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Abstract. Long weakly nonlinear finite-amplitude internal

waves in a fluid consisting of three inviscid layers of arbi-

trary thickness and constant densities (stable configuration,

Boussinesq approximation) bounded by a horizontal rigid

bottom from below and by a rigid lid at the surface are de-

scribed up to the second order of perturbation theory in small

parameters of nonlinearity and dispersion. First, a pair of al-

ternatives of appropriate KdV-type equations with the coef-

ficients depending on the parameters of the fluid (layer posi-

tions and thickness, density jumps) are derived for the dis-

placements of both modes of internal waves and for each

interface between the layers. These equations are integrable

for a very limited set of coefficients and do not allow for

proper description of several near-critical cases when certain

coefficients vanish. A more specific equation allowing for a

variety of solitonic solutions and capable of resolving most

near-critical situations is derived by means of the introduc-

tion of another small parameter that describes the properties

of the medium and rescaling of the ratio of small parame-

ters. This procedure leads to a pair of implicitly interrelated

alternatives of Gardner equations (KdV-type equations with

combined nonlinearity) for the two interfaces. We present a

detailed analysis of the relationships for the solutions for the

disturbances at both interfaces and various regimes of the ap-

pearance and propagation properties of soliton solutions to

these equations depending on the combinations of the pa-

rameters of the fluid. It is shown that both the quadratic and

the cubic nonlinear terms vanish for several realistic config-

urations of such a fluid.

1 Introduction

There are many important topics related to internal waves

(IWs) in the ocean. Large IWs are highly significant for sed-

iment resuspension and transport (Bogucki and Redekopp,

1999; Stastna and Lamb, 2008; Reeder et al., 2011) and for

the biology on the continental shelf (Sandstrom and Elliott,

1984). The currents forced by large or breaking IWs cause

powerful forces on marine platforms and submersibles. The

associated strong distortion of the density field has a severe

impact on acoustic signaling (Apel et al., 2007; Chin-Bing

et al., 2009; Warn-Varnas et al., 2009; Sridevi et al., 2011).

Their capacity to break and impact the local microstructure

has major consequences for the understanding of interior

ocean mixing (Muller and Briscoe, 2000). Internal waves are

believed to be responsible for substantial damage (Osborne,

2010). High water velocities in intense IWs can create enor-

mous local loads and bending moments and represent a po-

tential danger to off-shore structures, such as oil platforms,

drill rigs, etc. The danger from IWs is considered so critical

that, similar to the systems of tsunami warning, the poten-

tial for automated detection systems for large-amplitude IWs

(internal soliton early warning systems) is being discussed

now. Such systems were even tested to support drilling cam-

paigns and guarantee the safety of drilling platforms (Stober

and Moum, 2011).

Most of the studies of IWs focus on large-amplitude lo-

calized IWs, which propagate in relatively shallow areas of

oceans, shelf regions or semi-sheltered seas. A fascinating

feature of many waves of this kind is that they propagate

for a long time without any significant change in their en-
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ergy or shape as solitons do (Jeans, 1995). They can be inter-

preted and adequately described as internal solitary waves

(ISWs) and are often referred to as internal solitons (Os-

trovsky and Stepanyants, 1989; Grimshaw, 2001). Observa-

tions of large-amplitude ISWs are presented in many original

research papers and reviews (Holloway et al., 2001; Jack-

son, 2004; Ostrovsky and Stepanyants, 2005; Sabinin and

Serebryany, 2005; Vlasenko et al., 2005; Apel et al., 2007;

Grimshaw et al., 2007).

The concept of layered fluid, widely used for both theoret-

ical research and applications, is convenient for the descrip-

tion of IWs because wave motion in such environments is

described by equations containing a small number of param-

eters and often allowing for analytical studies of the prop-

erties of solutions. These simple models are able to mirror

the basic properties of the actual internal wave systems. The

efficiency of the two-layer model – the simplest system basi-

cally representing the key properties of IWs – has been estab-

lished in numerous analytical and numerical studies as well

as by means of in situ observations and laboratory experi-

ments (Funakoshi, 1985; Funakoshi and Oikawa, 1986; Mirie

and Pennell, 1989; Choi and Camassa, 1996, 1999; Pullin

and Grimshaw, 1998; Craig et al., 2004; Guyenne, 2006; Za-

hibo et al., 2007; Camassa et al., 2010).

The two-layer model only conditionally represents the ver-

tical structure of seas and oceans. Its direct extension – three-

layerstratification – has proved to be a proper approxima-

tion of the sea water density profile in some basins in the

world ocean with specific hydrological conditions (Knauss,

1996; Leppäranta and Myrberg, 2009; Kurkina et al., 2011a).

Three-layer models are more complex than two-layer sys-

tems, because of the increased number of set-up parameters,

but they represent new dynamical effects and allow for much

more analytical progress compared to the arbitrary stratified

medium. Another advantage of three-layer models in contrast

to two-layer ones is the ability to describe two modes of IWs,

their properties and possible interactions.

Nonlinear theory of IWs in a three-layer fluid with con-

stant density in each layer is presented in the literature

in the framework of different approaches. Simplified equa-

tions for three-layer conjugate flows are derived in Lamb

(2000) and Rusås and Grue (2002), and some analytic re-

sults are obtained to understand conjugate flows and, in con-

sequence, large-amplitude, flat-centered (table-like) solitary

internal waves of both modes. Comparison with solutions ob-

tained for continuous stratifications is also given in Lamb

(2000). A fully nonlinear numerical method for the calcula-

tion of solitary waves in a three-layer fluid (Rusås and Grue,

2002) allows for the investigation of both mode-1 and mode-

2 waves, including broad flat-centered waves and extreme

(overhanging) waves. The similarity of mode-1 waves to the

interfacial waves in a two-layer fluid is the probable reason

why the analysis is mainly performed for situations when

one of the layers is relatively thin. These models have greatly

contributed to the understanding of nonlinear internal wave

properties in three-layer fluids and flows. They are, however,

often very complex, and the results are not easy to visualize.

The drawback is that the analytical progress is limited and

numerical computations should be involved to obtain final

localized solutions and to analyze their properties.

Although contemporary numerical methods and fully non-

linear approaches such as the above-discussed method of

conjugate flows allow for extensive studies into properties

of highly nonlinear IWs, many specific features can still be

recognized, analyzed and understood using classical methods

for analytical studies into IWs in the weakly nonlinear frame-

work. Such fully analytical methods make it possible to es-

tablish exactly the appearance of disturbances of different

shapes and amplitudes, and, more importantly, to understand

the specific features of the behavior of waves correspond-

ing to the situation where a substantial change in the over-

all regime of wave propagation is possible (Kurkina et al.,

2011a).

Weakly nonlinear analytical models of different levels for

IWs in a three-layer fluid have been developed for some spe-

cific situations. The properties of mode-1 IWs in a symmet-

ric three-layer fluid (when the undisturbed state is symmetric

about the mid-depth) were analyzed up to the second order

in nonlinearity by Grimshaw et al. (1997). An extension in-

volving up to the fourth-order nonlinear terms was derived

in Kurkina et al. (2011b). The model of Yang et al. (2010)

involved both modes of IWs in a general three-layer ocean,

the first order in nonlinearity and dispersion (Korteweg–de

Vries (KdV) approximation; only mode-2 waves were ana-

lyzed). The weakly nonlinear theory for a continuously strat-

ified fluid can be used to derive the parameters of evolution

equations for IWs in a three-layer fluid (Grimshaw et al.,

1997; Yang et al., 2010). These parameters for continuous

stratification are given in the form of integral expressions in-

cluding the vertical mode (whose shape is determined by the

density stratification), its higher-order corrections and their

derivatives (Lamb and Yan, 1996; Pelinovskii et al., 2000;

Grimshaw et al., 2002). When this technique is adapted to a

layered model (with a piecewise continuous density profile),

the relevant integrands contain very complex expressions (es-

pecially for higher-order corrections and coefficients) involv-

ing generalized functions, and analytical progress in their

analysis is not always possible. Therefore, it is preferable

initially to use equations for layered models and to apply

asymptotic expansions to them directly. This approach has

been used, for instance, in Kurkina et al. (2011b) and Koop

and Butler (1981).

A specific feature of weakly nonlinear equations for a

three-layer fluid is that some coefficients at the nonlinear

terms may vanish for certain modes and certain specific den-

sity stratifications (Kakutani and Yamasaki, 1978; Grimshaw

et al., 1997; Yang et al., 2010). This feature is common for

several wave classes in stratified environments (Soomere,

2003). Some coefficients at the nonlinear terms may vanish

even in a two-layer fluid with the surface tension between the
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Figure 1. Definition sketch of the three-layer fluid and internal waves of mode-1 (left) and mode-2 (right).

layers (Giniyatullin et al., 2014; Kurkina et al., 2015). In such

cases, it is often necessary to account for higher-order non-

linear terms to describe the motion adequately. In the case of

IWs in a three-layer fluid, it is necessary to produce a second-

order weakly nonlinear theory to resolve some of such situa-

tions. The attempts in this direction have so far been limited

to the specific case of symmetric stratification (Kurkina et al.,

2011b).

We develop here an analytic model for long IWs of finite

amplitude for the three-layer fluid with an arbitrary combina-

tion of the layers’ thicknesses. Such a vertical structure much

better matches the properties of real seas and oceans. The

relevant nonlinear evolutionary equations are obtained first

with the use of an asymptotic procedure from the governing

equations for three homogeneous fluid layers. The derivation

of these equations relies on the second order of the pertur-

bation theory for both interfaces and for the waves of each

mode. The developed framework makes it possible to inves-

tigate the properties of both modes of long internal gravity

waves in a three-layer fluid. The key development is that,

for each equation, the coefficients at the nonlinear terms and

terms expressing linear and nonlinear dispersion of waves

are expressed explicitly via parameters of the fluid configura-

tion. This makes it possible to analyze comprehensively the

behavior and signs of all coefficients. The necessary order

of the equations is discussed and determined for each case.

Special attention is paid to the situations when the nonlinear

terms of the lowest order of the perturbation theory can van-

ish. For such situations, a particular rescaling is performed

in order to balance the nonlinear and dispersion terms in the

equations.

2 Governing equations

As usual in the analysis of long internal waves, let us con-

sider a model situation of irrotational motions in a three-layer

inviscid fluid with undisturbed interface positions z=H1,2

(H2 ≥H1) and total thickness H3(H3 ≥H2) overlying a flat

horizontal bottom located at z= 0 in the approximation of a

rigid lid on the surface of the fluid (Fig. 1). The reference

density of the middle layer is ρ2 = ρ and the densities in

the lowermost and uppermost layers are ρ1 = ρ+1ρ1 and

ρ3 = ρ−1ρ2, respectively. We employ the Boussinesq ap-

proximation and assume that densities in the layers differ in-

significantly (1ρ1,2/ρ� 1). In this case, the equations of the

motion are Laplace equations for the velocity potential8i in

each layer:

∇
28i = 0, i = 1,2,3. (1)

The kinematic boundary conditions at the bottom and at

the fixed upper boundary reduce to the condition that vertical

velocities at these boundaries vanish:

81z = 0 at z= 0, 83z = 0 at z=H3. (2)

Here and further on, the subscripts x, y, z or t denote a

partial derivative along the respective coordinate (x, y, z) or

with respect to time t . The classical kinematic and dynamic

boundary conditions at the interfaces between the layers are

as follows (Kurkina et al., 2011b):

ηt +81xηx −81z = 0

ηt +82xηx −82z = 0

ρ1

(
81t +

1
2
(∇81)

2
+ gη

)
= ρ2

(
82t +

1
2
(∇82)

2
+ gη

)
z=H1+ η(x, t), (3)

ζt +82x ζx −82z = 0

ζt +83x ζx −83z = 0

ρ2

(
82t +

1
2
(∇82)

2
+ gζ

)
= ρ3

(
83t +

1
2
(∇83)

2
+ gζ

)
z=H2+ ζ(x, t) . (4)

Here, the unknown functions η(x, t) and ζ(x, t) denote the

instantaneous position of the interface between the bottom

and middle layers and between the upper and middle layers,

respectively.

www.nonlin-processes-geophys.net/22/117/2015/ Nonlin. Processes Geophys., 22, 117–132, 2015



120 O. E. Kurkina et al.: Propagation regimes of interfacial solitary waves

3 Asymptotic procedure

The appearance of the proper evolution equation for a phe-

nomenon in a realistic environment may substantially depend

on the characteristic scales of the processes to be highlighted

or analyzed. Similarly to Kurkina et al. (2011b), our goal is

to derive an equation for small (but finite) amplitude long-

wave motions in a layered fluid. This goal naturally implies

two small parameters. Firstly, the typical horizontal scale of

wave motion L (equivalently, the typical wave length for lin-

ear or nonlinear wave trains) considerably exceeds the fluid

depthH . This assertion L�H not only ensures that a small

parameterH/L is present in the system, but also matches the

usual properties of environments supporting the IW motion

in natural water bodies. It also fits the basic assumptions of

common derivations of the KdV equation and its generaliza-

tions. Another small parameter naturally emerges from the

restriction that the amplitude a of the disturbances to the in-

terfaces’ positions from their undisturbed location is small

compared to the fluid depth. This assertion gives rise to the

parameter of nonlinearity ε = a/H � 1.

Our specific interest is to describe long-living solitary

waves, for which the dispersion in some sense balances the

impact of nonlinearity. As will be shown below, a convenient

parameter that characterizes the role of dispersion in wave

propagation is µ=H 2/L2. As the existence of long-living

nonlinear wave motions and solitary waves usually presumes

a specific balance between the terms representing nonlinear

and dispersive effects, we assume that ε ∼ µ0.

These assumptions and introduced parameters make it

possible to perform the analysis of the problem Eqs. (1)–(4)

in nondimensional form. The standard procedure of introduc-

ing nondimensional coordinates into Eqs. (1)–(4) under these

assumptions leads to the following boundary problem:

81zz + ε81xx = 0, 0≤ z ≤H1, (5)

82zz + ε82xx = 0, H1 ≤ z ≤H2, (6)

83zz + ε83xx = 0, H2 ≤ z ≤H3, (7)

81z = 0 at z= 0, 83z = 0 at z=H3 (8)

ηt + ε81xηx −81z = 0,

ηt + ε82xηx −82z = 0,

ρ1

(
81t +

1
2
ε
(
81x

)2
+

1
2

(
81z

)2
+gη)= ρ2

(
82t +

1
2
ε
(
82x

)2
+

1
2

(
82z

)2
+ gη

)


z=H1+ η(x, t), (9)

ζt + ε82x ζx −82z = 0,

ζt + ε83x ζx −83z = 0,

ρ2

(
82t +

1
2
ε
(
82x

)2
+

1
2

(
82z

)2
+gζ )= ρ3

(
83t +

1
2
ε
(
83x

)2
+

1
2

(
83z

)2
+ gζ

)


z=H2+ ζ(x, t). (10)

The asymptotic analysis of the resulting equations is

straightforward. As the procedure is fairly cumbersome,

largely follows a well-known approach (Koop and Butler,

1981) and provides almost no instructive aspects, we omit

its details and present only its basic steps. First, all unknown

functions are expanded into Taylor series in the vicinity of

one of the interfaces:

f (x,z=H1+ η(x, t), t)=

∞∑
j=0

ηj

j !

∂jf

∂zj

∣∣∣∣
z=H1

,

f (x,z=H2+ ζ(x, t), t)=

∞∑
j=0

ζ j

j !

∂jf

∂zj

∣∣∣∣
z=H2

.

All constituents of the resulting series are then expanded

into power series with respect to powers of the parameter

ε� 1:

η = ε
(
η0+ εη1+ ε

2η2+ . . .
)
, (11)

ζ = ε
(
ζ0+ εζ1+ ε

2ζ2+ . . .
)
.

It is easy to show that all the potentials 8i ∼
√
ε; conse-

quently, the power series for the potentials are as follows:

8i =
√
ε
(
ϕi,0+ εϕi,1+ ε

2ϕi,2+ . . .
)
, i = 1,2,3, (12)

Finally, we employ the technique of multiple temporal and

spatial scales (Engelbrecht et al., 1988; Nayfeh, 2000). The

“slow” time and “stretched” reference frame coordinate are

introduced as follows:

ξ = ε1/2(x− ct), τ = ε3/2t. (13)

Here, c denotes the (as yet unknown) phase speed of free

linear internal waves. This substitution is equivalent to the

following replacement of the operators of partial derivatives:

∂

∂x
= ε1/2 ∂

∂ξ
,

∂

∂t
=−ε1/2c

∂

∂ξ
+ ε3/2 ∂

∂τ
. (14)

Substitution of expansions (Eqs. 11–12) and definitions of

modified coordinates (Eqs. 13–14) into Eqs. (5)–(10) leads to

an infinite system of equations with respect to the elements of

expansions (Eqs. 11–12). Equations of the resulting system
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are scaled by one of the multiples ε1/2 or ε3/2, where they

arise. The obtained system can be solved recursively until

any desired order. The system of equations obtained in the

leading (lowest) order (∼ ε0) for the elements of expansions

(Eqs. 11–13) has the form (Ruvinskaya et al., 2010)

ϕi,0zz = 0, i = 1,2,3, (15)

ϕ1,0z = 0 at z= 0, ϕ3,0z = 0 at z=H3, (16)

ϕ1,0z = 0, ϕ2,0z = 0

−(ρ+1ρ)cϕ1,0ξ +1ρgη0 =−ρcϕ2,0ξ

}
z=H1, (17)

ϕ2,0z = 0, ϕ3,0z = 0

−ρcϕ2,0ξ + r1ρgζ0 =−(ρ− r1ρ)cϕ3,0ξ

}
z=H2, (18)

where 1ρ1 =1ρ, 1ρ2 = r1ρ. It follows from Eqs. (15)–

(18) that the functions ϕi,0, i = 1,2,3 do not depend on the

coordinate z.

The system of equations obtained in the first order (∼ ε1)

is

ϕi,1zz +ϕi,0ξξ = 0, i = 1,2,3, (19)

ϕ1,1z(z= 0)= 0, ϕ3,1z(z=H3)= 0,

cη0ξ +ϕ1,1z = 0, cη0ξ +ϕ2,1z = 0

(ρ+1ρ)
(
ϕ1,0τ − cϕ1,1ξ +

1
2
ϕ1,0ξ

)
+1ρgη1

= ρ
(
ϕ2,0τ − cϕ2,1ξ +

1
2
ϕ2

2,0ξ

)
z=H1, (20)

cζ0ξ +ϕ2,1z = 0, cζ0ξ +ϕ3,1z = 0

ρ
(
ϕ2,0τ − cϕ2,1ξ +

1
2
ϕ2

2,0ξ

)
+1ρgζ1

= (ρ− r1ρ)
(
ϕ3,0τ − cϕ3,1ξ +

1
2
ϕ2

3,0ξ

)
z=H2. (21)

From Eqs. (19)–(21), we obtain the following relation-

ships:

ϕ1,1z =−ϕ1,0ξξ z, ϕ3,1z = ϕ3,0ξξ (H3− z), (22)

ϕ1,0ξξH1 = cη0ξ , ϕ2,0ξξ (H1−H2)= c(η0− ζ0)ξ , (23)

ϕ3,0ξξ (H2−H3)= cζ0ξ .

Equations (22) and (23) together with Eqs. (17) and (18)

allow one to define the phase speed c of the linear IWs. The

relevant equation is bi-quadratic and, not unexpectedly, re-

veals that two wave modes exist in this system. One of them

results in synchronous in-phase movements of both the in-

terfaces. The other mode is antisymmetric: the motions of

the interfaces are synchronous but have opposite directions

(Fig. 1). The corresponding expressions for the phase speeds

are

c±2
=

1

2

1ρ

ρ
gH3 (l1 (1− l1)+ rl2 (1− l2)± d) (24)

=
1

2

1ρ

ρ
gH3

1

q±
,

where

d =

√
r2l2

2
(1− l2)

2− 2rl1(1− l2)(l2− l1(2− l2))+ l
2
1
(1− l1)

2

and l1,2 =H1,2/H3. The symmetric mode of internal waves

has the larger phase speed c+, corresponding to the “+” sign

before d in Eq. (24). For this reason, we call it fast mode, or

mode-1. The antisymmetric mode, whose phase speed is c−,

is called slow mode, or mode-2. Below we shall consider the

nonlinear motions of both modes.

The first-order and second-order corrections to the linear

solution satisfy the following equations:

ε2
: η±1τ +α

±η±1 η
±

1ξ
+β±η±1ξξξ

= 0, (25)

ζ±1τ + α̃
±ζ±1 ζ

±

1ξ
+ β̃±ζ±1ξξξ

= 0,

ε3
: η±2τ +α

±
(
η±1 η

±

2

)
ξ
+β±η±2ξξξ

+α±1 η
±2
1 η±1ξ

(26)

+β±1 η
±

1,5ξ
+ γ±1 η

±

1 η
±

1ξξξ
+ γ±2 η

±

1ξ
η±1ξξ
= 0,

ζ±2τ + α̃
±
(
ζ±1 ζ

±

2

)
ξ
+ β̃±ζ±2ξξξ

+ α̃±1 ζ
±2
1 ζ±1ξ

+ β̃±1 ζ
±

1,5ξ

+ γ̃±1 ζ
±

1 ζ
±

1ξξξ
+ γ̃±2 ζ

±

1ξ
ζ±1ξξ
= 0.

The coefficients of Eqs. (25) and (26) are presented in

the Appendix. The first-order equations (Eq. 25) are, as ex-

pected, the well-known KdV equations that describe the

motions of both the interfaces. The second-order equations

(Eq. 26) are linear equations with respect to η±2 and ζ±2 . Note

that equations for η±n and ζ±n have a similar structure for each

order n and differ from each other only by values of their co-

efficients (note also that the coefficients in the equations for

ζ±n have tildes). Furthermore, we omit indices “±” where

possible, having in mind different expressions for different

modes.

4 Equations for interfaces

In each order, we also obtain relationships between the cor-

responding terms in series (Eqs. 11–12). These relationships

for the first-order and second-order terms are

ζ1 = sη1, ζ2 = sη2+ squadη
2
1 + sdispη1ξξ x, (27)
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where

s = (l2− 2ql1 (l2− l1))/l1,

squad =
2q (l2− l1)

l1H3

((
α∗+ 3q

)
l1− 3

)
,

α∗ = αH3/c,

sdisp =
(l2− l1)H

2
3

6l1

(
2ql1

(
(l2− l1)

2
+ 12β∗

)
− l2 (l1+ l2)

)
,

β∗ = β/
(
cH 2

3

)
.

Note that s± =±1 for a symmetric stratification (H1 =

H3−H2, 1ρ1 =1ρ2, or r = 1) analyzed in Kurkina et al.

(2011b) for mode-1 waves.

Substituting ζ1, ζ2 into (Eq. 11), we obtain

ζ = ε (ζ1+ εζ2)+O
(
ε3
)

= εs (η1+ εη2)+ ε
2
(
squadη

2
1 + sdispη1ξξ

)
+O

(
ε3
)

(28)

= sη+ squadη
2
+ sdispηxx +O

(
ε3
)
.

Combining Eqs. (25) and (26) leads to the following gen-

eralizations of the KdV equation for the interfaces (presented

here in the original coordinates):

ηt + cηx +αηηx +βηxxx +α1η
2ηx +β1η5x (29)

+ γ1ηηxxx + γ2ηxηxx = 0,

ζt + cζx + α̃ζ ζx + β̃ζxxx + α̃1ζ
2ζx + β̃1ζ5x (30)

+ γ̃1ζ ζxxx + γ̃2ζxζxx = 0.

Although Eqs. (29) and (30) can be derived separately,

they are not independent. Every such derivation results in a

link to the solutions of the other equation. This link is pre-

sented explicitly in Eq. (28) for the equation for the lower

interface η(x, t). It allows for a direct calculation of the dis-

turbances for the upper interface ζ(x, t) with an accuracy of

O
(
ε3
)
. A similar link (not shown) exists for the determina-

tion of the disturbances of the lower interface using the solu-

tion for the upper interface. These couplings do not transform

an equation for one interface to an equation for the other in-

terface: e.g., substituting Eq. (28) into Eq. (30) does not yield

Eq. (29), but the difference includes terms which are higher

order than those retained in Eq. (29). The equation for one in-

terface and the equation obtained by substituting the connec-

tion between the two displacements into the relationship for

the other interface are only equivalent asymptotically as the

small parameters go to zero. Similar interrelations become

evident for a similar pair of Gardner equations below.

The coefficients of Eqs. (29) and (30) account for the main

properties of the environment supporting the internal wave

motion such as the location of the undisturbed interfaces, the

magnitude of the density jumps between the layers and the

total fluid depth. The main development here is the deriva-

tion of explicit expressions for the coefficients of these equa-

tions. The expressions for α±, α̃±, β±, β̃±, α±1 , α̃±1 are quite

complex and given in the Appendix. As the coefficients β1,

β̃1, γ1, γ̃1, γ2, γ̃2 are not analyzed in this paper, we do not

provide their explicit expressions here. Note that β± ≡ β̃±,

β±1 ≡ β̃
±

1 as they are just coefficients of k3 and k5 in the Tay-

lor expansion at small k (long-wave limit) of the dispersion

relation ω(k) for linear IWs in a three-layer fluid. This dis-

persion relation is the same for both interfaces for a fixed

mode.

The coefficients of the equation for the lower interface

mode-1 displacement η+ in the limitsH1→H2 orH2→H3

are reduced into known expressions for internal waves in a

two-layer fluid with density jumps 1ρ1+1ρ2 and 1ρ1, re-

spectively. For the mode-1 displacement of the upper inter-

face ζ+, the vanishing of the lowermost or middle layer (in

the limiting process H1→ 0 or H1→H2) leads to the cor-

responding formulations for parameters of IWs in two-fluid

systems with density jumps1ρ2 or1ρ1+1ρ2, respectively.

The similarity of the structures of the equations for distur-

bances of mode-1 and mode-2 considerably simplifies fur-

ther analysis; namely, it is sufficient for solving only one

of those equations (say, η) and then for using the above-

derived relationships to obtain an approximate solution to the

other equation. The relationship (Eq. 28) connecting interfa-

cial displacements should be used when the initial conditions

for Eq. (29) are being set up. A similar expression exists for

η(ζ ). This interdependence is, however, effective only during

limited time intervals. The relevant nonlinear and solitary-

wave solutions have different wave speeds (see Eq. 24) and

therefore will split over longer time intervals (considerably

larger than 1/ε). This process of separation of initially basi-

cally equivalent solutions for different modes implicitly ex-

presses the limitations of the applicability of the used asymp-

totic procedure.

5 Gardner equations for interfacial displacements

Equations (29) and (30) are integrable using the inverse scat-

tering method only for two specific sets of nontrivial values

of their coefficients (Newell, 1985; Zwillinger, 1997; Weis-

stein, 2002a, b). These sets, however, are not applicable to the

problem of internal wave motion in stratified environments,

for which this equation apparently remains nonintegrable. In

this case, stationary (in a properly chosen moving coordinate

system) solitary waves normally do not interact elastically.

They may be generated from a suitably chosen wave system

and they often radiate their energy during their motion and

interact with other components of the wave field in a com-

plicated manner (Marchant and Smyth, 1996; Osborne et al.,

1998; Osborne, 2010).

It was recognized already in the first studies of internal

waves using the KdV equation several decades ago that the

coefficient at the (first order in terms of the asymptotic pro-

cedure, or quadratic in the appearance) nonlinear term in this

equation may vanish or change its sign (Kakutani and Ya-

Nonlin. Processes Geophys., 22, 117–132, 2015 www.nonlin-processes-geophys.net/22/117/2015/



O. E. Kurkina et al.: Propagation regimes of interfacial solitary waves 123

masaki, 1978; Miles, 1979; Gear and Grimshaw, 1983). The

sign of the dispersive term, however, is always the same. Im-

portantly, the sign of the nonlinear term governs the polarity

of solitary waves and soliton solutions to the relevant equa-

tion. The event of vanishing of the relevant coefficient or a

change in its sign therefore leads to substantial rearrange-

ment of the wave propagation in the vicinity of the vanishing

location. A natural consequence is that an approaching soli-

ton of, say, elevation will be transformed into a soliton of de-

pression, and vice versa (Knickerbocker and Newell, 1980;

Talipova et al., 1997; Grimshaw et al., 1999).

In order to understand how this process functions, it is

necessary to build a higher-order equation that is able to de-

scribe the phenomena in the area where the coefficient at the

quadratic nonlinear term vanishes. Moreover, such equations

are crucial for the description of the wave motion in domains

where this term is much smaller than other terms and where

higher-order terms govern the wave evolution. The derivation

of such equations is possible through a detailed analysis of

the role of higher-order contributions (represented by coeffi-

cients α1, α̃1 in Eqs. 29 and 30) of the presented asymptotic

procedure into Eqs. (29) and (30) in cases when the quadratic

terms vanish or are small enough to be ignored.

The relevant generalization of the KdV equation is called

the Gardner equation. This equation contains a cubic nonlin-

ear term, the coefficient at which may also be sign-variable,

depending on the variations in the stratification (Talipova et

al., 1999; Grimshaw et al., 2002, 2010; Kurkina, 2011a). If

this term is negative (which is the case in a two-layer envi-

ronment), the solitons’ heights are limited and, in the process

of reaching the limiting height, the soliton widens infinitely

into a table-like disturbance. If the cubic term has a positive

coefficient, the Gardner equation possesses several types of

solitons with different polarities.

If the quadratic and cubic terms of Eqs. (29) and (30) have

the same order of magnitude, the above-described asymptotic

procedure is not applicable. A possibility is to make explicit

use of the smallness of the coefficient at the quadratic nonlin-

ear term and to assume that α ∼ δ, where δ� 1. A suitable

procedure may be constructed using asymptotic expansions

similar to Eqs. (10) and (11) but built for two independent

small parameters µ and ε (see, e.g., Lamb and Yan, 1996). It

is now necessary to account for second-order terms with re-

spect to both parameters. This can be done by re-expanding

the above series in terms of α ∼ δ. A meaningful evolution

equation can then be obtained using the condition that three

terms (quadratic and cubic nonlinearity, and the leading term

responsible for linear dispersion) are of the same order of

magnitude. This is possible if δ ∼ ε and µ∼ ε2.

The procedure itself is similar to the above-described tech-

nique, and sorting out the terms with similar powers of ε

leads to the desired evolution equations. These equations, at

the lowest order, for the disturbances at the interfaces of the

three-layer environment are equivalent to a pair of interre-

Figure 2. Shapes of soliton solutions to the Gardner equation for

different combinations of the signs of coefficients at its nonlinear

terms (idea of representation by R. Grimshaw, E. Pelinovsky and

T. Talipova).

lated Gardner equations:

ηt + cηx +αηηx +α1η
2ηx +βηxxx = 0, (31)

ζt + cζx + α̃ζ ζx + α̃1ζ
2ζx +βζxxx = 0.

Formally, they only differ from Eqs. (29) and (30) by the

absence of terms β1η5x , γ1ηηxxx and γ2ηxηxx . The actual

difference is, however, much deeper, as Eq. (31) expresses

the dynamics on another scale, governed by two independent

small parameters. This difference becomes to some extent

evident via another relationship between the soliton ampli-

tude and its width. These equations govern the interfacial

motion of weakly nonlinear finite-amplitude unidirectional

waves neglecting mode interactions. Their coefficients are

called environmental parameters, because they account for

the background conditions (configuration of the medium).

These coefficients are functions of the layers’ positions and

density jumps between the layers (or their ratio r).

Similarly to Eqs. (29) and (30), Eq. (31) is interrelated

within the accuracy of O(ε3):

ζ = sη+ squadη
2. (32)

An inverse of Eq. (32), η = η(ζ ), can be derived similarly

in a straightforward manner.

The analytical one-soliton solution of the Gardner equa-

tion is well known (Helfrich and Melville, 2006; Pelinovsky

et al., 2007):

η(x, t)=
A

1+Bcosh(γ (x−V t))
. (33)

The soliton velocity V = c+βγ 2 is expressed through the

inverse width of the soliton γ . The parameters A and B de-

pend on the coefficients of Eq. (31) and determine the soliton
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amplitude a as the extreme value of the function η(x, t) in

Eq. (33):

a =
A

1+B
, A=

6βγ 2

α
, B2

= 1+
6α1βγ

2

α2
. (34)

The parameters of the family of solutions can also be ex-

pressed through its amplitude a:

γ 2
= a

2α+ aα1

6β
, A= a

(
2+ a

α1

α

)
, B = 1+ a

α1

α
. (35)

There are different branches of the soliton solutions de-

pending on the signs of coefficients at the nonlinear terms;

see Fig. 2. The asymptotics of the solution (Eq. 33) is de-

scribed for instance in Pelinovsky et al. (2007).

6 Environmental parameters of IWs

Whilst the mathematical properties of the Gardner equation

and its solutions are quite well known, these properties may

vary radically along the propagation of realistic IWs in nat-

ural environments (Nakoulima et al., 2004). Therefore, it is

important to analyze the behavior of the environmental pa-

rameters for possible ranges of parameters of the medium,

which govern the kinematic and nonlinear characteristics of

the IW field. The above-described explicit expressions for

the coefficients of Eqs. (29) and (30) (see Appendix) remain

valid also for Eq. (31) and allow the production of the esti-

mates of nonlinear IW shapes, limiting amplitudes and pro-

jections of possible transformations of solitary IWs in an in-

homogeneous medium (Kurkina et al., 2011a).

To describe the behavior of the environmental parameters,

we use their graphs on the “phase” plane of scaled undis-

turbed interface positions (l1 =H1/H3, l2 =H2/H3) for the

fixed value of the ratio r of density jumps. Along the diagonal

l1 = l2, the two interfaces coincide, and this line represents a

two-layer fluid. The other diagonal l1 = 1− l2 corresponds

to the symmetric geometric configuration of layers that has

been addressed in detail in Kurkina et al. (2011b). As we al-

ways require l2 ≥ l1, the triangle to the left of the diagonal

l2 = l1 represents all possible ranges of l1 and l2. Therefore,

we use this triangle to analyze the environmental parame-

ters for the upper interface (coefficients in the equations for

ζ±). For a Boussinesq fluid, there is symmetry: switching

the depths of the upper and lower layers and interchanging

the density jumps will result in exactly the same behavior

with the waves flipped over. The coefficients for the equation

for η given in terms of l1 and l2 should be the same as the

equations for ζ given in terms of 1− l2 and 1− l1 and re-

placing r with 1/r . When the Boussinesq approximation is

involved, no preferred vertical direction exists; therefore, if

the solution of a fixed polarity exists in this framework, its

mirror disturbance is also a solution.

Figure 3. Variation in environmental parameters for IWs of fast (left

column) and slow (right column) modes in the particular case r = 1

(1ρ1 =1ρ2). Zero contours are given by bold black lines.

Figure 3 shows the maps of values of parameters c±, β±,

α̃±, α̃±1 as functions of l1 and l2 when r =1ρ2/1ρ1 = 1.

The parameters c± and β± are always positive for the three-

layer fluid. They tend to zero only when one of the layers

vanishes for mode-2 waves (c−, β−) or when the thick-

nesses of two out of the three layers simultaneously tend

to zero for mode-1 waves (c+, β+). The parameters c− and

β− both have one maximum for the symmetric configura-

tion l2 = 1−l1 = 3/4. Their counterparts c+ and β+ have the

maxima at the point l1 = l2 = 1/2, i.e., when the three-layer

fluid degenerates into a two-layer fluid with equal layers and

with a density jump of 21ρ.

A specific feature of the coefficients at the quadratic non-

linear term α±, α̃± is that they may vanish for some non-

degenerate three-layer configurations. These parameters for

mode-1 IWs vanish along the diagonal l2 = 1− l1 due to

the symmetry of the wave motion. They also have other co-

inciding zero contours passing through the points (0; 0.5),

(0.3; 0.7), (0.5; 1) on the plane (l1, l2). The signs of α+ and

α̃+ always coincide. Each of the quadratic nonlinear coeffi-

cients α− and α̃− for mode-2 IWs has a smooth zero contour
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Figure 4. Map of the appearance of possible soliton solutions to

the Gardner equation for a three-layer fluid for fast (left panel)

and slow (right panel) internal wave modes in the particular case

r = 1(1ρ1 =1ρ2). The legend of patterns is given at the top.

Bold black curves correspond to α̃ = 0. Bold grey curves corre-

spond to α̃1 = 0. The markers show points at which α̃ = α̃1 = 0.

Black squares indicate the combinations (l1, l2)= (9/26; 17/26)

≈ (0.3462; 0.6538), and grey circles the combinations (l1, l2)≈

(0.1703; 0.5717) and (l1, l2)≈ (0.4283; 0.8297).

passing through the points (0; 0), (0.25; 0.75), (1; 1) on the

plane (l1, l2). The signs of these parameters, determining the

polarity of solitary IWs in the KdV approximation, are al-

ways opposite, reflecting the structure of mode-2 waves that

always create oppositely directed interface displacements.

The coefficients at the cubic nonlinear terms α±1 , α̃±1 be-

have differently for IWs of different modes (Fig. 4). The co-

efficients α+1 and α̃+1 in the Gardner equation for mode-1 IWs

have two distinct closed zero contours passing through the

points (0; 1) and (9/26; 17/26) on the plane (l1, l2). The latter

point corresponds to the symmetric stratification. The possi-

bility of the change in the sign of the cubic nonlinear param-

eter at this point for IWs in a three-layer fluid was first men-

tioned in Grimshaw et al. (1997). For such a stratification,

both coefficients at the leading nonlinear terms in the weakly

nonlinear theory for mode-1 IWs vanish simultaneously. The

wave dynamics near such a regime is described by an ex-

tended (2+ 4) KdV equation (Kurkina et al., 2011b). There

exist two other such points (Fig. 4) in each half-plane. The

parameters α−1 and α̃−1 of mode-2 waves are always nega-

tive. Their minimal absolute values occur for a symmetric

stratification, when all layers are relatively thick. When one

of the layers vanishes, α−1 and α̃−1 tend to negative infinity,

reflecting the fact that the three-layer mode-2 wave regime

does not have a valid asymptotic process towards a two-layer

dynamics.

For both modes, the absolute values of the coefficients at

the quadratic and cubic terms of the equations for the upper

and lower interfaces are not equal except if they are zero or

if the stratification is symmetric. This feature exemplifies the

asymmetry of the interfacial displacements for asymmetric

three-layer stratifications.

Figure 4 illustrates possible soliton branches of IWs of

both modes for r =1ρ2/1ρ1 = 1. It is clear that all possi-

ble regimes shown in Fig. 2 can be implemented for mode-1

waves. Waves of both polarities can exist (waves of eleva-

tion on both interfaces or waves of depression on both in-

terfaces), but properties of such waves can be different for

different combinations of the parameters of the medium. The

left panel of Fig. 4 also presents information about all points

at which both the coefficients at the cubic and quadratic terms

are zero. Higher-order extensions of the weakly nonlinear

models have to be produced to provide a balance between

the nonlinear and dispersive terms and to describe IWs in the

vicinity of such points properly. These models for the points

corresponding to asymmetric stratifications (and not located

at the diagonal of the (l1, l2) plane) are supposed to be similar

to those described in Kurkina et al. (2011b) for a symmetric

situation.

The pool of solitonic mode-2 waves (Fig. 4, left panel)

consists of solitons with a limited amplitude. As described

above, these solitons broaden while approaching this limit

and form table-like structures. Their polarity on each inter-

face is determined by the sign of the coefficient at quadratic

nonlinear terms α−1 and α̃−1 . Thus, two types of mode-2

waves can exist in the three-layer fluid: convex waves dis-

placing the upper interface upward and the lower interface

downward, and concave waves doing the opposite. Both

types of mode-2 IWs were observed in the South China Sea

(Yang et al., 2010), but concave waves occur fairly rarely.

Convex waves were found much more often. They were ex-

perimentally observed in Mehta et al. (2002) and their na-

ture can be explained as an intrusion of water into the middle

layer.

The fluid at the mid-depth of a symmetric three-layer fluid

(with equal density jumps) is not displaced in the case of

mode-2 waves (Lamb, 2006), so a rigid boundary placed at

the mid-depth will not be affected by the flow. The solution

in the upper or lower half of the fluid is simply the solution

for a two-layer fluid involving half of the middle layer; these

“partial” solutions of course only exist together, and must be

synchronized. The middle layer plays the role of a fluid that

both underlies the upper layer and overlies the lower layer. If

half of the middle layer is shallower than the lower and up-

per layers, a hump of elevation may exist at the upper inter-

face, and a hump of depression at the lower one. This feature

was used to interpret mode-2 solitary IWs experimentally ob-

served by Mehta et al. (2002) with the help of the Gardner

model for a two-layer fluid.

A summary of the results of some calculations of fully

nonlinear and higher-order weakly nonlinear solitary IWs

is presented in Fig. 5. These data are in qualitative agree-

ment with the predictions of the model based on the Gardner

equation. Some differences can be explained by the use of

smoothed three-layer stratifications in numerical calculations

in Lamb (2006).
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Figure 5. Points corresponding to stratifications for which mode-

1 ISWs were considered in Boussinesq approximation with equal

density jumps in different approaches. Circles: positive polarity

waves (fully nonlinear numerical method for ISWs in a three-layer

fluid) (Rusås and Grue, 2002). Triangles: waves of elevation with a

minimum amplitude greater than zero; squares: waves of elevation

with no minimum amplitude (fully nonlinear numerical model, con-

tinuous almost three-layerstratification) (Lamb, 2006). Left vicin-

ity of the diamond on the line l2 = 1− l1: waves of both polarities

broaden and flatten while approaching an amplitude limit, (2+ 4)

KdV model for IWs in a symmetric three-layer fluid (Kurkina et al.,

2011a, 2012).

Figure 6. Comparison of curves α+
1
= 0 and α̃+

1
= 0 when 1ρ1 =

1ρ2. The intersection points are the same as marked points in

Fig. 5, left panel, where α+ = 0 and α̃+ = 0. The shaded regions

represent the configurations where the displacements of the inter-

faces belong to different branches of the solution of Eq. (33) shown

in Fig. 2.

The contours of α+1 = 0 and α̃+1 = 0 in Gardner equations

for the lower and the upper interface, respectively, are shown

in Fig. 6 for the case 1ρ1 =1ρ2. The difference between

zero contours as shown in Fig. 6 is related to the fact that the

second-order coefficients are not uniquely determined until

some choice is made as to what the dependent variable in

the weakly nonlinear equation represents: it could be the dis-

placement of the lower interface, the upper interface, the av-

erage of the two, the velocity at some level between the two

interfaces, etc. This was discussed, for example, in Lamb and

Yan (1996). While the first-order coefficients are not affected

by this choice, the second-order coefficients are. As the signs

of α+ and α̃+ are always the same for any fixed point of the

plane (l1, l2), both of these solutions are taken from the left

half-plane (α, α1) or both from the right half-plane. So, dif-

ferent choices give different predictions when we are close to

critical values where the cubic nonlinear coefficient is zero.

For the fully nonlinear dispersive equations, we will only be

in one regime.

The waves from mode-1 produce disturbances of the inter-

faces of the same polarity. Therefore, if α1 > 0, the polarity

of the solution matches the sign of α. The shaded areas in

Fig. 6 (the configurations where the displacements of the in-

terfaces belong to different branches of the solution; Eq. 33)

are located fairly close to the contours α+1 = 0, α̃+1 = 0. Con-

sequently, the absolute values of the coefficients α+1 and α̃+1
are small in these areas, and the corresponding solution ap-

parently resembles the KdV soliton. This regime is the lim-

iting one for the solutions corresponding to both “upper”

and “lower” families of small-amplitude solitons depicted in

Fig. 2. This feature confirms the correctness of the presented

constructions and the applicability of the solutions (η+, ζ+)

to internal waves of mode-1, even in these areas.

In this case, it should be decided to derive a Gardner equa-

tion for the lower interface or for the upper interface. The

fact that the relationship (Eq. 32) does not convert the sec-

ond of Eq. (31) to the first of Eq. (31) is connected to the

fact that deriving the Gardner equation for the upper inter-

face amounts to a different choice and hence results in differ-

ent coefficients. As for stratifications with the same density

jump across each interface, the interface furthest to the mid-

depth is, probably, the best choice for the dependent vari-

able in the Gardner equation. In this case, one would use

the equation for ζ and the relationship connecting interfa-

cial displacements if l1 < 1− l2 and the equation for η with

connection Eq. (32) otherwise. For different density jumps,

the interface with the largest density jump should be used.

In the seas and oceans, the assertion r =1ρ2/1ρ1 = 1 is

normally not valid, and the magnitudes of density jumps at

different interfaces can be considerably different. To depict

the changes associated with the above “phase diagrams” of

various solutions, we chose the values r = 2 and r = 1/2 to

characterize the variations in the coefficients in question and

the wave propagation regimes. Different values of r signif-

icantly influence the patterns for mode-1 environmental pa-

rameters. The modifications are the largest for the values of

the coefficients at the nonlinear terms. These changes ob-

viously affect the possible regimes for soliton appearance

and propagation (Figs. 7 and 8). Interestingly, the parameters
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Figure 7. Variation in environmental parameters for mode-1 soli-

tary IWs in a three-layer fluid with unequal density jumps at the in-

terfaces. Left column 1ρ1 =1ρ2/2. Right column: 1ρ1 = 21ρ2.

Figure 8. Map of the appearance of possible soliton solutions for

mode-1 IWs in a three-layer fluid with unequal density jumps at the

interfaces. Left column: 1ρ1 = 1.11ρ2. Middle column: 1ρ1 =

21ρ2. Right column: 1ρ1 =1ρ2/2.

characterizing solutions of waves of mode-2 and the relevant

propagation regimes are only slightly affected (Figs. 9 and

10).

It is worth noting that thermocline thicknesses can be

considerably different under natural conditions. This is an-

other way to destroy symmetry in a continuous stratification

and change the wave propagation regime. While the fluid

with the stratification ρ = ρ0−
1
2
1ρ1 tanh((z−H1)/d1)−

Figure 9. Variation in the environmental parameters for mode-2

IWs in a three-layer fluid with unequal density jumps at the inter-

faces. Left column: 1ρ1 = 21ρ2. Right column: 1ρ1 =1ρ2/2.

Figure 10. Map of the appearance of possible soliton solutions for

mode-2 IWs in a three-layer fluid with unequal density jumps at

the interfaces. Left column: 1ρ1 = 21ρ2. Right column: 1ρ1 =

1ρ2/2.

1
2
1ρ2 tanh((z−H2)/d2) for small d1,d2 could be modeled

numerically with a smoothed three-layer model, the consid-

ered three-layer model completely misses this.
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7 Conclusions

The performed analytical investigation of equations govern-

ing the propagation of weakly nonlinear internal waves in a

relatively simple but frequently occurring in nature and rich

in content three-layer environment has highlighted several

interesting features that distinguish this environment from

the similar but symmetric case (Kurkina et al., 2011b). We

have derived a system of nonlinear evolution equations for

long, finite-amplitude internal waves, valid for both possi-

ble modes of wave motion at the interfaces of a three-layer

fluid of arbitrary ratios of the depths between the layers and

arbitrary (but small) values of the density jumps at the in-

terfaces in the commonly used framework of Boussinesq ap-

proximation. Although each of the equations of this system

is known, the analysis of interrelations of the equations for

disturbances at different interfaces and the description of the

possible wave propagation regimes provides new insight into

the dynamics of internal waves in natural environments.

As expected, the classical Korteweg–de Vries equation is

only conditionally a proper tool for the description of the in-

ternal wave motion, because the coefficient at its nonlinear

(quadratic) term may vanish for certain combinations of the

environmental parameters (layer depths and densities) of the

three-layer fluid. This shortage affects the description of both

mode-1 and mode-2 waves (with the same and opposite po-

larities of the disturbances to the interfaces, respectively). To

resolve such situations, the derivation of the evolution equa-

tions is extended by systematically accounting for the next

(second) order in magnitude terms in the relevant asymptotic

procedure. This procedure leads to two implicitly interrelated

Gardner equations (one for each interface) with possibly spa-

tially varying coefficients.

The derived explicit analytical (algebraic) expressions for

their coefficients as functions of the properties of the fluid

made it possible to perform full analysis of the possible ap-

pearances, propagation regimes and transformation domains

of solitary solutions of both modes to these equations in hori-

zontally inhomogeneous environments. In particular, we per-

form a comprehensive analysis of the situations in which the

coefficients of the quadratic and cubic nonlinearity simulta-

neously vanish. This may happen for three different com-

binations of the properties of the fluid. On such occasions,

Gardner equations fail to describe the internal wave dynam-

ics, and it is necessary to extend the derivation of the proper

evolution equation to even higher-order terms. While the rel-

evant analysis has recently been performed for the special

case of a symmetric three-layer fluid (Kurkina et al., 2011b),

the multitude of options for the failure of the Gardner equa-

tion to describe the dynamics of three-layer flows calls for

further in-depth analysis of this problem. More generally, the

situations corresponding to any line representing vanishing

coefficients in Fig. 5 require deeper analysis of the associ-

ated dynamics.
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Appendix A

Coefficients of Eqs. (29), (30) as well as the Gardner equations, namely, Eq. (31) for interfacial waves of both modes

propagating on both interfaces.

β±

c±H 2
3

=
β̃±

c±H 2
3

=

12
2rq± (1− l2)(l2− l1)

(
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)
+ 2q±l1
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l31 − 3l21 +

(
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2
)
l1− 2l2 (2− l2)

)
− l21 + l2 (2− l2)
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=

3

2(1− l2) l1

8rq±
2
l1(1− l2)
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(
l1q
±
− 1

)
− 4q±

2
l21

(
l21 − (1+ l2) l1+ l2

)
+ 4q±l1 (l2− l1)− 2l2+ 1
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1
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2H 2

3 c
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(
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H 2
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2
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2
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2
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γ±2 =
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Note that the coefficients of the equations for both modes

have the same appearance. All the differences are in the

choice of the corresponding expressions of c±, q±,α±. The

coefficients at terms describing linear dispersion β±, β̃± as

well as the coefficients β±1 and β̃±1 are equal for the equations

for different interfaces within the same mode.
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