 25, 521–535, https://doi.org/10.5194/npg-25-521-2018,https://doi.org/10.5194/npg-25-521-2018, 2018
Short summary

Cited articles

Apel, J. R., Ostrovsky, L. A., Stepanyants, Y. A., and Lynch, J. F.: Internal solitons in the ocean, Tech. Rep., Woods Hole Oceanographic Institution, 2006.
Choi, W. and Camassa, R.: Fully nonlinear internal waves in a two-fluid system, J. Fluid Mech., 396, 1–36, 1999.
Da Silva, J. C. B., Buijsman, M. C., and Magalhaes, J. M.: Internal waves on the upstream side of a large sill of the Mascarene Ridge: a comprehensive view of their generation mechanisms and evolution, Deep-Sea Res. Part I, 99, 87–104, 2015.
Durran, D.: Numerical methods for wave equations in geophysical fluid dynamics, vol. 32, Springer Verlag, 1999.
Gerkema, T.: Nonlinear dispersive internal tides: generation models for a rotating ocean, Ph.D. thesis, Utrecht University, 1994.
Download
Short summary
We derive a new two-fluid layer model consisting of forced rotation-modified Boussinesq equations for studying the limiting amplitudes of tidally generated fully nonlinear, weakly nonhydrostatic dispersive interfacial tides and solitons. Numerical solutions show that solitons attain in some cases a limiting table-shaped form, but may also be limited well below that state by saturation of the underlying quasi-linear internal tide under increasing barotropic forcing.