Articles | Volume 22, issue 6
https://doi.org/10.5194/npg-22-713-2015
https://doi.org/10.5194/npg-22-713-2015
Research article
 | 
30 Nov 2015
Research article |  | 30 Nov 2015

Universal multifractal Martian topography

F. Landais, F. Schmidt, and S. Lovejoy

Related authors

Geographic variability in dust and temperature in climate scaling regimes over the Last Glacial Cycle
Nicolás Acuña Reyes, Elwin van't Wout, Shaun Lovejoy, and Fabrice Lambert
Clim. Past, 20, 1579–1594, https://doi.org/10.5194/cp-20-1579-2024,https://doi.org/10.5194/cp-20-1579-2024, 2024
Short summary
Review article: Scaling, dynamical regimes, and stratification. How long does weather last? How big is a cloud?
Shaun Lovejoy
Nonlin. Processes Geophys., 30, 311–374, https://doi.org/10.5194/npg-30-311-2023,https://doi.org/10.5194/npg-30-311-2023, 2023
Short summary
Fractional relaxation noises, motions and the fractional energy balance equation
Shaun Lovejoy
Nonlin. Processes Geophys., 29, 93–121, https://doi.org/10.5194/npg-29-93-2022,https://doi.org/10.5194/npg-29-93-2022, 2022
Short summary
The fractional energy balance equation for climate projections through 2100
Roman Procyk, Shaun Lovejoy, and Raphael Hébert
Earth Syst. Dynam., 13, 81–107, https://doi.org/10.5194/esd-13-81-2022,https://doi.org/10.5194/esd-13-81-2022, 2022
Short summary
The half-order energy balance equation – Part 1: The homogeneous HEBE and long memories
Shaun Lovejoy
Earth Syst. Dynam., 12, 469–487, https://doi.org/10.5194/esd-12-469-2021,https://doi.org/10.5194/esd-12-469-2021, 2021
Short summary

Related subject area

Subject: Scaling, multifractals, turbulence, complex systems, self-organized criticality | Topic: Solid earth, continental surface, biogeochemistry
Size distribution law of earthquake-triggered landslides in different seismic intensity zones
Yidan Huang and Lingkan Yao
Nonlin. Processes Geophys., 28, 167–179, https://doi.org/10.5194/npg-28-167-2021,https://doi.org/10.5194/npg-28-167-2021, 2021
Short summary
Application of fractal models to delineate mineralized zones in the Pulang porphyry copper deposit, Yunnan, southwestern China
Xiaochen Wang, Qinglin Xia, Tongfei Li, Shuai Leng, Yanling Li, Li Kang, Zhijun Chen, and Lianrong Wu
Nonlin. Processes Geophys., 26, 267–282, https://doi.org/10.5194/npg-26-267-2019,https://doi.org/10.5194/npg-26-267-2019, 2019
Short summary
The adaptive particle swarm optimization technique for solving microseismic source location parameters
Hong-Mei Sun, Jian-Zhi Yu, Xing-Li Zhang, Bin-Guo Wang, and Rui-Sheng Jia
Nonlin. Processes Geophys., 26, 163–173, https://doi.org/10.5194/npg-26-163-2019,https://doi.org/10.5194/npg-26-163-2019, 2019
Short summary
Spatial and radiometric characterization of multi-spectrum satellite images through multi-fractal analysis
Carmelo Alonso, Ana M. Tarquis, Ignacio Zúñiga, and Rosa M. Benito
Nonlin. Processes Geophys., 24, 141–155, https://doi.org/10.5194/npg-24-141-2017,https://doi.org/10.5194/npg-24-141-2017, 2017
Short summary
Scale and space dependencies of soil nitrogen variability
Ana M. Tarquis, María Teresa Castellanos, Maria Carmen Cartagena, Augusto Arce, Francisco Ribas, María Jesús Cabello, Juan López de Herrera, and Nigel R. A. Bird
Nonlin. Processes Geophys., 24, 77–87, https://doi.org/10.5194/npg-24-77-2017,https://doi.org/10.5194/npg-24-77-2017, 2017
Short summary

Cited articles

Aharonson, O., Zuber, M. T., and Rothman, D. H.: Statistics of Mars' topography from the Mars orbiter laser altimeter: slopes, correlations, and physical Models, J. Geophys. Res.-Planet., 106, 23723–23735, https://doi.org/10.1029/2000JE001403,
Baldassarri, A., Montuori, M., Prieto-Ballesteros, O., and Manrubia, S. C.: Fractal properties of isolines at varying altitude revealing different dominant geological processes on Earth, J. Geophys. Res., 113, E09002, https://doi.org/10.1029/2007JE003066, 2008.
Gagnon, J.-S., Lovejoy, S., and Schertzer, D.: Multifractal earth topography, Nonlin. Processes Geophys., 13, 541–570, 2006.
Gilbert, L.: Are Topographic Data Sets Fractal?, in: Fractals in Geophysics, edited by: Scholz, C. H. and Mandelbrot, B. B., Pure Appl. Geophys., 131, 241–254, 1989.
Kreslavsky, M. A. and Head, J. W.: Kilometer-scale roughness of Mars: results from MOLA data analysis, J. Geophys. Res.-Planet., 105, 26695–26711, 2000.
Download
Short summary
In the present study, we investigate the scaling properties of the topography of Mars. Planetary topographic fields are well known to exhibit (mono)fractal behavior. Indeed, fractal formalism is efficient in reproducing the variability observed in topography. Our results suggest a multifractal behavior from the planetary scale down to 10 km. From 10 km to 300 m, the topography seems to be simple monofractal.