Articles | Volume 22, issue 2
https://doi.org/10.5194/npg-22-117-2015
https://doi.org/10.5194/npg-22-117-2015
Research article
 | 
04 Mar 2015
Research article |  | 04 Mar 2015

Propagation regimes of interfacial solitary waves in a three-layer fluid

O. E. Kurkina, A. A. Kurkin, E. A. Rouvinskaya, and T. Soomere

Related authors

Exceedance frequency of appearance of the extreme internal waves in the World Ocean
Tatyana Talipova, Efim Pelinovsky, Oxana Kurkina, Ayrat Giniyatullin, and Andrey Kurkin
Nonlin. Processes Geophys., 25, 511–519, https://doi.org/10.5194/npg-25-511-2018,https://doi.org/10.5194/npg-25-511-2018, 2018
Short summary
Kinematic parameters of internal waves of the second mode in the South China Sea
Oxana Kurkina, Tatyana Talipova, Tarmo Soomere, Ayrat Giniyatullin, and Andrey Kurkin
Nonlin. Processes Geophys., 24, 645–660, https://doi.org/10.5194/npg-24-645-2017,https://doi.org/10.5194/npg-24-645-2017, 2017
Short summary
Features of fluid flows in strongly nonlinear internal solitary waves
S. Semin, O. Kurkina, A. Kurkin, T. Talipova, E. Pelinovsky, and E. Churaev
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npgd-1-1919-2014,https://doi.org/10.5194/npgd-1-1919-2014, 2014
Revised manuscript not accepted
Short summary

Related subject area

Subject: Nonlinear Waves, Pattern Formation, Turbulence | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
Particle clustering and subclustering as a proxy for mixing in geophysical flows
Rishiraj Chakraborty, Aaron Coutino, and Marek Stastna
Nonlin. Processes Geophys., 26, 307–324, https://doi.org/10.5194/npg-26-307-2019,https://doi.org/10.5194/npg-26-307-2019, 2019
Short summary
Explosive instability due to flow over a rippled bottom
Anirban Guha and Raunak Raj
Nonlin. Processes Geophys., 26, 283–290, https://doi.org/10.5194/npg-26-283-2019,https://doi.org/10.5194/npg-26-283-2019, 2019
Short summary
Internal waves in marginally stable abyssal stratified flows
Nikolay Makarenko, Janna Maltseva, Eugene Morozov, Roman Tarakanov, and Kseniya Ivanova
Nonlin. Processes Geophys., 25, 659–669, https://doi.org/10.5194/npg-25-659-2018,https://doi.org/10.5194/npg-25-659-2018, 2018
Short summary
On the phase dependence of the soliton collisions in the Dyachenko–Zakharov envelope equation
Dmitry Kachulin and Andrey Gelash
Nonlin. Processes Geophys., 25, 553–563, https://doi.org/10.5194/npg-25-553-2018,https://doi.org/10.5194/npg-25-553-2018, 2018
Short summary
Laboratory and numerical experiments on stem waves due to monochromatic waves along a vertical wall
Sung Bum Yoon, Jong-In Lee, Young-Take Kim, and Choong Hun Shin
Nonlin. Processes Geophys., 25, 521–535, https://doi.org/10.5194/npg-25-521-2018,https://doi.org/10.5194/npg-25-521-2018, 2018
Short summary

Cited articles

Apel, J. R., Ostrovsky, L. A., Stepanyants, Y. A., and Lynch, J. F.: Internal solitons in the ocean and their effect on underwater sound, J. Acoust. Soc. Am., 121, 695–722, 2007.
Bogucki, D. J. and Redekopp, L. G.: A Mechanism for sediment resuspension by internal solitary waves, Geophys. Res. Lett., 26, 1317–1320, 1999.
Camassa, R., Rusas, P.-O., Saxen, A., and Tiron, R.: Fully nonlinear periodic internal waves in a two-fluid system of finite depth, J. Fluid Mech., 652, 259–298, 2010.
Chin-Bing, S. A., Warn-Varnas, A., King, D. B., Hawkins, J., and Lamb, K. G.: Effects on acoustics caused by ocean solitons – Part B: Acoustics, Nonlinear. Anal.-Theor., 71, 2194–2204, 2009.
Choi, W. and Camassa, R.: Weakly nonlinear internal waves in a two-fluid system, J. Fluid Mech., 313, 83–103, 1996.
Download
Short summary
We have derived exact analytical expressions for the coefficients of evolution equations of long wave motion in the three-layer fluid with arbitrary parameters of the layers and established interrelations of these equations for different interfaces. To our understanding, the core advancement is the clarification and mapping of the regimes of soliton appearance and propagation in this environment that is much more realistic for the description of ocean internal waves.