Articles | Volume 22, issue 3
Nonlin. Processes Geophys., 22, 289–312, 2015
https://doi.org/10.5194/npg-22-289-2015
Nonlin. Processes Geophys., 22, 289–312, 2015
https://doi.org/10.5194/npg-22-289-2015

Research article 08 May 2015

Research article | 08 May 2015

Two-dimensional numerical simulations of shoaling internal solitary waves at the ASIAEX site in the South China Sea

K. G. Lamb and A. Warn-Varnas

Related subject area

Subject: Nonlinear Waves, Pattern Formation, Turbulence | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
Particle clustering and subclustering as a proxy for mixing in geophysical flows
Rishiraj Chakraborty, Aaron Coutino, and Marek Stastna
Nonlin. Processes Geophys., 26, 307–324, https://doi.org/10.5194/npg-26-307-2019,https://doi.org/10.5194/npg-26-307-2019, 2019
Short summary
Explosive instability due to flow over a rippled bottom
Anirban Guha and Raunak Raj
Nonlin. Processes Geophys., 26, 283–290, https://doi.org/10.5194/npg-26-283-2019,https://doi.org/10.5194/npg-26-283-2019, 2019
Short summary
Internal waves in marginally stable abyssal stratified flows
Nikolay Makarenko, Janna Maltseva, Eugene Morozov, Roman Tarakanov, and Kseniya Ivanova
Nonlin. Processes Geophys., 25, 659–669, https://doi.org/10.5194/npg-25-659-2018,https://doi.org/10.5194/npg-25-659-2018, 2018
Short summary
On the phase dependence of the soliton collisions in the Dyachenko–Zakharov envelope equation
Dmitry Kachulin and Andrey Gelash
Nonlin. Processes Geophys., 25, 553–563, https://doi.org/10.5194/npg-25-553-2018,https://doi.org/10.5194/npg-25-553-2018, 2018
Short summary
Laboratory and numerical experiments on stem waves due to monochromatic waves along a vertical wall
Sung Bum Yoon, Jong-In Lee, Young-Take Kim, and Choong Hun Shin
Nonlin. Processes Geophys., 25, 521–535, https://doi.org/10.5194/npg-25-521-2018,https://doi.org/10.5194/npg-25-521-2018, 2018
Short summary

Cited articles

Alford, M. H., Lien, R. C., Simmons, H., Klymak, J., Ramp, S., Yang, Y. J., Tang, D., and Chang, M.-H.: Speed and evolution of nonlinear internal waves transiting the South China Sea, J. Phys. Oceanogr., 40, 1338–1355, https://doi.org/10.1175/2010JPO4388.1, 2010.
Apel, J. R., Holbrook, J. R., Liu, A. K., and Tsai, J. J.: The Sulu Sea internal soliton experiment, J. Phys. Oceanogr., 15, 1625–1641, 1985.
Boegman, L. and Ivey, G. N.: Flow separation and resuspension beneath shoaling nonlinear internal waves, J. Geophys. Res., 114, c02018, https://doi.org/10.1029/2007JC004411, 2009.
Buijsman, M. C., Kanarska, Y., and McWilliams, J. C.: On the generation and evolution of nonlinear internal waves in the South China Sea, J. Geophys. Res., 115, C10057, https://doi.org/10.1029/2009JC006004, 2010.
Duda, T. F., Lynch, J. F., Irish, J. D., Beardsley, R. C., Ramp, S. R., Chiu, C.-S., Tang, T. Y., and Yang, Y.-J.: Internal tide and nonlinear wave behavior at the continental slope in the northern South China Sea, IEEE J. Ocean. Eng., 29, 1105–1130, https://doi.org/10.1109/JOE.2004.836998, 2004.
Download
Short summary
Two-dimensional numerical simulations of the shoaling of an internal solitary wave (ISW) in the South China Sea have been undertaken. Peak amplitudes are attained at depths of 250 and 600m. Horizontal resolutions of 50m are required to simulate the formation of a pedestal in shallow water behind the shoaling wave. At a depth of 200m, waves can exceed maximum ISW amplitudes by 50%. Sensitivity to the bathymetry and stratification and the effects of rotation are considered.