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Abstract. A new two-fluid layer model consisting of forced
rotation-modified Boussinesq equations is derived for study-
ing tidally generated fully nonlinear, weakly nonhydrostatic
dispersive interfacial waves. This set is a generalization of
the Choi–Camassa equations, extended here with forcing
terms and Coriolis effects. The forcing is represented by
a horizontally oscillating sill, mimicking a barotropic tidal
flow over topography. Solitons are generated by a disintegra-
tion of the interfacial tide. Because of strong nonlinearity,
solitons may attain a limiting table-shaped form, in accor-
dance with soliton theory. In addition, we use a quasi-linear
version of the model (i.e. including barotropic advection but
linear in the baroclinic fields) to investigate the role of the
initial stages of the internal tide prior to its nonlinear dis-
integration. Numerical solutions reveal that the internal tide
then reaches a limiting amplitude under increasing barotropic
forcing. In the fully nonlinear regime, numerical experiments
suggest that this limiting amplitude in the underlying inter-
nal tide extends to the nonlinear case in that internal solitons
formed by a disintegration of the internal tide may not reach
their table-shaped form with increased forcing, but appear
limited well below that state.

1 Introduction

Tidally generated internal solitons are a widespread phe-
nomenon in the oceans and have been observed and stud-
ied for decades (see e.g. Apel et al., 2006). They are in-
trinsically linked to the internal tide, which itself is gener-

ated by barotropic tidal flow over topography. As the internal
tide steepens, it may split up into groups of internal solitons,
which therefore appear at the tidal period.

For internal solitons as such, an archetypal model has been
the Korteweg–de Vries (KdV) equation, which is based on
the assumption of weak nonlinearity and weak nonhydro-
staticity. The equation gives prediction for the relation be-
tween amplitude, width and phase speed of the solitons, as
well as the shape itself. In the KdV equation there is, math-
ematically speaking, no limit to the amplitude that solitons
may reach (although, of course, at some point the underlying
assumption of weak nonlinearity would be violated). This
behaviour changes fundamentally if a higher-order (i.e. cu-
bic) nonlinear term is included, leading to the so-called ex-
tended KdV (eKdV) equation, as discussed in e.g. Helfrich
and Melville (2006). This extended version produces qual-
itatively different solitons: their amplitude is limited (for a
given configuration of layers) and they broaden as they reach
their maximum amplitude, the so-called “table-top” solitons.
This behaviour is confirmed by fully nonlinear soliton mod-
els, as derived by Choi and Camassa (1999) and Miyata
(1985, 1988) (denoted as the MCC equations for brevity).

In this paper, we focus on another limiting factor, which
comes into play even before solitons arise, namely in the
internal tide itself. In a purely linear system, the amplitude
of the internal tide increases linearly with the strength of
the barotropic tidal flow. Here we study how this changes
if one includes quasi-linear terms, i.e. retaining products of
barotropic and baroclinic fields in the advective terms while
still ignoring interactions of the baroclinic field with itself.
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We demonstrate that a saturation in the amplitude of the in-
ternal tide occurs, and increasing the barotropic flow further
does not produce a larger internal tide. As a consequence,
when one includes the genuinely nonlinear effects, i.e. prod-
ucts of baroclinic terms, resulting solitons may stay well be-
low their formal limiting amplitude, no matter how strong the
forcing.

To study these effects we derived a set of fully nonlinear,
weakly nonhydrostatic model equations, by extending the
MCC equations with a barotropic tidal forcing over topog-
raphy and with Coriolis effects, which have previously been
shown to play a key role in soliton generation from internal
tides (Gerkema and Zimmerman, 1995). To avoid having to
deal with nonlinearities in the barotropic tide itself (which
cannot be formally neglected in a fully nonlinear model), we
mimic the interfacial wave generation, replacing a barotropic
tidal flow over topography with a horizontally oscillating to-
pography. (There is no exact equivalence between the two,
but we demonstrate that, for the parameters used here, the
difference remains small.) An alternative approach will also
be discussed later.

The presence of a topography greatly complicates the sub-
sequent handling of the equations, but we demonstrate that
the set of equations can be obtained and can be cast in a form
amenable to numerical solving.

An extension of the MCC theory with Coriolis effects
(MCC-f ) was already derived by Helfrich (2007), who in-
vestigated the decay and return of internal solitary waves
with rotation. We focus on the novel aspect of studying the
wave evolution and limiting amplitudes of fully nonlinear,
weakly nonhydrostatic internal tides and solitons when forc-
ing and rotational effects are added. We denote our extension
of the MCC theory as forced-MCC-f (or forced-MCC in the
absence of rotation), for brevity.

The paper is organized as follows. We derive a new two-
fluid layer model consisting of a set of forced rotation-
modified Boussinesq equations in Sect. 2. We start with
the basic equations and assumptions. Then, we scale equa-
tions (Sect. 2.1) and vertically integrate them over the layers
(Sect. 2.2). Up to this point, the resulting equations are ex-
act but do not form a closed set. The set is closed by making
an expansion in a small parameter measuring the strength of
nonhydrostaticity (Sect. 2.3). The resulting model turns out
to be equivalent to the Choi–Camassa equations plus addi-
tional terms which represent the forcing and rotation effects.
Prior to discussing the numerical experiments, we address in
Sect. 3 some aspects related to the oscillating topography,
the governing nondimensional parameters and the parameter
values used for the runs. In Sect. 4 we investigate the factors
limiting the growth of tidally generated solitons by first ex-
amining the generation of quasi-linear internal tides within
the parameter space of this study. Next, in Sect. 5 we solve
the full set of forced-MCC-f and explore the conditions by
which tide-generated fully nonlinear solitons may actually

attain a limiting amplitude. The main findings and conclu-
sions are presented in Sect. 6.

The numerical methods and schemes are described in Ap-
pendix A. The full set of model equations as solved in the
code is presented in Appendix B together with its (quasi)-
linearized form. In Appendix C we compare, within the pa-
rameter space of this study, the case of an oscillating topog-
raphy with the case of a tidal flow over a topography at rest.

2 Derivation of the forced-MCC-f model

We start from the continuity and Euler equations and con-
sider a two-fluid layer system (Fig. 1) with a jump in density
across the interface and in which each layer is composed of
a homogeneous, inviscid, and incompressible fluid; we apply
the Boussinesq approximation. We also assume uniformity
in one of the horizontal directions, taking ∂/∂y = 0. Hence,
the continuity and momentum equations read as

ui,x +wi,z = 0, (1)

ρ
(
ui,t + ui ui,x +wi ui,z− f vi

)
=−pi,x, (2)

vi,t + ui vi,x +wi vi,z+ f ui = 0, (3)

ρ
(
wi,t + ui wi,x +wi wi,z

)
=−pi,z− ρi g, (4)

where ρi is density, (ui , vi , wi) are the velocity components
in Cartesian coordinates, pi is pressure, g the gravitational
acceleration, f the Coriolis parameter (f = 2�sinφ, at lati-
tude φ) and ρ the mean density. The subscript i = 1 (i = 2)
refers to the upper (lower) layer, and a stable stratification,
ρ1 < ρ2, is assumed.

Boundaries are defined at the surface, taken to be a rigid
lid, which is located at z=H1, and at the bottom, located
at z=−H2+H(x, t). The time dependence of the bottom
will later be specified as a horizontal oscillation, mimicking
a barotropic tidal flow over topography.

The kinematic boundary conditions at the surface and bot-
tom read as

w1 = 0 at z=H1, (5)
w2 = Ht +Hx u2 at z=−H2+H(x, t). (6)

At the interface, z= Z(x, t), the boundary conditions are
given by the continuity of normal velocity and pressure:

wi = Zt + ui Zx and p1 = p2 at z= Z. (7)

For later convenience, we write pressure as the sum of
hydrostatic and dynamic parts, the latter being denoted by
primes:

pi = ρ1gH1− ρigz+p
′

i(t,x,z).

In the horizontal momentum equation, this amounts to re-
placing pi,x with p′i,x , whereas the vertical momentum equa-
tion (4) gives

ρ
(
wi,t + ui wi,x +wi wi,z

)
=−p′i,z.
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Upper surface (rigid-lid) z=H1
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Interface: z=Z(x,t)

Bottom z=-H2+H(x,t)

Upper layer: H1, ρ1

Lower layer: H2, ρ2

x →

Figure 1. The two-fluid layer system for which the forced-MCC-f equations are derived. The horizontal dashed grey line indicates the level
z= 0, the level at which the interface resides at rest.

The second equation in (7), expressing continuity of pres-
sure at the interface, now becomes

(p′1−p
′

2)|z=Z = (ρ1− ρ2)gZ.

2.1 Scaling

The next step is to bring the equations into an appropriate
dimensionless form for which we introduce the following
scales. The scale for the undisturbed water depth is taken
to be D, and the typical wavelength L. Crucially, we will
assume waves to be long, i.e. nonhydrostatic effects to be
weak. This will be expressed by the small parameter1, δ =(
D
L

)2
� 1.

Since we allow waves to have large amplitudes (i.e. to be
strongly nonlinear), we may take horizontal current veloci-
ties to scale with c0 = (g

′D)1/2, where g′ is reduced gravity,
g′ = g (ρ2− ρ1)/ρ. (Notice that the exact linear long-wave
phase speed for interfacial waves, cp, is similar to c0, but has
H1H2/D instead ofD in the square root.) Thus, u and v will
be scaled with c0. As the interfacial displacement is allowed
to be large, an appropriate scale of Z is D.

The typical scale of w now follows from the continuity
equation as Dc0/L. Finally, the scale of pressure follows
from assuming a primary balance between the acceleration
terms ρ ut and px in the horizontal momentum equation.

In summary, then, we can introduce the following dimen-
sionless variables, indicated by asterisks,

x = L x∗, z=D z∗, t = (L/c0) t
∗, p′i = (ρ c

2
0) p

′∗

i ,

ui = c0 u
∗

i ,vi = c0 v
∗

i , wi = (D/L) c0 w
∗

i . (8)

With these scales, the dimensionless continuity and Euler
equations yield (for convenience, we drop the asterisks right
away)

ui,x +wi,z = 0, (9)
ui,t + ui ui,x +wi ui,z−µ vi =−p

′

i,x, (10)

vi,t + ui vi,x +wi vi,z+µ ui = 0, (11)

1In Choi and Camassa (1999) a small parameter ε was used in-
stead, which relates to ours as δ = ε2.

δ
(
wi,t + ui wi,x +wi wi,z

)
=−p′i,z. (12)

Hereµ is the scaled Coriolis parameter,µ= fL/c0. Further-
more, we introduce the dimensionless quantities ζ , hi , and h
via (Z,H1,H2,H)=D(ζ,h1,h2,h), so that the scaled form
of the boundary conditions is

w1 = 0 at z= h1, (13)
wi = ζt + ui ζx at z= ζ(x, t), (14)
p′2−p

′

1 = ζ at z= ζ(x, t), (15)
w2 = ht + u2 hx at z=−h2+h(x, t). (16)

The goal is now to derive a reduced set of equations from
Eqs. (9) to (12), in which the boundary conditions (13)–(16)
are incorporated by vertical integration, exploiting the small-
ness of the parameter δ. The procedure is identical to that of
Choi and Camassa (1999), but with the additional complica-
tions of the Coriolis force, topography, and tidal forcing.

2.2 Vertically integrated equations

We vertically integrate the equations over the upper and
lower layers and expand them to the orders δ0 and δ1 to ob-
tain a closed set for the weakly nonhydrostatic equations, fol-
lowing Choi and Camassa (1999). The layer mean f 1 of a
function f1(x,z, t) for the upper layer is defined as

f 1(x, t)=
1
η1

h1∫
ζ

dzf1(x,z, t), η1 = h1− ζ , (17)

and for the lower layer as

f 2(x, t)=
1
η2

ζ∫
−h2+h

dzf2(x,z, t), η2 = h2−h+ ζ, (18)

where ηi represents the thickness of the layer (depending
on the interfacial displacement ζ ). Notice that the bound-
aries of the integral depend on time and space (x) via the
interfacial movement ζ(t,x), but also, for the lower layer,
via the horizontally oscillating topography2, h(t,x). Before

2For this reason we need to apply the Leibniz integral rule below
with respect to x and t .
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proceeding, nonlinear terms in the horizontal momentum
equations (10) and (11) are rewritten as (u2

i )x + (wiui)z and
(uivi)x + (wivi)z, respectively, to facilitate the procedure.

After integration of Eqs. (9)–(11) for i = 1 and applying
the boundary conditions (13)–(15), we obtain the layer-mean
equations for the upper layer:

η1,t + (η1u1)x = 0, (19)

(η1u1)t + (η1u1u1)x −µη1v1 =−η1p
′

1,x, (20)

(η1v1)t + (η1u1v1)x +µη1u1 = 0. (21)

For the lower layer one proceeds similarly, except that now
both boundaries are variable. Applying the boundary condi-
tions (14)–(16), vertical integration of Eqs. (9)–(11) for i = 2
yields

η2,t + (η2u2)x = 0, (22)

(η2u2)t + (η2u2u2)x −µη2v2 =−η2p
′

2,x, (23)

(η2v2)t + (η2u2v2)x +µη2u2 = 0. (24)

2.3 Expansion in δ

The six integrated Eqs. (19)–(24) derived so far are exact but
do not form a closed set. The variables η1, η2 and ζ count as
one unknown, but we also have ui , vi , p′i,x , uiui and uivi ,
giving 11 unknowns for 6 equations. To obtain a closed set,
the last two expressions will be cast in terms of ui and vi by
using the vertical momentum equation, expanded in terms of
the small parameter δ. Furthermore, continuity of pressure at
the interface is used to connect the pressure in the lower and
upper layers (i.e. p′1,x and p′2,x). All in all, the six equations
are thus modified to contain only six unknowns. With this
aim, we make a formal expansion of the unknowns for the
lowest (δ0) and next (δ) orders, as, for example,

f i = f i
(0)
+ δf i

(1)
+ . . .

At the lowest order (δ0), p′(0), the dynamics is hydrostatic.
At the next order (δ), p′(1) brings weakly nonhydrostatic ef-
fects into the system.

2.3.1 Lowest order

At lowest order, the vertical momentum equation (12) re-
duces to ∂p′i

(0)
/∂z= 0 as terms of order δ are neglected;

therefore, (perturbation) pressure is vertically constant in
each layer. For convenience, we introduce P = p′2

(0), being
a function of t and x. It then follows from continuity of pres-
sure at the interface that p′1

(0)
= P −ζ . Thus, to this order of

approximation,

p′1,x = Px − ζx +O(δ), (25)

and, for the lower layer,

p′2,x = Px +O(δ). (26)

Given the z independence of pressure and returning to the
original horizontal momentum equations, it is now natural to
assume that the horizontal velocities, too, are independent of
z within each layer:

uiui = u
2
i +O(δ), uivi = uivi +O(δ).

At lowest order, then, the set of integrated equations is
closed; together with the (exact) integrated continuity equa-
tions (19) and (22), we have the momentum equations in
terms of the six variables ui , vi , ζ and P :

(η1u1)t + (η1u
2
1)x −µη1v1 =−η1 (Px − ζx)+O(δ), (27)

(η2u2)t + (η2u
2
2)x −µη2v2 =−η2Px +O(δ), (28)

(η1v1)t + (η1u1v1)x +µη1u1 = O(δ), (29)
(η2v2)t + (η2u2v2)x +µη2u2 = O(δ). (30)

Recall that η1,2 can be expressed in terms of ζ and thus
involve just one unknown.

2.3.2 Next order

At order δ, the procedure is to close the set of six verti-
cally integrated equations by deriving expressions for the
horizontal pressure gradients p′i,x as well as for the contri-
butions of uiui and uivi in the nonlinear terms. The latter
problem is particularly simple. At order δ, the products con-
tain one lowest-order field, which is independent of z (e.g.
ui
(0)
= ui

(0)); hence,

uiui =
1
ηi

∫
dzu2

i =
1
ηi

∫
dz
(
ui
(0)2
+ 2δui (0)ui (1)+ . . .

)
= ui

(0)2
+ 2δui (0)ui (1)+ . . .

= u2
i +O(δ

2),

so that

uiui = u
2
i +O(δ2), uivi = uivi +O(δ2).

This allows us to write the horizontal momentum equa-
tions as

(η1u1)t + (η1u
2
1)x −µη1v1 =−η1(p

′

1
(0)
+ δp′1

(1)
)x +O(δ2), (31)

(η2u2)t + (η2u
2
2)x −µη2v2 =−η2(p

′

2
(0)
+ δp′2

(1)
)x +O(δ2), (32)

(η1v1)t + (η1u1v1)x +µη1u1 = O(δ2), (33)
(η2v2)t + (η2u2v2)x +µη2u2 = O(δ2). (34)

The remaining problem is to find an expression for p′i
(1).

At order δ, Eq. (12) reads, in terms of the lowest-order verti-
cal velocities,

wi
(0)
t + ui

(0)wi
(0)
x +wi

(0)wi
(0)
z =−p

′

i
(1)
z. (35)

By vertically integrating the continuity equation (9), we
obtain an expression for wi (0):

wi
(0)
=−zui,x

(0)
+ ci(t,x),
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where ci are “constants” of integration which are determined
by using the boundary conditions at the surface (13) and bot-
tom (16). Thus, wi (0) for the upper and lower layers become,
respectively,

w1
(0)
= (h1− z) u1,x

(0), (36)
w2

(0)
= (h−h2− z) u2,x

(0)
+D2h, (37)

where the operator Di is defined as ∂/∂t + ui (0)∂/∂x. Sub-
stituting w1

(0) from Eq. (36) and w2
(0) from Eq. (37) into

Eq. (35), and vertically integrating the result, we get an ex-
pression for p′1

(1) and p′2
(1). Taking their derivative with re-

spect to x and their mean over each layer, we finally obtain an

expression for p′i
(1)
x

at order δ. Including the lowest-order
terms (25) and (26), this allows us to write the horizontal
pressure gradient for the upper layer,

p′1,x = p′1,x
(0)
+ δp′1,x

(1)
+O(δ2)

= Px − ζx − δ

[
1

3η1
(η3

1G1)x

]
+O(δ2), (38)

and, for the lower layer,

p′2,x = p′2,x
(0)
+ δp′2,x

(1)
+O(δ2)

= Px − δ

[
1

3η2
(η3

2G2)x +
1
2
η2G2hx

−
η2

2
(D2

2h)x − ζxD
2
2h
]
+O(δ2), (39)

where we introduced for simplicity the term Gi (as in Choi
and Camassa, 1999),

Gi = ui,xt
(0)
+ ui

(0)ui,xx
(0)
− (ui,x

(0))2. (40)

With this, the horizontal momentum equations (31) and (32)
become

(η1u1)t + (η1u
2
1)x −µη1v1

=−η1

{
Px − ζx − δ

[
1

3η1
(η3

1G1)x

]}
+O(δ2) (41)

(η2u2)t + (η2u
2
2)x −µη2v2

=−η2

{
Px − δ

[
1

3η2
(η3

2G2)x +
1
2
η2G2hx

−
η2

2
(D2

2h)x − ζxD
2
2h
]}
+O(δ2). (42)

We have thus obtained a closed set of six dimensionless
equations, namely the exact continuity equations (19) and
(22), the horizontal momentum equations (41) and (42), as
well as (33) and (34); the last four equations involve the
weakly nonhydrostatic assumption. The six unknowns are
u1, u2, v1, v2, P , and (via η1,2) ζ . Without interfacial forcing
and Earth’s rotation, our set of equations correctly reduces
to that of Choi and Camassa (1999). We further specify the

model by prescribing the oscillating topography, i.e. the forc-
ing to the system, with

h= h(X)whereX(x, t)= x−U0 cos t, (43)

and U0 is an arbitrary positive constant.
We combine the continuity equations (19) and (22) into

(η1+ η2)t + (η1u1+ η2u2)x = 0. (44)

Given that η1+η2 = h1+h2−h, with the two-fluid system
depth h1+h2 = 1, this leads to

−ht + (η1u1+ η2u2)x = 0. (45)

If we now substitute the time derivative of the oscillating
topography (43), we have

(η1u1+ η2u2)x = Uhx, (46)

with

U = U0 sin t, (47)

which is the velocity of the oscillating topography with am-
plitude U0, mimicking a barotropic tidal flow. However, the
two are not exactly equivalent, since the transformation from
one frame of reference to the other involves an acceleration,
and is therefore not Galilean. We discuss this aspect further
in Appendix C.

Equation (46) can be then integrated in x:

η1u1+ η2u2 = Uh+C(t). (48)

Far from the sill (i.e. h→ 0 for x→±∞), we impose the
flow to be purely baroclinic, so that the left-hand side must be
zero, and hence it follows thatC(t)= 0. Notice that the right-
hand side is prescribed via the forcing and thus is a known
quantity. It allows us to express u2 in terms of u1.

We can thus combine the horizontal momentum equa-
tions (41) and (42), eliminating P ,

u1,t + u1u1,x +µv1 = ζx +
1

(1−h)(
(Uh)t + (η1u

2
1+ η2u

2
2)x

− µ(η1v1+ η2v2)− η1ζx

)
+δ

(
1−

η1

(1−h)

)[
η1G1η1,x +

η2
1

3
G1,x

]

+
δη2

(1−h)

[
−η2G2ζx −

η2
2

3
G2,x

+
η2G2

2
hx +

η2

2
(D2

2h)x + ζxD
2
2h

]
+O(δ2) (49)

u2 =
Uh− η1u1

η2
, (50)
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v1,t + u1v1,x +µu1 = O(δ2), (51)

v2,t + u2v2,x +µu2 = O(δ2), (52)
ζt − (h1− ζ )u1,x + u1ζx = 0, (53)

where the vi-horizontal momentum equations (51) and (52)
have been further simplified from Eqs. (33) and (34) by us-
ing the continuity equations (19) and (22). Equation (19) has
now been expressed in terms of ζ for convenience. The other
continuity equation (22) is no longer included since it is al-
ready implicitly present via Eq. (50).

All in all, we now have five equations for five unknowns
(u1, u2, v1, v2 and ζ ). The numerical methods and schemes
used to solve the model are described in Appendix A. The
actual form of the model equations as used in the numerical
code is presented in Appendix B. In Appendix C we com-
pare, within the parameter space of this study, the case of an
oscillating topography with the case of a tidal flow over a
topography at rest.

Before concluding this section, it is worthwhile noting an
alternative approach. Given the assumption of a rigid lid, one
could have also taken U = 0 in Eq. (48), the topographic mo-
tion set to zero, and then prescribed an external barotropic
flux via C(t). Imposing a barotropic flux in this manner does
not allow for spatial variations of that flux, as would occur
with a free surface, for which an additional dynamical equa-
tion would be required to solve the barotropic mode. Speci-
fication of C(t) is common in fully nonlinear models of this
type as, for example, in Lamb (1994) and Vlasenko et al.
(2005). However, the choice of an oscillating topography has
also proven to be of use in the study of strongly nonlinear
interfacial waves. For instance, Grue (2015) recently con-
firmed findings on the onset of wave train formation observed
in experimental measurements by Maxworthy (1979) with
a three-dimensional two-layer, fully dispersive and strongly
nonlinear interfacial wave model with a time-varying bottom
topography.

3 Numerical experiments: preliminary remarks

Whilst not designed to represent a specific region of the
world oceans, we aim to investigate in a general manner the
conditions by which tidally generated solitons may evolve
and, eventually, develop limiting amplitudes in ocean-like
scenarios. It is then desirable that leading solitons can propa-
gate towards a mature stage before overtaking preceding in-
ternal tides; otherwise, although these are form-preserving
features, the tracking of their wave properties becomes cum-
bersome. For this reason, the parameters that we describe in
the following were selected to highlight the qualitative fea-
tures of these nonlinear processes for a broad range of (mim-
icked) tidal forcing strengths.

Although the model is solved and discussed in nondimen-
sional form, we also present the parameter values in dimen-
sional form to put them in an oceanographic context.

3.1 The oscillating topography and the hydraulic state:
the Froude number

We define the (dimensional) topography analytically follow-
ing

H(X)=
HT

1+ (x/HL)2
, (54)

with x being the grid positions in space, and HT and HL
being the dimensional parameters which set the height and
width of a symmetric sill, respectively. In this manner we
ensure perfectly smooth second and third derivatives of the
dimensionless topography h(X) in the model equations.

At this point it is worthwhile recalling that the oscillation
of the topography is introduced in dimensionless form as h=
h(X) with X(x, t)= x−U0 cos t , where U0 prescribes the
strength (velocity amplitude) of the oscillating topography
via U = U0 sin(t), the mimicked barotropic tidal flow (see
Eqs. 43–47). By increasing U0 we enhance the forcing via
U , which in dimensional form we introduce, respectively, as
U0 = c0 U0 and U= c0 U .

The topographic obstacle (ridge, sill, etc.) is always cen-
tered on the x axis and the length of the x domain is cho-
sen to be large enough to prevent waves from reaching the
boundaries. In all experiments, the topography starts mov-
ing to the left at t = 0; we start with a system at rest, i.e.
U = u1 = u2 = 0 at t = 0. The waves are generated near the
origin; on the negative (positive) x axis, waves travel to the
left (right). Because the forcing starts asymmetrically, it is
expected that wave packets in the front appear rather differ-
ently when comparing both sides (negative vs. positive x do-
main). These fronts are the transients, which are influenced
by the way the experiment is started. A steady solution at
both sides of the x axis is reached after several tidal peri-
ods have passed. In this regard, and to avoid transient effects
generated at the start of each run, wave properties have been
tracked systematically for the third leftward-propagating in-
terfacial wave counting from the front and after nine tidal
periods of forcing.

To characterize the hydraulic state, we use the Froude
number calculated as

Fr =
U0

cp
, (55)

where the amplitude of the mimicked tidal flow, U0, is com-
pared to the linear long-wave phase speed for interfacial
waves, cp. The strength of U0 leads to three different regimes
of interfacial wave generation (see e.g. Vlasenko et al., 2005;
Da Silva et al., 2015). Accordingly, the hydraulic regime is
denoted, hereafter, as subcritical when Fr� 1, critical when
Fr≈ 1, and supercritical when Fr> 1. To account for the
varying strength of the tidal forcing within a tidal cycle,
we introduce the instantaneous Froude number, defined as
Fr′=U/cp.
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Importantly, we also use the Froude number in Ap-
pendix C to discuss the applicability of our “non-inertial”
frame of reference, the oscillating topography, to the ocean
case, where the topography is at rest. To this aim we compare
the generation of interfacial waves from the (quasi-)linear
forced-MCC equations with that from the (quasi-)linear ver-
sion of the weakly nonlinear model derived in Gerkema
(1996), which works with actual tidal motion. Recall that
in the quasi-linear case, barotropic advection is retained but
baroclinic interactions are neglected. The equations are then
still linear with regard to the baroclinic fields, but the co-
efficients become time-dependent due to barotropic factors
(which are prescribed), so that higher harmonics will be gen-
erated when the forcing is increased. For clarification, the
(quasi-)linearization of the forced-MCC-f equations is pre-
sented in Appendix B.

Results from this model comparison confirm a near equiv-
alence between both models within the parameter framework
of study, which we restrict to 0< Fr < 1.6. This encourages
us to discuss our numerical results, henceforth referring to
the strength of the topographic oscillation, U0, as the strength
of the tidal flow.

3.2 Parameter values

We adopt a two-layer system where the total water depth,
D, is set to 100 m, with the upper layer always being thin-
ner than the lower layer (H1<H2). The horizontal oscilla-
tion of the moving topography is always of semidiurnal fre-
quency. Although the height of the topography varies be-
tween runs, its horizontal scale is kept constant and about
20 km (HL = 10 km in Eq. 54). Regarding reduced grav-
ity, g′ typically ranges from 0.007 m s−2 in the Celtic Sea
(Gerkema, 1996) to 0.027 m s−2 over the Oregon continen-
tal shelf (Stanton and Ostrovsky, 1998); we use this range
accordingly.

In Table 1 the varying parameters are listed. They vary be-
tween runs as indicated in bold fonts, one at a time. The the-
oretical amplitude of the “table-top” soliton predicted from
Eq. (3.68) in Choi and Camassa (1999), and beyond which
no solitary wave solution exists, is also indicated.

In Sect. 4, runs A1, A2 and A3 illustrate the effect of vary-
ing stratification via the reduced gravity, g′. Runs A1, B1
and B2 illustrate the effect of varying the topography ratio,
ϕT =HT /D, the height of the topography relative to the total
water depth. Finally, runs A1, C1 and C2 illustrate the effect
of varying the two-fluid layer thickness ratio, γ =H1/H2.
Based on the results from the above analyses, we will argue
later why in Sect. 5 we focus on a highly stratified regime
(g′= 0.03 m s−2) for the study of fully nonlinear waves.

For convenience, wave properties are scaled as follows.
The interfacial displacement, Z, the internal tide amplitude,
A, and the soliton amplitude, As, are scaled to the thick-
ness of the upper layer, H1. The soliton phase speed, cs,
is scaled to the phase speed of linear long-wave interfacial

waves, cp. Horizontal distances along the x-direction and the
soliton width, Ls, are scaled to the wavelength of linear long-
wave interfacial waves, Lp. Finally, we use the scaled Cori-
olis parameter, µp, which relates to µ in Sect. 2.1, following
µp = µ/(2π).

4 Numerical experiments: quasi-linear internal tides

Tide-generated solitons emerge from nonlinear disintegra-
tion of the underlying internal tides and may be, therefore,
naturally subjected to the properties of the latter. For this rea-
son, we find it insightful to investigate first the properties of
the underlying internal tides, prior to their nonlinear disinte-
gration, within the parameter space of this study.

As described in Sect. 3, the quasi-linear case includes ad-
vective terms from the interactions between the barotropic
and baroclinic flows, while interactions between baroclinic
fields, the genuinely nonlinear terms, are still absent. There-
fore, higher harmonics are naturally generated when the forc-
ing is increased. The linear case, where all advective terms
are absent, is included here to assess potential departures
from the quasi-linear case.

Accordingly, Fig. 2 presents the internal tide response
to the strength of the tidal forcing for runs A1 to C2 (see
Table 1). The minimum forcing strength for all cases is
U0= 5 cm s−1. In subsequent data points, the increase in U0
is 10 cm s−1 from U0= 10 cm s−1 and onwards, reaching up
to Fr∼1.5.

In the purely linear experiments, the amplitude of the in-
ternal tide increases linearly with the barotropic tidal flow
strength. However, the quasi-linear internal tide exhibits a
limiting amplitude in all runs, when the tidal forcing in-
creases well above Fr = 1, a feature that seems to have
passed unnoticed in earlier studies. For weak forcing (Fr �
1), the amplitude of the quasi-linear internal tides approaches
the linear case; the advective terms then become very small.
This pattern indicates that the decisive factor in the amplitude
saturation of quasi-linear internal tides lies in the barotropic
advection, which is absent in the linear case.

Regarding the comparison between runs with different pa-
rameters, we find the following. In Fig. 2a, the increase in
stratification causes an earlier deviation between the ampli-
tude growth of the quasi-linear and linear cases, hence occur-
ring at a lower Froude number for runs with a higher stratifi-
cation (cf. runs A1, A2 and A3). The same effect is observed
in Fig. 2b when the height of the topography is increased.
The higher the topography, the earlier a deviation from the
linear case appears in the Froude number space (cf. runs A1,
B1 and B2). Finally, no significant differences emerge re-
garding the rise of the quasi-linear departure in Fig. 2c, where
the thickness of the upper layer varies (cf. runs A1, C1 and
C2). These results indicate that the deviation from the linear
case arises for lower Froude numbers if either the strength of
the stratification or the height of the topography increases.
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Figure 2. Amplitude of the linear, L, and quasi-linear, QL, internal tide scaled to the thickness of the upper layer vs. the Froude number.
Varying parameters between panels are (a) the strength of stratification, g′ (runs A1, A2 and A3); (b) the topography ratio, ϕT (runs A1, B1
and B2); and (c) the two-fluid layer thickness ratio, γ (runs A1, C1 and C2). The run time is nine tidal periods. See Table 1 for further details.

Table 1. Summary of runs. Varying parameters are the reduced gravity, g′ (m s−2), the topography ratio, ϕT , and the two-fluid layer thickness
ratio, γ . The theoretical maximum amplitude, Am, as predicted from Eq. (3.68) in Choi and Camassa (1999), is also indicated.

Run g′ ϕT =HT /D γ =H1/H2 −Am/H1 H1, H2 ρ1, ρ2
(in m s−2) (in m) (kg m−3)

A1 0.03 0.4 0.43 0.67 30, 70 1022, 1025.15
A2 0.02 0.4 0.43 0.67 30, 70 1023.05, 1025.15
A3 0.01 0.4 0.43 0.67 30, 70 1024.1, 1025.15

B1 0.03 0.35 0.43 0.67 30, 70 1022, 1025.15
B2 0.03 0.3 0.43 0.67 30, 70 1022, 1025.15

C1 0.03 0.4 0.33 1 25, 75 1022, 1025.15
C2 0.03 0.4 0.25 1.5 20, 80 1022, 1025.15

Although not shown, it is worth mentioning that the wave-
length of the quasi-linear tides does not deviate from the lin-
ear case in any of the settings of study and is independent
of the strength of the tidal forcing (and hence of the Froude
number) and of the height of the topography. However, as
predicted from linear theory for interfacial waves, an increase
in g′ or H1 (with H1<H2 and D being constant) generates
longer internal tides.

The amplitude saturation described above is further illus-
trated in Fig. 3 for run A1, where snapshots of leftward-
propagating quasi-linear internal tides are shown for various
forcing strengths (see legend). This spatial view shows how
the increase in the forcing transforms the wave from a sinu-
soidal to an asymmetric shape, indicative of the presence of
higher harmonics, while the amplitude becomes saturated.

These findings raise the question as to whether solitons
emerging from a disintegration of the initially quasi-linear in-
ternal tides may be subjected to saturation before they reach
a limiting “table-top” shape. We examine this question in the
next section by focussing on runs A1, B1 and C1, varying the
height of the topography and the thickness of the upper layer
while preserving a high stratification. The latter allows us to
investigate the broadest range of interfacial wave amplitudes,
as suggested by Fig. 2a.

5 Numerical experiments: fully nonlinear internal tides
and solitons

In this section we investigate the conditions by which tidally
generated fully nonlinear solitons may attain a limiting am-
plitude. Special attention is devoted to factors conditioning
the growth of fully nonlinear waves as “table-top” solitons.
The main question to address is whether the amplitudes of
tidally generated solitons may be subjected to limiting am-
plitudes of the underlying quasi-linear internal tides, as we
hypothesized in the previous section, thus qualifying predic-
tions from classical eKdV and MCC theories.

5.1 Tide-generated “table-top” solitons: run A1

In Fig. 4a a spatial overview of leftward-propagating inter-
nal tides and solitons is shown after nine tidal periods of run
time. The tidal forcing is fairly strong and this leads to the
generation of “table-top” solitons in a supercritical regime
(Fr= 1.13, U0 = 90 cm s−1). In subsequent panels, a set of
snapshots zooms in on the spatial domain of Fig. 4a to high-
light the different stages of the nonlinear disintegration of the
internal tides.
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Figure 3. Snapshots of the interfacial displacement of leftward-propagating quasi-linear internal tides for run A1 (H1= 30 m;
Lp= 35.49 km). The amplitude saturation is evident as the tidal forcing is increased and the flow becomes supercritical (see legend). The run
time is nine tidal periods.

At a first stage, Fig. 4b, the internal tide splits up into
two different groups of rank-ordered solitons: a train of de-
pressions on the leading edge, and a train of elevations, af-
ter the former packet, with initially smaller amplitudes. At
a later stage, Fig. 4c, the largest elevations have reached the
smaller depressions in the train, and three leading solitons at
the front present almost equal amplitudes. Previous solitary
wave packets, already propagating away from the generation
area, are shown in Fig. 4d and e and correspond to preceding
disintegrated internal tides. The “table-top” soliton observed
at the leading edge of every preceding internal tide emerged
in all cases from the first of the three solitons described pre-
viously in Fig. 4c.

As the leading soliton evolves and reaches its maximum
amplitude, it also broadens, as predicted by soliton wave the-
ory (Helfrich and Melville, 2006), in comparison with subse-
quent solitons of smaller amplitude (Fig. 4d, e). The observed
increase in the distance between the “table-top” soliton and
subsequent (smaller) solitons also indicates that, as expected
from theory, the leading soliton moves (phase speed) faster
than solitons in the tail.

Because tidally generated solitons are part of the evolving
internal tides, z= 0 cannot be used as a reference level to
compute the amplitude down to the trough of the soliton (see
Figs. 1 and 4). Similarly, the soliton width cannot be mea-
sured taking z= 0 as a reference level. A criterion is required
to adopt a suitable reference level for calculating the soliton
amplitude, As, and width, Ls. Here we introduce the refer-
ence level Za , which for every leftward-propagating soliton
indicates where the first spatial derivative of the interfacial

displacement, Z, becomes zero. Accordingly, the soliton am-
plitude,As, is defined as the vertical distance betweenZa and
the trough of the leading soliton, located at Zb (see e.g. in
Fig. 4c–e). The soliton width, Ls, is defined as the horizontal
distance between Zc and Zd , located halfway of the vertical
distance spanning As (see also e.g. in Fig. 4c–e). Finally, the
soliton phase speed, cs, is computed by subtracting the ve-
locity of the (mimicked) tidal flow, U, from the velocity of
the soliton embedded within the internal tide.

Using the above criteria, Fig. 5 presents the wave evolution
of leading solitons under different forcing strengths (see leg-
end) towards a fully developed stage. Contrary to what one
might expect, the amplitudes of the leading solitons decrease
during their evolution (Fig. 5a). This can be ascribed to their
tide-generated nature. At an early stage, the disintegration of
the internal tide leads at its front to a large depression, and
this subsequently evolves into a mature leading soliton prop-
agating through the tail of the preceding internal tide (see
Fig. 4c–e).

The soliton reaches its maximum amplitude slightly before
the flow becomes critical (Fr= 0.88) and attains the “table-
top” form in the supercritical regime when forced with a
stronger tidal flow (Fr= 1.13). Unexpectedly, when the tidal
forcing is increased even further, the soliton width starts to
decrease while keeping its maximum amplitude (cf. Fig. 5a
and b). This feature is unlike classical eKdV and MCC the-
ories, suggesting that limiting factors related to the forcing
may be acting.

Generally speaking, we distinguish between two types of
solitons regarding their timescales of growth (see Fig. 5a and
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Figure 4. Snapshots of the interfacial displacement of nonlinear internal tides and solitons in run A1 for a supercritical regime (Fr= 1.13,
U0 = 90 cm s−1). (a) Overview of leftward-propagating internal tides and solitons. (b–e) Set of spatial zooms from (a) showing different
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tidal periods. For scaling purposes we recall that, for run A1, H1=30 m and Lp= 35.49 km.
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b). First, the smaller and narrower solitons, generated in a
subcritical regime and which attain a nearly constant shape
quickly after their generation (Fr 6 0.5). Second, the larger
and broader solitons, generated in nearly critical and su-
percritical regimes and which evolve over longer timescales
(Fr > 0.88). We distinguish here three different states for
strongly nonlinear solitons, which are indicated with vertical
dashed lines and labels in Fig. 5a and b. During State I emerg-
ing solitons evolve as transient waves which broaden linearly
until they reach a fully developed form. Then, in State II, they
preserve their shape in time and, occasionally, may overtake
the preceding internal tide, which is State III, causing the os-
cillations observed in the width, amplitude and phase speed
in Fig. 5a, b, and d.

In agreement with the above description, the phase speed
graphs also reveal a clear distinction between the subcritical
and critical/supercritical regimes (Fig. 5d). On the one hand,
smaller solitons show a nearly constant phase speed. They
were generated with a small or moderate tidal forcing (sub-
critical flow). On the other hand, larger solitons present an
oscillating phase speed which increases over time. They were
generated with a relatively strong tidal forcing (critical and
supercritical flow). The oscillation is the response to a gov-
erning flow where the accelerating and decelerating phases of
the soliton are imposed by the direction of the tidal flow. This
is seen by comparing the instantaneous Froude number, Fr′,
in Fig. 5c with the soliton phase speed in Fig. 5d. Crucial mo-
ments occur when Fr′ =−1 and Fr′ <−1. During the for-
mer, solitons cannot propagate against the tidal flow, and re-
main stationary. During the latter, leftward-propagating soli-
tons experience a rightward advection driven by the larger
tidal flow.

Finally, we compare in Fig. 6 the wave properties of ma-
ture forced-MCC solitons3 with KdV-type and MCC soli-
ton solutions (Kakutani and Yamasaki, 1978; Ostrovsky and
Stepanyants, 1989; Miyata, 1985, 1988; Choi and Camassa,
1999; Helfrich and Melville, 2006; Gerkema and Zimmer-
man, 2008). To this aim, the soliton width for KdV-type and
MCC theories is computed following the same procedure as
for the forced-MCC solitons; that is, we use points Zc and
Zd (see Fig. 4c–e).

As expected, small tide-generated solitons approach the
linear long-wave phase speed for interfacial waves (cs/cp ≈

1), while larger tide-generated solitons have a higher phase
speed following a curve as in eKdV and MCC theory. How-
ever, because tide-generated solitons ride on internal tides,
their wave properties are not simply the response to a two-
fluid layer system as such, as happens for eKdV and MCC
solitons, but they are also subjected to the forcing of the sys-
tem and to a variable background flow (the internal tide). We
suggest that the above scenario may account for the slower
phase speeds of the forced-MCC solitons when compared to

3These wave properties correspond to solitons of State II (ma-
ture solitons) after time averaging over a tidal cycle.

their eKdV and MCC counterparts. Interestingly, this differ-
ence slightly decreases as the solitons grow (cf. the length of
the coloured dashed lines in Fig. 6a).

As regards the relationship between the soliton width and
amplitude, tide-generated solitons follow a similar behaviour
to that predicted by eKdV and MCC theory, broadening
as they approach their maximum amplitude. By this broad-
ening, strongly nonlinear solitons develop the “table-top”
shape, although forced-MCC equations generate some larger
and narrower solitons than their eKdV and MCC counter-
parts (Fig. 6b).

5.2 Growth limitation of tide-generated solitons:
runs B1 and C1

We use for runs B1 and C1 a similar range of Froude numbers
as for run A1; however, they present a more weakly nonlin-
ear regime where a striking feature emerges. Leading soli-
tons exhibit a maximum amplitude which is not related to a
“table-top” form and which cannot be exceeded by further
increasing the tidal forcing (see Figs. 7a and 8a). They reach
this limiting amplitude in both cases when the flow is su-
percritical (run B1: Fr= 1.26; and run C1: Fr= 1.33). More
importantly, above this limit, the strengthening of the tidal
forcing leads to a narrowing and amplitude decrease in the
leading solitons (Figs. 7a, b and 8a, b). We recall here that
the decrease in the soliton width after reaching its maximum
is also observed when the tidal forcing leading to limiting
solitons in run A1 is increased (see Fig. 5a, b).

The above results support the idea that tidally generated
solitons might be subject to a limited growth which is beyond
the classical KdV and MCC-type models, being due to the
saturation of the underlying quasi-linear internal tide as the
tidal forcing increases (see Sect. 4).

According to their phase speed, and in agreement with
findings from run A1, two types of leading solitons also
emerge in runs B1 and C1. The larger nonlinear solitons (crit-
ical and supercritical regimes) exhibit an oscillating speed,
in phase with the tidal flow, which increases over time.
The smaller nonlinear solitons (subcritical regime) exhibit a
nearly constant phase speed (Figs. 7a, c, d and 8a, c, d).

From Figs. 9 and 10, we gain further insight into the dif-
ferent stages by which internal tides generate saturated lead-
ing solitons in runs B1 (Fr= 1.26, U0= 100 cm s−1) and C1
(Fr= 1.33, U0= 100 cm s−1). In contrast to run A1 (Fig. 4),
here the internal tides do not split up into two different
groups of solitons, but disintegrate into solitary wave pack-
ets of rank-ordered depressions. Also, the “table-top” solitary
waves that lead the internal tides in run A1 (Fig. 4d, e) are
not present in runs B1 and C1, as previously discussed from
the wave property analyses. We attribute this absence to the
lower height of the topography in run B1 and the decrease in
the upper layer thickness in run C1.

On the one hand, the smaller topography generates quasi-
linear internal tides which are smaller than those in run A1
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Figure 6. Solitary wave solutions for mature leading solitons in run A1 from the KdV (grey line), eKdV (black line) and MCC (red line)
theories compared to numerical solutions from the forced-MCC equations (coloured dots refer to the Froude number and strength of the
tidal flow; see legend). (a) Soliton phase speed scaled to the linear long-wave phase speed for interfacial waves (cs/cp) vs. soliton amplitude
scaled to the thickness of the upper layer (−As/H1). (b) Soliton width scaled to the total water depth (Ls/D) vs. soliton amplitude scaled to
the thickness of the upper layer (−As/H1).
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Figure 7. Wave evolution of leftward-propagating leading solitons in run B1 under different forcing strengths (see legend). In all panels the
x axis indicates the run time and soliton age (in brackets) in tidal periods. The (dimensionless) wave properties are (a) soliton amplitude,
As/H1; (b) soliton width, Ls/D; (c) instantaneous Froude number, Fr ′=U/cp; and (d) soliton phase speed, cs/cp. Note that we take cp to
be negative (leftward propagation) for consistency with the physical meaning of the different sign in Fr′. For scaling purposes, we recall that
in run B1, H1 = 30 m, D= 100 m and cp=−79 cm s−1.

(see Fig. 2). With all other parameters being the same, the
smaller internal tide in run B1 then exhibits a weaker non-
linear disintegration. On the other hand, the thinner H1 in
run C1 requires a maximum amplitude to attain the “table-
top” form, which is larger than for runs A1 and B1 (see
−Am/H1 in Table 1). In this context, the smaller quasi-

linear internal tides generated in run C1, by comparison with
run A1 (see Fig. 2c), do not lead to strongly nonlinear dis-
integration in the full forced-MCC model, not even in the
supercritical regime of Fr> 1. Indeed, although both run A1
and run C1 generate leading solitons with a relatively simi-
lar amplitude, the latter run exhibits mature leading solitons
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Figure 8. Same as Fig. 7 but for run C1. For scaling purposes, we recall that, in run C1, H1 = 25, D= 100 and cp=−75 cm s−1.

which are significantly smaller and narrower (cf. Figs. 4d,
e and 10d, e), suggesting that dispersive effects might over-
come nonlinearities more noticeably when the upper layer is
thinner.

When compared with solitary wave solutions from eKdV
and MCC theories, the growth-limiting effect of the tidal
forcing becomes a remarkable feature of forced-MCC soli-
tons generated in runs B1 and C1, since they reach a limiting
amplitude but do not attain a “table-top” form (Fig. 11b, d).
In this context it is also worthwhile noting that in run B1 satu-
rated solitons have amplitudes larger than those predicted by
eKdV and MCC theories, whereas in run C1 saturated soli-
tons have amplitudes well below those predicted by eKdV
and MCC theories. Counterintuitively, it is also evident from
both runs B1 and C1 that the leading solitons have smaller
amplitudes and widths as the tidal forcing increases above
the saturation point, as previously noted from Figs. 7 and 8.

Regarding the relationship between the soliton phase
speed and amplitude, both runs B1 and C1 follow a simi-
lar curve to that predicted by the eKdV and MCC theories
(Fig. 11a, c), although the phase speed of forced-MCC so-
lutions is slower in all cases, as occurred for run A1 (see
Fig. 6a). Also similar to run A1, the deviation in phase speed
between MCC and forced-MCC solutions is observed to de-
crease as the solitons grow (cf. the length of the coloured
dashed lines in Fig. 11a, c), suggesting that small solitons
might be more subject to forcing effects.

5.3 Effects of the Earth’s rotation: runs A1, B1 and C1

In Fig. 12 the effects of the Earth’s rotation on the wave evo-
lution of fully nonlinear tide-generated solitons are shown
for runs A1, B1 and C1. The different coloured lines refer to
the rotationless case (black line); θ = 15◦, µp= 0.27 (green
line); θ = 30◦, µp= 0.52 (blue line); and θ = 45◦, µp= 0.73
(red line).

In agreement with previous studies, we observe in all pan-
els that an increase in the latitude leads to larger dispersive
effects due to Coriolis dispersion, which prevents the nonlin-
ear internal tide from disintegrating into strongly nonlinear
solitons (Gerkema and Zimmerman, 1995; Gerkema, 1996).
This causes the long internal waves to envelop less solitary
waves. Also, the internal tides are shown to travel faster as
rotation becomes stronger, as rotation increases the phase
speed of the linear internal tide, cf (c2

f = c
2
0 + f

2/k2, with
k being the wavelength of the internal tide). Although the
soliton speeds themselves are only very weakly affected by
rotation, they appear to be travelling faster since they are em-
bedded in the internal tide from which they emerge. As a con-
sequence, leading solitons overtake more quickly preceding
internal tides.

6 Discussion and conclusions

We investigate limiting amplitudes of internal tides and soli-
tons using a generalization of the fully nonlinear MCC equa-
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Figure 9. Snapshots of the interfacial displacement of nonlinear internal tides and solitons in run B1 for a supercritical regime (Fr= 1.26,
U0 = 100 cm s−1). (a) Overview of leftward-propagating internal tides and solitons. (b–e) Set of spatial zooms from (a) showing different
stages of the nonlinear disintegration of the internal tides. The run time is nine tidal periods. For scaling purposes, we recall that, for run B1,
H1 = 30 m and Lp= 35.49 km.
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Figure 10. Snapshots of the interfacial displacement of nonlinear internal tides and solitons in run C1 for a supercritical regime (Fr= 1.33,
U0 = 100 cm s−1). (a) Overview of leftward-propagating internal tides and solitons. (b–e) Set of spatial zooms from (a) showing different
stages of the nonlinear disintegration of the internal tides. The run time is nine tidal periods. For scaling purposes, we recall that, for run C1,
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Figure 11. Solitary wave solutions for mature leading solitons in run B1 (top row) and run C1 (bottom row) from KdV (grey line), eKdV
(black line) and MCC (red line) theories compared to numerical solutions from the forced-MCC equations (coloured dots refer to the Froude
number and strength of the tidal flow; see legend). (a, c) Soliton phase speed scaled to the linear long-wave phase speed for interfacial waves
(cs/cp) vs. soliton amplitude scaled to the thickness of the upper layer (−As/H1). (b, d) Soliton width scaled to the total water depth (Ls/D)
vs. soliton amplitude scaled to the thickness of the upper layer (−As/H1).
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Figure 12. Effects of the Earth’s rotation through a set of snapshots from runs A1 (Fr= 1.13; U0= 90 cm s−1), B1 (Fr= 1.26;
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tions (Miyata, 1985, 1988; Choi and Camassa, 1999), ex-
tended here with forcing terms and Coriolis effects (forced-
MCC-f ). The focus is on the effects of the forcing, which
represents a novelty in the existing literature and provides
a closer view to an ocean-like scenario. The mechanism for
internal tide generation is represented by a horizontally oscil-
lating sill, mimicking a barotropic tidal flow over topography.
Solitons are generated by a disintegration of the internal tide.

The application of an oscillating topography is not com-
pletely equivalent to the oceanic case of a tidal flow over
a topography at rest. For this reason we have restricted our
analyses to a parameter space where a semi-equivalence be-
tween both forcing systems was demonstrated (Appendix C).
This agreement encourages us to conclude that our findings
are not an artifact caused by the use of a mimicked barotropic
tidal flow. Of course the findings presented here cannot de-
scribe the whole variety of the specific oceanic conditions.
However, we believe that this study improves our under-
standing of the generation and evolution of tide-generated
solitons.

Numerical solutions show that strongly nonlinear tide-
generated solitons attain in some cases a limiting table-
shaped form, in agreement with classical soliton theory.
However, results also suggest that tide-generated solitons
may alternatively be limited by saturation of the underlying
quasi-linear internal tide. In the purely linear system the am-
plitude of the internal tide increases linearly with the strength
of the barotropic tidal flow. But in the quasi-linear case, as the
forcing becomes stronger, advective terms become stronger
too and cannot be neglected. (Again, in the quasi-linear case,
barotropic advection is retained, but interactions of the baro-
clinic field with itself are neglected). As a result, a satura-
tion in the amplitude of the internal tide occurs; a further
increase in the tidal flow does not produce a larger internal
tide. This effect seems to have passed unnoticed in previous
studies, but might be a key factor in the subsequent disinte-
gration of the internal tide into solitons. It implies that when
one includes the genuinely nonlinear effects, i.e. products of
baroclinic terms, resulting solitons may stay well below their
formal limiting amplitude, no matter how strong the forc-
ing. Interestingly, an increase in the tidal forcing above the
value that generates table-shaped solitons, or above the value
that simply generates solitons attaining an earlier limitation
in growth, causes a narrowing and, subsequently, a decrease
in amplitude. The upshot is that increasing the tidal forcing
above a certain strength does not lead to larger solitons, but,
counterintuitively, to smaller ones.

Motivated by the above finding, we performed analogous
runs using the full set of weakly nonlinear equations de-
rived in Gerkema (1996). Because these equations are built
around the framework of the classical KdV theory and Klein–
Gordon equations, one would not expect that an amplitude
saturation of solitons could occur. Nevertheless, results (not
shown here) demonstrate that both the quasi-linear internal
tides and weakly nonlinear tide-generated solitons also ex-

hibit a limiting amplitude. Noting that this model works with
an actual tidal flow over a topography at rest, it seems rea-
sonable to argue that the limiting factor is inherent to the
tidal forcing. This supports the idea that the forced-MCC-f
equations represent an insightful tool for the fully nonlinear
framework, where tidally generated solitons may attain limit-
ing amplitudes with or without reaching a table-shaped form.

Another departure from classical theories is that strongly
nonlinear tide-generated solitons may exhibit larger maxi-
mum amplitudes than predicted from eKdV and MCC so-
lutions, while soliton phase speeds are always smaller. We
attribute these differences to the fact that tide-generated soli-
tons ride on internal tides and, hence, their wave properties
are not simply the response to a two-fluid layer system as
such, as in eKdV and MCC solitons, but are also subjected to
the forcing of the system, to a variable background flow, and
to interfacial displacements of the internal tide itself. In this
context, numerical results also show that solitons propagate
freely from the source only when the tidal flow is small (sub-
critical flow), while an increase in the tidal forcing (critical
and supercritical flow) generates accelerating and decelerat-
ing phases of the soliton speed.

In relation to the rotational cases, and in agreement with
previous studies (Gerkema and Zimmerman, 1995; Gerkema,
1996), numerical results from the forced-MCC-f equations
show that when rotation becomes stronger, the dispersive ef-
fect of the Coriolis force becomes stronger too and over-
comes nonlinearities, thus preventing the internal tide from
disintegrating into solitons.

Before concluding we must note, reiterating arguments by
Ostrovsky and Grue (2003), that fully nonlinear, weakly non-
hydrostatic models entail a paradox to the effect that strongly
nonlinear solitons appear from a set of equations that have
strong nonlinearity but weak dispersion, while the very exis-
tence of solitons presumes a balance between the two. In our
case, the MCC-type model is used, involving only the lowest-
order nonhydrostatic dispersive terms. Despite the small pa-
rameter featuring in the nonhydrostatic terms, they may ac-
tually become large in practice (i.e. in the numerical runs)
if internal wave profiles are steepening, hence contradicting
the original assumption. Indeed, there is no guarantee that
the higher-order dispersive terms, which were dropped from
these equations, would always remain small. A suggestion
for future work is, therefore, to check our results against a
numerical computation with a fully nonlinear nonhydrostatic
set of equations.

7 Data availability

The modeling data used by this study are freely available but
not otherwise published in any publicly accessible database.
The data can nonetheless be provided on request via e-mail
to the first author.
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Appendix A: Numerical strategy

We define a grid in time and space for discretization of the
various derivatives of the system. Then,

tn = n1t and xj = j1x

are introduced for integer values of n (time step) and j (spa-
tial step), where 1t and 1x are the magnitude of the steps.
Time- and spatial-dependent variables are described as e.g.
y(tn,xj ), at any time and position. Thus, ynj is the value of
the variable y at the current time and spatial step, n and j ,
respectively. Consequently, n+ 1 represents the “next time
step”, and so n− 1 is the “previous time step”, and analo-
gously for j in the spatial grid.

The various derivatives in the model are discretized with
centered difference approximations (Durran, 1999) as fol-
lows:

yt (tn,xj ) =̂
yn+1
j − ynj

1t
, (A1)

yx(tn,xj ) =̂
ynj+1− y

n
j

1t
, (A2)

yxx(tn,xj ) =̂
ynj+1− 2ynj + y

n
j−1

(1x)2
, (A3)

yxt (tn,xj ) =̂
yn+1
j+1 − y

n
j+1− (y

n+1
j−1 − y

n
j−1)

21x1t
, (A4)

yxxt (tn,xj )=̂
yn+1
j+1 − y

n
j+1− 2(yn+1

j − ynj )+ (y
n+1
j−1 − y

n
j−1)

(1x)21t
. (A5)

Initially the system is at rest with horizontal velocities, ui
and vi , and displacement of the interface, ζ , being all zero
at the first two time levels (n− 1, n). The thickness of the
upper, h1, and lower, h2, layers, together with the topogra-
phy, h(X), describes the two-layer system. At the next time
step (n+ 1), we start to move the topography to the right,
creating the effect of a tidal motion flowing to the left. For
given U , i.e. scaled velocity of moving topography (Eq. 47),
and time step, the excursion of the topography is a known
quantity which is used to shift (first, second and third) spatial
derivatives of h(X) at every new time step.

The time derivatives of the vi momentum and continu-
ity equations (51), (52) and (53) are solved numerically us-
ing the third-order Adams–Bashforth approximation (Dur-
ran, 1999), for which v1, v2 and ζ at the next time step (n+1),
and at all j positions, are determined in terms of the known
quantities at the previous two time steps (n− 1, n).

However, solving numerically u1 from Eq. (49) is not
straightforward, as we deal with three different time deriva-
tives of u1 accompanied by space–time-dependent coeffi-
cients. Thus, after collecting the various time derivatives in-
volving u1 on the one side, and all remaining terms on the
other side, the horizontal momentum equation of u1 takes an
expression of the form

a u1,t + b u1,xt + c u1,xxt = Y (tn,xj ), (A6)

where a, b and c represent spatial derivatives of space–time-
dependent variables (ζ(x, t) and h(x, t)), and Y (tn,xj ) rep-
resents a collection of known quantities whose values may
be dependent on time and/or space. In the remainder, we de-
scribe the numerical method to solve this set of partial differ-
ential equations. If we treat the time derivative as a collective
term on the left-hand side, we can write

(au1 + b u1,x + c u1,xx)t = Y (tn,xj )

+ (at u1+ bt u1,x + ct u1,xx), (A7)

which leads us to the introduction of a new variable, U1,
which groups coefficients a, b, and c and time derivatives
of u1 and turns our problem into a numerically solvable ex-
pression of the form

U1,t = Y (tn,xj )+ (at u1+ bt u1,x + ct u1,xx). (A8)

It is important to recall here that Y (tn,xj ) and the spatial
derivatives of u1 are both evaluated at the current time step
(n); the time derivatives of a, b and c, which involve values
of ζ at the current (n) and new time step (n+ 1), have been
previously evaluated with Eq. (53) via Adams–Bashforth ap-
proximation. This allows us to rewrite the above expression
as

U1,t = R(tn,xj ) (A9)

by grouping all known quantities on the right-hand side un-
der the variableR(tn,xj ). Next we need to discretize the time
derivative of U1, but before doing that, we discretize its spa-
tial derivatives using Eqs. (A2) and (A3), resulting in

U1 =

(
aj −

2 cj
21x

)
u1j +

(
−bj

21x
+

cj

(1x)2

)
u1j−1

+

(
bj

21x
−

cj

(1x)2

)
u1j+1 ,

which we rewrite by introducing factors d, e and f as fol-
lows:

U1j = dj u1j + ej u1j−1 + fj u1j+1 . (A10)

If we now discretize the time derivative of U1 and apply
Adams–Bashforth, we obtain a numerically solvable expres-
sion for U1 at the next time step, which reads

U
n+1
1j = U

n

1j +
1t

12

(
23Rnj − 16Rn−1

j + 5Rn−2
j

)
, (A11)

where U1
n+1
j actually includes

U
n+1
1j = dn+1

j un+1
1j + e

n+1
j un+1

1j−1
+ f n+1

j un+1
1j+1

. (A12)

To close our system, we still need to obtain un+1
1j for all j

terms. To that end, the equation above is more complicated
to solve and gives rise to implicit equations, as we not only
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have the unknown un+1
1j , but also un+1

1j−1
and un+1

1j+1
, which

come from the mixed second and third derivatives of u1 in
Eq. (A6). However, this is a well-known problem that can be
solved using the tridiagonal matrix algorithm (TDMA), also
known as the Thomas algorithm (Logan, 1987).

The choice of the space–time steps1t and1x is based on
two main requirements. Firstly, the resolution in x (1x) must
be sufficiently fine to resolve third-derivative terms and en-
sure that any short, solitary-like waves are properly resolved.
Nevertheless, Kelvin–Helmholtz instabilities may not be fil-
tered out. In this type of model, Jo and Choi (2002) found
that solitary waves of sufficient amplitude could be unstable
at high wavenumbers due to Kelvin–Helmholtz instability.
Thus, if the grid resolution is too fine, unstable short waves
will emerge near the wave crest and ultimately explode nu-
merically (Jo and Choi, 2002; Helfrich and Melville, 2006;
Helfrich and Grimshaw, 2008). In some cases, the instabil-
ity can be controlled by filtering out wavenumbers above
a threshold (W. Choi, personal communication, 2007; cited
in Helfrich and Grimshaw, 2008). For our numerical ex-
periments we consider a 1x course enough to prevent the
problem. A second condition follows from the requirement
of stability. Thus, for a given spatial step one may take the
Courant–Friedrichs–Lewy condition for the linearized equa-
tions as an indication of the required time step. The criterion
implies that 1x/1t should be larger than the phase speed
of the wave, taking special care where the advection by the
barotropic tidal flow (here mimicked with the moving topog-
raphy) should be added to the phase speed to apply the crite-
rion properly (Gerkema, 1994).

For the simulations we present, it was not needed to fil-
ter out wavenumbers above a threshold to control Kelvin–
Helmholtz instabilities, as we designed the space–time grid
to avoid this problem. However, in some cases, especially in
the simulations where the forcing was fairly strong, an ad-
ditional trick was needed to retain stability around the gen-
eration area (Gerkema, 1994). In those cases averages were
taken in the vicinity of the top of the sill (around the steepest
part of the topography), where the instabilities arose. At one
particular point (xj , tn) in space–time, new values of ui , vi
and ζ were calculated by taking the average of the old val-
ues at xj−1, xj and xj+1, and subsequently in time between
tn and tn−1. The disturbance provoked by this procedure was
tested and found to be a minor effect only, as it was only
applied over the closest region to the top of the topography.

Appendix B

B1 Forced-MCC-f model equations

In Appendix A, the numerical scheme used to solve the
model is explained using a generic expression (A6) for the
ui horizontal momentum equation (49). Here we present the
full set of nondimensional forced equations actually used for

the numerical solving of the model. The procedure is as fol-
lows.

Firstly, all terms of the ui horizontal momentum equa-
tion (49) are worked out and grouped according to their phys-
ical effects (i.e. linear, nonlinear and dispersive effects from
the upper and lower layers, and from topography), leaving
unknown quantities involving time derivatives of u1 on the
left-hand side. The resulting expression (B1) resembles (A6),
where coefficients a, b and c involve derivatives of space–
time-dependent variables and Y (tn,xj ) is represented here
by the sum of all terms on the right-hand side,

a u1,t + b u1,xt + c u1,xxt =

linear + nonlinear+ dispersive1+ dispersive2

+ dispersivetopo+
δη2

(1−h)[
(η2hx − η2ζx)φx −

η2
2

3
φxx

+ φ(
η2

2
hxx + ζxhx)

]
, (B1)

u2 =
Uh− η1u1

η2
, (50)

v1,t =−µu1−u1v1,x +O(δ2), (51)

v2,t =−µu2−u2v2,x +O(δ2), (52)

ζt = (h1− ζ )u1,x −u1ζx, (53)

with

φ =
1
η2

[
hUt +U

2hx + (u1− u2)(η1u1,x − u1ζx)+ u2Uhx

]
, (B2)

a(ζ,h) = 1+
δη2

1−h

[
(η2hx − η2ζx)(η1/η2)x

−
η2

2
3
(η1/η2)xx +

η1

η2

(η2

2
hxx + ζxhx

)]
, (B3)

b(ζ,h) = δ

(
1−

η1

1−h

)
η1ζx

+
δη2

1−h

[
η1

η2
(η2hx − η2ζx)

−
2η2

2
3
(η1/η2)x

]
, (B4)

c(ζ,h)=−δ

(
1−

η1

1−h

)
η2

1
3
−

δη2

(1−h)
η1η2

3
, (B5)

linear= µv1+ ζx +
1

1−h

[
hUt +U

2hx + u2ht

]
, (B6)
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nonlinear = −u1u1,x +
1

1−h

[
(u1− u2)ζt + u1η1u1,x

+ u2η2u2,x −µ(η1v1+ η2v2)− η1ζx
]
, (B7)

dispersive1 = δ

(
1−

η1

1−h

)
[
−η1ζx

(
u1u1,xx − (u1,x)

2
)

+
η2

1
3
(u1u1,xxx − u1,xu1,xx)

]
, (B8)

dispersive2 =
δη2

1−h

[
−η2ζx

(
u2u2,xx − (u2,x)

2
)

−
η2

2
3
(u2u2,xxx − u2,xu2,xx)

]
, (B9)

dispersivetopo =
δη2

(1−h)

[
u2hx

(
η2u2,xx + ζxu2,x

)
+

η2

2

(
Uthxx +U

2hxxx + 2Uu2,xhxx

+ 2u2Uhxxx + 3u2u2,xhxx + u
2
2hxxx

)
+ ζx

(
Uthx +U

2hxx

+ 2u2Uhxx + u
2
2hxx

)]
. (B10)

B2 Linear and quasi-linear forced-MCC-f model
equations

The quasi-linear forced-MCC-f model follows from ne-
glecting the purely nonlinear terms and weakly nonhydro-
static dispersive terms in Eqs. (B1) and (50)–(53). The equa-
tions are linear with regard to the baroclinic fields, but the
coefficients become time-dependent due to barotropic advec-
tion (which is prescribed) and, therefore, higher harmonics
will be generated when the forcing is increased. The quasi-
linear version of the forced-MCC-f equations reads as

u1,t = µv1+ ζx

+
1

1−h

[
hUt +U

2hx + u2ht

− µ(h1v1+ (h2−h)v2)−h1ζx] , (B11)

u2 =
Uh−h1u1

h2−h
, (B12)

v1,t =−µu1, (B13)

v2,t =−µu2, (B14)

ζt = h1u1,x . (B15)

We notice that the linear runs were actually done some-
what indirectly by taking the quasi-linear version of forced-
MCC-f equations above, Eqs. (B11)–(B15), and reducing
the forcing by a factor of 100 since the quasi-linear terms
cannot be removed explicitly in this model setting without
also removing the forcing. Afterwards we enhance the am-
plitude in the plots accordingly. By reducing the forcing, we
effectively enter the linear regime.

Appendix C: Oscillating topography vs. tidal flow

A Galilean transformation involves two frames of reference
which move with constant and rectilinear speed with respect
to each other. Hence, observations made in one frame can be
converted to another, as physical laws are identical. However,
our oscillating topography is not an inertial frame since it is
accelerated with respect to a situation where the topography
is at rest (as in the ocean). It is, therefore, not evident that the
results from the two frames are equivalent.

We use the generation model of weakly nonlinear, weakly
nonhydrostatic interfacial waves derived in Gerkema (1996),
which works with tidal motion over a fixed topography, as a
benchmark for testing the impact of our “non-inertial” frame
of reference. If we compare interfacial waves generated from
the nonlinear version of both models, differences are ex-
pected to arise from the fact that forced-MCC equations are
fully nonlinear. For this reason we restrict the comparison to
the linear and quasi-nonlinear model versions. If the results
between the forcing systems turn out to be similar, it seems
reasonable to assume an equivalence in the nonlinear case as
well.

In Appendix Fig. C1, interfacial waves generated from
both models are presented for various numerical experiments
under a fairly strong forcing, i.e. when both models may be
expected to deviate more noticeably from each other. Our
interests focus then on the upper limit of the supercritical
regime (Fr>1) that we can reach while still preserving a good
agreement between both generation mechanisms. The differ-
ent settings in Fig. C1 differ in the strength of stratification
from top to bottom panels, while the thicknesses of the upper
and lower layers (H1= 30 m, H2= 70 m) and the height and
width of the sill are kept fixed (HT = 40 m and HL= 10 km
in Eq. 54).

Results from Fig. C1 indicate that in all cases a close
correspondence exists between numerical solutions from
Gerkema (1996) (grey line) and the forced-MCC equations
(black line), suggesting only a minor impact of the non-
inertial nature of our frame of reference when reaching up to
Fr∼1.5. These results encourage us to interpret the speed of
the oscillating topography as the “strength of the tidal flow”
within the parameter space of this study.
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Figure C1. Linear (left panels) and quasi-linear (right panels) interfacial waves generated via a tidal flow over a sill from the model equations
derived in Gerkema (1996) (grey line) and via a horizontally oscillating sill from the model equations derived in this study (black line). The
Froude number and corresponding strength of the (mimicked) tidal flow are indicated in the upper-right corner of each panel. For scaling
purposes one must note that the wavelength of the linear long-wave interfacial wave, Lp, varies from top to bottom panels as Lp= 35.5 km
(g′= 0.03 m s−1) in (a) and (b); Lp= 29 km (g′= 0.02 m s−1) in (c) and (d); and Lp= 20.5 km (g′= 0.01 m s−1) in (e) and (f). The run
time is nine tidal periods.
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