Articles | Volume 32, issue 3
https://doi.org/10.5194/npg-32-243-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/npg-32-243-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Intermittency in fluid and magnetohydrodynamics (MHD) turbulence analyzed through the prism of moment scaling predictions of multifractal models
Annick Pouquet
CORRESPONDING AUTHOR
National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307, USA
Invited contribution by Annick Pouquet, recipient of the EGU Lewis Fry Richardson Medal 2024.
Raffaele Marino
Laboratoire de Mécanique des Fluides et d'Acoustique, CNRS, École Centrale de Lyon, Université Claude Bernard Lyon 1, INSA de Lyon, 69134 Écully, France
Hélène Politano
Université Côte d'Azur, CNRS, LJAD, Nice, France
Yannick Ponty
Université Côte d'Azur, CNRS, Observatoire de la Côte d'Azur, Laboratoire Lagrange, Nice, France
Duane Rosenberg
Cooperative Institute for Research in the Atmosphere (CIRA), NOAA/OAR Global Systems Laboratory, Colorado State University, 325 Broadway Boulder, Fort Collins, CO 80305, USA
Related authors
Gurbax S. Lakhina, Bruce T. Tsurutani, George J. Morales, Annick Pouquet, Masahiro Hoshino, Juan Alejandro Valdivia, Yasuhito Narita, and Roger Grimshaw
Nonlin. Processes Geophys., 25, 477–479, https://doi.org/10.5194/npg-25-477-2018, https://doi.org/10.5194/npg-25-477-2018, 2018
Harikrishnan Charuvil Asokan, Jorge L. Chau, Raffaele Marino, Juha Vierinen, Fabio Vargas, Juan Miguel Urco, Matthias Clahsen, and Christoph Jacobi
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-974, https://doi.org/10.5194/acp-2020-974, 2020
Preprint withdrawn
Short summary
Short summary
This paper explores the dynamics of gravity waves and turbulence present in the mesosphere and lower thermosphere (MLT) region. We utilized two different techniques on meteor radar observations and simulations to obtain power spectra at different horizontal scales. The techniques are applied to a special campaign conducted in northern Germany in November 2018. The study revealed the dominance of large-scale structures with horizontal scales larger than 500 km during the campaign period.
Gurbax S. Lakhina, Bruce T. Tsurutani, George J. Morales, Annick Pouquet, Masahiro Hoshino, Juan Alejandro Valdivia, Yasuhito Narita, and Roger Grimshaw
Nonlin. Processes Geophys., 25, 477–479, https://doi.org/10.5194/npg-25-477-2018, https://doi.org/10.5194/npg-25-477-2018, 2018
Related subject area
Subject: Scaling, multifractals, turbulence, complex systems, self-organized criticality | Topic: Ionosphere, magnetosphere, planetary science, solar science | Techniques: Theory
Study of the fractality in a magnetohydrodynamic shell model forced by solar wind fluctuations
Macarena Domínguez, Giuseppina Nigro, Víctor Muñoz, Vincenzo Carbone, and Mario Riquelme
Nonlin. Processes Geophys., 27, 175–185, https://doi.org/10.5194/npg-27-175-2020, https://doi.org/10.5194/npg-27-175-2020, 2020
Short summary
Short summary
We study a model for the relationship between space plasma and geomagnetic activity, by using an MHD shell model, where its forcing has been replaced by solar wind fluctuation data.
We study the fractality of the forcing, its output, and the activity of the model, which may represent the existence of geomagnetic storms. We find correlations between some of these metrics and the solar cycle, suggesting that the complexity of the solar wind may have influence on the level of geomagnetic activity.
Cited articles
Adhikari, L., Zank, G., and Zhao, L.: The Transport and Evolution of MHD Turbulence throughout the Heliosphere: Models and Observations, Fluids, 6, 368, https://doi.org/10.3390/fluids6100368, 2021. a
Antonia, R., Ould-Rouis, M., Anselmet, F., and Zhu, Y.: Analogy between predictions of Kolmogorov and Yaglom, J. Fluid Mech., 332, 395–409, 1997. a
Arnold, V.: Proof of a theorem of A.N. Kolmogorov on the invariance of quasi-periodic motions under small perturbations of the Hamiltonian, Rus. Math. Surv+, 18, 9–36, https://doi.org/10.1070/RM1963v018n05ABEH004130, 1963. a
Arnold, V. and Khesin, B.: Topological Methods in Hydrodynamics, Second Edition, Springer-Verlag, New York, ISBN 978-3-030-74277-5, 2021. a
Bak, P., Tang, C., and Wiesenfeld, K.: Self-organized criticality: An explanation of the 1/f noise, Phys. Rev. Lett., 59, 381–384, https://doi.org/10.1103/PhysRevLett.59.381, 1987. a, b
Balasis, G., Balikhin, M. A., Chapman, S. C., Consolini, G., Daglis, I. A., Donner, R. V., Kurths, J., Paluš, M., Runge, J., Tsurutani, B. T., Vassiliadis, D., Wing, S., Gjerloev, J. W., Johnson, J., Materassi, M., Alberti, T., Papadimitriou, C., Manshour, P., Boutsi, A. Z., and Stumpo, M.: Complex Systems Methods Characterizing Nonlinear Processes in the Near-Earth Electromagnetic Environment: Recent Advances and Open Challenges, Space Sci. Rev., 219, 38, https://doi.org/10.1007/s11214-023-00979-7, 2023. a, b
Balescu, R., Wang, H.-D., and Misguich, J.: Langevin equation versus kinetic equation: Subdiffusive behavior of charged particles in a stochastic magnetic field, Phys. Plasmas, 1, 3826–3833, https://doi.org/10.1063/1.870855, 1994. a
Bandyopadhyay, R., Matthaeus, W. H., and Parashar, T. N.: Single-mode Nonlinear Langevin Emulation of Magnetohydrodynamic Turbulence, Phys. Rev. E, 97, 053211, https://doi.org/10.1103/PhysRevE.97.053211, 2018. a
Barkley, D., Song, B., Mukund, V., Lemoult, G., Avila, M., and Hof, B.: The rise of fully turbulent flow, Nature, 526, 550–564, https://doi.org/10.1038/nature15701, 2015. a
Benzi, R. and Toschi, F.: Lectures on turbulence, Phys. Rep., 1021, 1–106, https://doi.org/10.1016/j.physrep.2023.05.001, 2023. a, b, c
Bhattacharjee, A.: Impulsive Magnetic Reconnection in the Earth's Magnetotail and the Solar Corona, Annu. Rev. Astron. Astr., 42, 365–384, 2004. a
Boldyrev, S.: A solvable model for nonlinear mean field dynamo, Astrophys. J., 562, 1081–1085, 2001. a
Brandenburg, A. and Subramanian, K.: Astrophysical magnetic fields and nonlinear dynamo theory, Phys. Rep., 417, 1–209, https://doi.org/10.1016/j.physrep.2005.06.005, 2005. a, b
Buaria, D. and Pumir, A.: Universality of extreme events in turbulent flows, Phys. Rev. Fluids, 10, 1–8, https://doi.org/10.1103/PhysRevFluids.10.L042601, 2025. a
Buaria, D., Pumir, A., Bodenschatz, E., and Yeung, P.: Extreme velocity gradients in turbulent flows, New J. Phys., 21, 043004, https://doi.org/10.1088/1367-2630/ab0756, 2019. a
Burlaga, L.: Intermittent turbulence in the solar wind, J. Geophys. Res., 96, 5847–5851, https://doi.org/10.1029/91JA00087, 1991. a
Cartes, C., Bustamante, M., Pouquet, A., and Brachet, M.-E.: Capturing reconnection phenomena using generalized Eulerian-Lagrangian description in Navier-Stokes and resistive MHD, Fluid Dyn. Res., 41, 011404, https://doi.org/10.1088/0169-5983/41/1/011404, 2009. a
Chau, J. L., Marino, R., Feraco, F., Urco, J. M., Baumgarten, G., Lübken, F.-J., Hocking, W. K., Schult, C., Renkwitz, T., and Latteck, R.: Radar Observation of Extreme Vertical Drafts in the Polar Summer Mesosphere, Geophys. Res. Lett., 48, e94918, https://doi.org/10.1029/2021GL094918, 2021. a
Chen, C.: Recent progress in astrophysical plasma turbulence from solar wind observations, J. Plasma Phys., 82, 535820602, https://doi.org/10.17/S0022377816001124, 2016. a
Chen, S., Doolen, G., Herring, J. R., Kraichnan, R. H., Orszag, S. A., and She, Z. S.: Far-Dissipation Range of Turbulence, Phys. Rev. Lett., 70, 3051–3054, 1993. a
Daughton, W., Roytershteyn, V., Karimabadi, H., Yin, L., Albright, B. J., and Bowers, K. J.: Role of electron physics in the development of turbulent magnetic reconnection in collisionless plasmas, Nat. Phys., 7, 539–542, https://doi.org/10.1038/NPHYS1965, 2011. a
David, V. and Galtier, S.: Energy Transfer, Discontinuities, and Heating in the Inner Heliosphere Measured with a Weak and Local Formulation of the Politano-Pouquet Law, Astrophys. J., 927, 200, https://doi.org/10.3847/1538-4357/ac524b, 2022. a
Dmitruk, P. and Matthaeus, W. H.: Low-frequency 1/f fluctuations in hydrodynamic and magnetohydrodynamic turbulence, Phys. Rev. E, 76, 036305, https://doi.org/10.1103/PhysRevE.76.036305, 2007. a
Donzis, D., Yeung, P., and Sreenivasan, K.: Dissipation and enstrophy in isotropic turbulence: Resolution effects and scaling in direct numerical simulations, Phys. Fluids, 20, 045108, https://doi.org/10.1063/1.2907227, 2008. a
Douady, S., Couder, Y., and Brachet, M.-E.: Direct observation of the intermittency of intense vorticity filaments in turbulence, Phys. Rev. Lett., 67, 983–986, 1991. a
Dubrulle, B.: Intermittency in Fully Developed Turbulence: Log-Poisson Statistics and Generalized Scale Covariance, Phys. Rev. Lett., 73, 959–963, 1994. a
Emanuel, K., Velez-Pardo, M., and Cronin, T. W.: The Surprising Roles of Turbulence in Tropical Cyclone Physics, Atmosphere, 14, 1254, https://doi.org/10.3390/atmos14081254, 2023. a
Enciso, A. and Peralta-Salas, D.: Beltrami fields and knotted vortex structures in incompressible fluid flows, B. Lond. Math. Soc., 55, 1059–1103, https://doi.org/10.1112/blms.12780, 2023. a
Ergun, R., Ahmadi, N., Kromyda, L., Schwartz, S., Chasapis, A., Hoilijoki, S., Wilder, F., Stawarz, J., Goodrich, K., Turner, D., Cohen, I., Bingham, S., Holmes, J., Nakamura, R., Pucci, F., Torbert, R., Burch, J., Lindqvist, P.-A., Strangeway, R., Le Contel, O., and Giles, B.: Observations of Particle Acceleration in Magnetic Reconnection–driven Turbulence, Astrophys. J., 898, 154, https://doi.org/10.3847/1538-4357/ab9ab6, 2020. a
Faganello, M. and Califano, F.: Review, Magnetized Kelvin-Helmholtz instability: theory and simulations in the Earth's magnetosphere context, J. Plasma Phys., 83, 535830601, https://doi.org/10.1017/S0022377817000770, 2017. a
Feraco, F., Marino, R., Pumir, A., Primavera, L., Mininni, P., Pouquet, A., and Rosenberg, D.: Vertical drafts and mixing in stratified turbulence: sharp transition with Froude number, Europhys. Lett., 123, 44002, https://doi.org/10.1209/0295-5075/123/44002, 2018. a
Ferrand, R., Galtier, S., Sahraoui, F., Meyrand, R., Andrès, N., and Banerjee, S.: A compact exact law for compressible isothermal Hall magnetohydrodynamic turbulence, Astrophys. J., 881, 50, https://doi.org/10.3847/1538-4357/ab2be9, 2021. a
Fox, N. J., Velli, M. C., Bale, S. D., Decker, R., Driesman, A., Howard, R. A., Kasper, J. C., Kinnison, J., Kusterer, M., Lario, D., Lockwood, M. K., McComas, D. J., Raouafi, N. E., and Szabo, A.: The Solar Probe Plus mission: humanity's first visit to our star, Space Sci. Rev., 204, 7–48, https://doi.org/10.1007/s11214-015-0211-6, 2016. a
Franzke, C. L. E., Barbosa, S., Blender, R., Fredriksen, H.-B., Laepple, T., Lambert, F., Nilsen, T., Rypdal, K., Rypdal, M., Manuel G, S., Vannitsem, S., Watkins, N. W., Yang, L., and Yuan, N.: The Structure of Climate Variability Across Scales, Rev. Geophys., 58, e2019RG000657, https://doi.org/10.1029/2019RG000657, 2020. a
Freischem, L. J., Weiss, P., Christensen, H. M., and Stier, P.: Multifractal Analysis for Evaluating the Representation of Clouds in Global Kilometer‐Scale Models, Geophys. Res. Lett., 51, e2024GL110124, https://doi.org/10.1029/ 2024GL110124, 2024. a
Friedel, H., Grauer, R., and Marliani, C.: Adaptive Mesh Refinement for Singular Current Sheets in Incompressible Magnetohydrodynamic Flows, J. Comput. Phys., 134, 190–198, 1997. a
Friedrich, J. and Grauer, R.: Generalized Description of Intermittency in Turbulence via Stochastic Methods, Atmosphere, 11, 1003, https://doi.org/10.3390/atmos11091003, 2020. a, b
Friedrich, R., Peinke, J., Sahimic, M., and Tabar, M. R. R.: Approaching complexity by stochastic methods: From biological systems to turbulence, Phys. Rep., 506, 87–162, 2011. a
Galtier, S.: On the origin of the energy dissipation anomaly in (Hall) magnetohydrodynamics, J. Phys. A., 51, 205501, https://doi.org/10.1088/1751-8121/aabbb5, 2018. a
Garcia, O. E.: Stochastic Modeling of Intermittent Scrape-Off Layer Plasma Fluctuations, Phys. Rev. Lett., 108, 265001, https://doi.org/10.1103/PhysRevLett.108.265001, 2012. a
Gilbert, A., Frisch, U., and Pouquet, A.: Helicity is unnecessary for Alpha effect dynamos but it helps, Geophys. Astro. Fluid, 42, 151–161, 1988. a
Gloaguen, C., Léorat, J., Pouquet, A., and Grappin, R.: A scalar model for MHD turbulence, Physica D, 17, 154–182, https://doi.org/10.1016/0167-2789(85)90002-8, 1985. a
Hada, T.: Evolution of large amplitude Alfvén waves in the solar wind with β≈1, Geophys. Res. Lett., 20, 2415–2418, 1993. a
He, J., Duan, D., Wang, T., Zhu, X., Li, W., Verscharen, D., Wang, X., Tu, C., Khotyaintsev, Y., Le, G., and Burch, J.: Direct Measurement of the Dissipation Rate Spectrum around Ion Kinetic Scales in Space Plasma Turbulence, Astrophys. J., 880, 121, https://doi.org/10.3847/1538-4357/ab2a79, 2019. a
Holm, D. D., Marsden, J. E., and Ratiu, T. S.: Euler-Poincaré Models of Ideal Fluids with nonlinear dispersion, Phys. Rev. Lett., 80, 4173–4176, 1998. a
Homann, H., Ponty, Y., Krstulovic, G., and Grauer, R.: Structures and Lagrangian statistics of the Taylor-Green Dynamo, New J. Phys., 16, 075014, https://doi.org/10.1088/1367-2630/16/7/075014, 2014. a
Horbury, T. S. and Balogh, A.: Structure function measurements of the intermittent MHD turbulent cascade, Nonlin. Processes Geophys., 4, 185–199, https://doi.org/10.5194/npg-4-185-1997, 1997. a, b, c
Hornschild, A., Baerenzung, J., Saynisch‐Wagner, J., Irrgang, C., and Thomas, M.: On the detectability of the magnetic fields induced by ocean circulation in geomagnetic satellite observations, Earth Planet. Space, 74, 182, https://doi.org/10.1186/s40623-022-01741-z, 2022. a
Kadanoff, L., Lohse, D., Wang, J., and Benzi, R.: Scaling and dissipation in the GOY shell model, Phys. Fluids, 7, 617–629, 1995. a
Kerr, R. M. and Brandenburg, A.: Evidence for a Singularity in Ideal Magnetohydrodynamics: Implications for Fast Reconnection, Phys. Rev. Lett., 83, 1155–1158, 1999. a
Kinney, R., McWilliams, J. C., and Tajima, T.: Coherent structures and turbulent cascades in two-dimensional incompressible magnetohydrodynamic turbulence, Phys. Plasmas, 2, 3623–3639, 1995. a
Klaassen, C. A., Mokveld, P. J., and van Es, B.: Squared skewness minus kurtosis bounded by for unimodal distributions, Stat. Probabil. Lett., 50, 131–135, 2000. a
Kolmogorov, A. N.: A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number, J. Fluid Mech., 13, 82–85, 1962. a
Kraichnan, R.: Inertial ranges in two-dimensional turbulence, Phys. Fluids, 10, 1417–1423, 1967a. a
Kraichnan, R. H.: Intermittency in the Very Small Scales of Turbulence, Phys. Fluids, 10, 2080–2082, https://doi.org/10.1063/1.1762412, 1967b. a
Krommes, J. A.: The remarkable similarity between the scaling of kurtosis with squared skewness for TORPEX density fluctuations and sea-surface temperature fluctuations, Phys. Plasmas, 15, 030703, https://doi.org/10.1063/1.2894560, 2008. a, b
Labit, B., Furno, I., Fasoli, A., Diallo, A., Müller, S., Plyushchev, G., Podestà, M., and Poli, F.: Universal Statistical Properties of Drift-Interchange Turbulence in TORPEX Plasmas, Phys. Rev. Lett., 98, 255 002, https://doi.org/10.1103/PhysRevLett.98.255002, 2007. a, b, c
Laval, J., Dubrulle, B., and McWilliams, J.: Langevin models of turbulence: Renormalization group, distant interaction algorithms or rapid distortion theory?, Phys. Fluids, 15, 1327–1339, 2003. a
Laveder, D., Passot, T., and Sulem, P.: Intermittent dissipation and lack of universality in one-dimensional Alfvénic turbulence, Phys. Lett. A, 377, 1535–1541, https://doi.org/10.1016/j.physleta.2013.04.037, 2013. a
Lazarian, A., Eyink, G. L., Jafari, A., Kowal, G., Li, H., Xu, S., and Vishniac, E. T.: 3D turbulent reconnection: Theory, tests, and astrophysical implications, Phys. Plasmas, 27, 012305, https://doi.org/10.1063/1.5110603, 2020. a, b
Lenschow, D., Mann, J., and Kristensen, L.: How long is long enough when measuring fluxes and other turbulence statistics?, J. Atmos. Ocean Tech., 11, 661–673, 1994. a
Lenschow, D. H., Lothon, M., Mayor, S. D., Sullivan, P. P., and Canut, G.: A Comparison of Higher-Order Vertical Velocity Moments in the Convective Boundary Layer from Lidar with in situ Measurements and Large-Eddy Simulation, Bound-Lay. Meteorol., 143, 107–123, 2012. a
Leprovost, N. and Dubrulle, B.: The turbulent dynamo as an instability in a noisy medium, Eur. Phys. J., 44, 395–400, https://doi.org/10.1140/epjb/e2005-00138-y, 2005. a
Longuet-Higgins, M.: The effect of non-linearities on statistical distributions in the theory of sea waves, J. Fluid Mech., 17, 459–480, https://doi.org/10.1017/S0022112063001452, 1963. a
Lovejoy, S.: Spectra, intermittency, and extremes of weather, macroweather and climate, Sci. Rep., 8, 12697, https://doi.org/10.1038/s41598-018-30829-4, 2018. a
Lovejoy, S., Schertzer, D., and Stanway, J. D.: Direct Evidence of Multifractal Atmospheric Cascades from Planetary Scales down to 1 km, Phys. Rev. Lett., 86, 5200–5203, https://doi.org/10.1103/PhysRevLett.86.5200, 2001. a
Lu, E. T. and Hamilton, R. J.: Avalanches and the distribution of solar flares, Astrophys. J., 380, L89–L92, 1991. a
Lyu, R., Hu, F., Liu, L., Xu, J., and Cheng, X.: High-Order Statistics of Temperature Fluctuations in an Unstable Atmospheric Surface Layer over Grassland, Adv. Atmos. Sci., 35, 1265–1276, https://doi.org/10.1007/s00376-018-7248-x, 2018. a
Mahrt, L.: Intermittent of Atmospheric Turbulence., J. Atmos. Sci., 46, 79–95, https://doi.org/10.1175/1520-0469(1989)046<0079:IOAT>2.0.CO;2, 1989. a
Mannix, P. M., Ponty, Y., and Marcotte, F.: A systematic route to subcritical dynamo branches, Phys. Rev. Lett., 129, 024502, https://doi.org/10.1103/PhysRevLett.129.024502, 2022. a
Marino, R. and Sorriso-Valvo, L.: Scaling laws for the energy transfer in space plasma turbulence, Phys. Rep., 1006, 1–144, https://doi.org/10.1016/j.physrep.2022.12.001, 2023. a, b
Marino, R., Sorriso-Valvo, L., Carbone, V., Noullez, A., Bruno, R., and Bavassano, B.: Heating the Solar Wind by a Magnetohydrodynamic Turbulent Energy Cascade, Astrophys. J., 677, L71, https://doi.org/10.1086/587957, 2008. a
Marino, R., Feraco, F., Primavera, L., Pumir, A., Pouquet, A., and Rosenberg, D.: Turbulence generation by large-scale extreme drafts and the modulation of local energy dissipation in stably stratified geophysical flows, Phys. Rev. Fluids, 7, 033801, https://doi.org/10.1103/PhysRevFluids.7.033801, 2022. a, b
Materassi, M. and Consolini, G.: Turning the resistive MHD into a stochastic field theory, Nonlin. Processes Geophys., 15, 701–709, https://doi.org/10.5194/npg-15-701-2008, 2008. a
Matthaeus, W. and Montgomery, D.: Nonlinear evolution of the sheet pinch, J. Plasma Phys., 25, 11–41, 1981. a
Matthaeus, W. H. and Lamkin, S.: Turbulent magnetic reconnection, Phys. Fluids, 29, 2513–2534, https://doi.org/10.1063/1.866004, 1986. a
Matthaeus, W. H., Wan, M., Servidio, S., Greco, A., Osman, K. T., Oughton, S., and Dmitruk, P.: Intermittency, nonlinear dynamics and dissipation in the solar wind and astrophysical plasmas, Philos. T. R. Soc. A, 373, 20140154, https://doi.org/10.1086/587957, 2015. a, b
Meneguzzi, M., Politano, H., Pouquet, A., and Zolver, M.: A sparse-mode spectral method for the simulations of turbulent flows, J. Comput. Phys., 123, 32–44, 1996. a
Merrifield, J. A., Müller, W.-C., Chapman, S. C., and Dendy, R. O.: The scaling properties of dissipation in incompressible isotropic three-dimensional magnetohydrodynamic turbulence, Phys. Plasmas, 12, 022301, https://doi.org/10.1063/1.1842133, 2005. a
Merrifield, J. A., Chapman, S. C., and Dendy, R. O.: Intermittency, dissipation, and scaling in two-dimensional magnetohydrodynamic turbulence, Phys. Plasmas, 14, 012301, https://doi.org/10.1063/1.2409528, 2007. a, b
Miloshevich, G., Laveder, D., Passot, T., and Sulem, P.: Inverse cascade and magnetic vortices in kinetic Alfvén-wave turbulence, J. Plasma Phys., 87, 905870201, https://doi.org/10.1017/S0022377820001531, 2021. a
Mininni, P., Pouquet, A., and Montgomery, D.: Small-Scale Structures in Three-Dimensional Magnetohydrodynamic Turbulence, Phys. Rev. Lett., 97, 244503, https://doi.org/10.1103/PhysRevLett.97.244503, 2006. a
Mininni, P. D., Lee, E., Norton, A., and Clyne, J.: Flow visualization and field line advection in computational fluid dynamics: application to magnetic fields and turbulent flows, New J. Phys., 10, 125007, https://doi.org/10.1088/1367-2630/10/12/125007, 2008. a
Moffatt, H.: The degree of knottedness of tangled vortex lines, J. Fluid Mech., 35, 117–129, 1969. a
Montgomery, D. and Pouquet, A.: An alternative interpretation for the Holm “alpha model”, Phys. Fluids, 14, 3365–3366, 2002. a
Muller, D., St. Cyr, O. C., Zouganelis, I., Gilbert, H. R., Marsden, R., Nieves-Chinchilla, T., Antonucci, E., Auchère, F., Berghmans, D., Horbury, T. S., Howard, R. A., Krucker, S., Maksimovic, M., Owen, C. J., Rochus, P., Rodriguez-Pacheco, J., Romoli, M., Solanki, S. K., Bruno, R., Carlsson, M., Fludra, A., Harra, L., Hassler, D. M., Livi, S., Louarn, P., Peter, H., Schahle, U., Teriaca, L., del Toro Iniesta, J. C., Wimmer-Schweingruber, R. F., Marsch, E., Velli, M., De Groof, A., Walsh, A., and Williams, D.: The Solar Orbiter mission – Science overview, Astron. Astrophys., 642, A1, https://doi.org/10.1051/0004-6361/202038467, 2020. a
Müller, N. P., Polanco, J. I., and Krstulovic, G.: Intermittency of Velocity Circulation in Quantum Turbulence, Phys. Rev. X, 11, 011053, https://doi.org/10.1103/PhysRevX.11.011053, 2021. a
Nazarenko, S., Kevlahan, N.-R., and Dubrulle, B.: Nonlinear RDT theory of near-wall turbulence, Physica D, 139, 158–176, 2000a. a
Nazarenko, S. V., Falkovich, G. E., and Galtier, S.: Feedback of a small-scale magnetic dynamo, Phys. Rev. E, 63, 016408, https://doi.org/10.1103/PhysRevE.63.016408, 2000b. a
Ng, C., Rosenberg, D., Germaschewski, K., Pouquet, A., and Bhattacharjee, A.: A comparison of spectral element and finite difference methods using statically refined nonconforming grids for the MHD island coalescence instability problem, Astrophys. J. Suppl., 177, 613–625, 2008. a
Nickelsen, D.: Master equation for She-Leveque scaling and its classification in terms of other Markov models of developed turbulence, J. Stat. Mech.-Theory E, 2017, 073209, https://doi.org/10.1088/1742-5468/aa786a, 2017. a
Ochi, M. K. and Wang, W.-C.: Non-Gaussian characteristics of coastal waves, in: International Conference of Coastal Engineering, ASCE, New-York, NY, vol. 19, 516–531, https://doi.org/10.9753/icce.v19.35, 1984. a
Oka, M., Phan, T. D., Øieroset, M., Turner, D. L., Drake, J. F., Li, X., Fuselier, S. A., Gershman, D. J., Giles, B. L., Ergun, R. E., Torbert, R. B., Wei, H. Y., Strangeway, R. J., and Burch, J. L.: Electron energization and thermal to non-thermal energy partition during earth magnetotail reconnection, Phys. Plasmas, 29, 052904, https://doi.org/10.1063/5.0085647, 2022. a, b
Osman, K. T., Matthaeus, W. H., Gosling, J. T., Greco, A., Servidio, S., Hnat, B., Chapman, S. C., and Phan, T. D.: Magnetic reconnection and intermittent turbulence in the solar wind, Phys. Rev. Lett., 112, 215002, https://doi.org/10.1103/PhysRevLett.112.215002, 2014. a, b
Osmane, A., Dimmock, A., and Pulkkinen, T.: Universal properties of mirror mode turbulence in the Earth magnetosheath, Geophys. Res. Lett., 42, 3085–3092, https://doi.org/10.1002/2015GL063771, 2015. a
Patterson, G. and Orszag, S. A.: Spectral calculations of isotropic turbulence: efficient removal of aliasing interactions, Phys. Fluids, 14, 2538–2541, 1971. a
Pierrehumbert, F.: Anomalous scaling of high cloud variability in the tropical Pacific, Geophys. Res. Lett., 23, 1095–1098, https://doi.org/10.1029/96GL01121, 1996. a
Pietarila Graham, J. and Ringler, T.: A framework for the evaluation of turbulence closures used in mesoscale ocean large-eddy simulations, Ocean Model., 65, 25–39, 2013. a
Plunian, F., Stepanov, R., and Frick, P.: Shell models of magnetohydrodynamic turbulence, Phys. Rep., 523, 1–60, https://doi.org/10.1016/j.physrep.2012.09.001, 2013. a
Politano, H. and Pouquet, A.: Dynamical length scales for turbulent magnetized flows, Geophys. Res. Lett., 25, 273–276, 1998. a
Ponty, Y. and Plunian, F.: Transition from large-scale to small-scale dynamo, Phys. Rev. Lett., 106, 154502, https://doi.org/10.1103/PhysRevLett.106.154502, 2011. a, b
Ponty, Y., Gilbert, A. D., and Soward, A. M.: Kinematic dynamo action in large magnetic Reynolds number flows driven by shear and convection, J. Fluid Mech., 435, 261–287, 2001. a
Ponty, Y., Mininni, P. D., Montgomery, D., Pinton, J.-F., Politano, H., and Pouquet, A.: Critical magnetic Reynolds number for dynamo action as a function of magnetic Prandtl number, Phys. Rev. Lett., 94, 164502, https://doi.org/10.1103/PhysRevLett.94.164502, 2005. a, b
Ponty, Y., Laval, J., Dubrulle, B., Daviaud, F., and Pinton, J.-F.: Subcritical Dynamo Bifurcation in the Taylor-Green Flow, Phys. Rev. Lett., 99, 224501, https://doi.org/10.1103/PhysRevLett.99.224501, 2007. a
Pouquet, A., Frisch, U., and Léorat, J.: Strong MHD helical turbulence and the nonlinear dynamo effect, J. Fluid Mech., 77, 321–354, 1976. a
Pouquet, A., Rosenberg, D., and Marino, R.: Linking dissipation, anisotropy and intermittency in rotating stratified turbulence, Phys. Fluids, 31, 105116, https://doi.org/10.1063/1.5114633, 2019. a
Pouquet, A., Rosenberg, D., Marino, R., and Mininni, P.: Intermittency Scaling for Mixing and Dissipation in Rotating Stratified Turbulence at the Edge of Instability, Atmosphere-Basel, 14, 01375, https://doi.org/10.3390/atmos14091375, 2023. a, b, c, d
Pumir, A. and Wilkinson, M.: Collisional Aggregation Due to Turbulence, Annu. Rev. Conden. Matter, 7, 141–170, https://doi.org/10.1146/annurev-conmatphys-031115-011538, 2016. a
Rinn, P., Lind, P. G., Wächter, M., and Peinke, J.: The Langevin Approach: An R Package for Modeling Markov Processes, J. Open Res. Software, 4, e34, https://doi.org/10.5334/jors.123, 2016. a
Rosenberg, D., Mininni, P. D., Reddy, R., and Pouquet, A.: GPU Parallelization of a Hybrid Pseudospectral Geophysical Turbulence Framework Using CUDA, Atmosphere-Basel, 11, 00178, https://doi.org/10.3390/atmos11020178, 2020. a, b
Sagaut, P. and Cambon, C.: Homogeneous Turbulence Dynamics, Cambridge University Press, Cambridge, https://doi.org/10.1017/CBO9780511546099, 2008. a, b
Sardeshmukh, P. D. and Penland, C.: Understanding the distinctively skewed and heavy tailed character of atmospheric and oceanic probability distributions, Chaos, 25, 036410, https://doi.org/10.1063/1.4914169, 2015. a
Sattin, F., Agostini, M., Scarin, P., Vianello, N., Cavazzana, R., Marrelli, L., Serianni, G., Zweben, S. J., Maqueda, R., Yagi, Y., Sakakita, H., Koguchi, H., Kiyama, S., Hirano, Y., and Terry, J.: On the statistics of edge fluctuations: comparative study between various fusion devices, Plasma Phys. Control. F., 51, 055013, https://doi.org/10.1088/0741-3335/51/5/055013, 2009. a
Schekochihin, A. A.: MHD Turbulence: A Biased Review, J. Plasma Phys., 88, 155880501, https://doi.org/10.1017/S0022377822000721, 2022. a, b
Schertzer, D. and Tchiguirinskaia, I.: A century of turbulent cascades and the emergence of multifractal operators, Earth Space Sci., 7, e2019EA000608, https://doi.org/10.1029/2019EA000608, 2020. a
Serinaldi, F.: Multifractality, imperfect scaling and hydrological properties of rainfall time series simulated by continuous universal multifractal and discrete random cascade models, Nonlin. Processes Geophys., 17, 697–714, https://doi.org/10.5194/npg-17-697-2010, 2010. a
Servidio, S., Dmitruk, P., Greco, A., Wan, M., Donato, S., Cassak, P. A., Shay, M. A., Carbone, V., and Matthaeus, W. H.: Magnetic reconnection as an element of turbulence, Nonlin. Processes Geophys., 18, 675–695, https://doi.org/10.5194/npg-18-675-2011, 2011. a, b
Shaw, T. A. and Miyawaki, O.: Fast upper-level jet stream winds get faster under climate change, and link to clear-air turbulence, Nat. Clim. Change, 14, 61–67, https://doi.org/10.1038/s41558-023-01884-1, 2024. a
Shepherd, T.: Chapter 4: Barotropic aspects of large-scale atmospheric turbulence, in: Fundamental Aspects of Turbulent Flows in Climate Dynamics, edited by: Bouchet, F., Schneider, T., Venaille, A., and Salomon, C., Oxford University Press, 181–222, https://doi.org/10.1093/oso/9780198855217.003.0004, 2020. a
Siebesma, A. P., Brenguier, J.-L., Bretherton, C. S., Grabowski, W. W., Heintzenberg, J., Kärcher, B., Lehmann, K., Petch, J. C., Spichtinger, P., Stevens, B., and Stratmann, F.: Cloud-controlling Factors, in: Clouds in the Perturbed Climate System: Relationship to Energy Balance, Atmospheric Dynamics, and Precipitation, edited by: Heinzenberg, J. and Charlson, R. J., MIT Press, 1–22, ISBN 978-0262012874, 2009. a
Siggia, E. D. and Patterson, G.: Intermittency effects in a numerical simulation of stationary three-dimensional turbulence, J. Fluid Mech., 86, 567–592, 1978. a
Smith, C. W., Stawarz, J., Vasquez, B. J., Forman, M. A., and MacBride, B. T.: Turbulent Cascade at 1 au in High Cross-Helicity Flows, Phys. Rev. Lett., 103, 201101, https://doi.org/10.1103/PhysRevLett.103.201101, 2009. a
Smyth, W., Nash, J., and Moum, J.: Self-organized criticality in geophysical turbulence, Sci. Rep., 9, 3747, https://doi.org/10.1038/s41598-019-39869-w, 2019. a
Sorriso-Valvo, L., Catapano, F., Retinò, A., Le Contel, O., Perrone, D., Roberts, O. W., Coburn, J. T., Panebianco, V., Valentini, F., Perri, S., Greco, A., Malara, F., Carbone, V., Veltri, P., Pezzi, O., Fraternale, F., Di Mare, F., Marino, R., Giles, B., Moore, T. E., Russell, C. T., Torbert, R. B., Burch, J. L., and Khotyaintsev, Y. V.: Turbulence-Driven Ion Beams in the Magnetospheric Kelvin-Helmholtz Instability, Phys. Rev. Lett., 122, 035102, https://doi.org/10.1103/PhysRevLett.122.035102, 2019. a
Sreenivasan, K.: On the fine-scale intermittency of turbulence, J. Fluid Mech., 151, 81–103, 1985. a
Steenbeck, M., Krause, F., and Rädler, K.-H.: Berechnung der mittleren Lorentz-Feldstärke für ein elektrisch leitendes medium in turbulenter, durch Coriolis-Kräfte beeinflusster bewegung, Z. Naturforsch. A, 21, 369–376, 1966. a
Storer, L. N., Williams, P. D., and Gill, P. G.: Aviation Turbulence: Dynamics, Forecasting, and Response to Climate Change, Pure Appl. Geophys., 176, 2081–2095, https://doi.org/10.1007/s00024-018-1822-0, 2019. a
Sura, P. and Sardeshmukh, P. D.: A global view of non-Gaussian SST variability, J. Phys. Oceanogr., 38, 639–647, 2008. a
Thomas, J. H.: Model Equations for Magnetohydrodynamic Turbulence – A Gas Dynamic Analogy, Phys. Fluids, 13, 1877–1880, 1970. a
Uritsky, V., Pouquet, A., Rosenberg, D., Mininni, P., and Donovan, E.: Structures in magnetohydrodynamic turbulence: Detection and scaling, Phys. Rev. E, 82, 056326, https://doi.org/10.1103/PhysRevE.82.056326, 2010. a
Uzdensky, D. A., Loureiro, N. F., and Schekochihin, A. A.: Fast Magnetic Reconnection in the Plasmoid-Dominated Regime, Phys. Rev. Lett., 105, 235002, https://doi.org/10.1103/PhysRevLett.105.235002, 2010. a, b
Veltri, P., Nigro, G., Malara, F., Carbone, V., and Mangeney, A.: Intermittency in MHD turbulence and coronal nanoflares modelling, Nonlin. Processes Geophys., 12, 245–255, https://doi.org/10.5194/npg-12-245-2005, 2005. a
Vespignani, A. and Zapperi, S.: How self-organized criticality works: A unified mean-field picture, Phys. Rev. E, 57, 6345–6362, 1998. a
Wan, M., Osman, K. T., Matthaeus, W. H., and Oughton, S.: Investigation of intermittency in MHD and solar wind turbulence: scale-dependent kurtosis, Astrophys. J., 744, 171, https://doi.org/10.1088/0004-637X/744/2/171, 2012. a
Wang, T., Alexandrova, O., Perrone, D., Dunlop, M., Dong, X., Bingham, R., Khotyaintsev, Y. V., Russell, C. T., Giles, B. L., Torbert, R. B., Ergun, R. E., and Burch, J. L.: Magnetospheric Multiscale Observation of Kinetic Signatures in the Alfvén Vortex, Astrophys. J. Lett., 871, L22, https://doi.org/10.3847/2041-8213/aafe0d, 2019. a
Watkins, N. W., Pruessner, G., Chapman, S. C., Crosby, N. B., and Jensen, H. J.: 25 Years of Self-organized Criticality: Concepts and Controversies, Space Sci. Rev., 198, 3–44, https://doi.org/10.1007/s11214-015-0155-x, 2016. a, b
Woltjer, L.: A theorem on force-free magnetic fields, P. Natl. Acad. Sci. USA, 44, 489–491, 1958. a
Yakhot, V.: Probability densities in strong turbulence, Physica D, 215, 166–174, https://doi.org/10.1016/j.physd.2006.01.012, 2006. a
Yang, L., He, J., Verscharen, D., Li, H., Bale, S. D., Wu, H., Li, W., Wang, Y., Zhang, L., Feng, X., and Wu, Z.: Energy transfer of imbalanced Alfvénic turbulence in the heliosphere, Nat. Commun., 14, 7955, https://doi.org/10.1038/s41467-023-43273-4, 2023. a
Yeung, P. K., Sreenivasan, K. R., and Pope, S. B.: Effects of finite spatial and temporal resolution in direct numerical simulations of incompressible isotropic turbulence, Phys. Rev. Fluids, 3, 064603, https://doi.org/10.1103/PhysRevFluids.3.064603, 2018. a
Zhdankin, V., Uzdensky, D., Perez, J., and Boldyrev, S.: Statistical analysis of current sheets in 3D MHD turbulence, Astrophys. J., 771, 124, https://doi.org/10.1088/0004-637X/771/2/124, 2013. a
Zwanzig, R.: Nonlinear Generalized Langevin Equations, J. Stat. Phys., 9, 215–220, 1973. a
Zweibel, E. and Yamada, M.: Magnetic Reconnection in Astrophysical and Laboratory Plasmas, Annu. Rev. Astron. Astr., 47, 291–232, https://doi.org/10.1146/annurev-astro-082708-101726, 2009. a
Short summary
Turbulence is found in many natural systems. We study its statistics in terms of scaling laws of up to fourth-order normalized moments for the velocity or magnetic fields through their relative behavior. We show analytically using existing intermittency models that the physical dimension of structures becomes irrelevant. The strongest intermittent structure has a parabolic scaling as found previously and confirmed by long simulations. More analysis will be performed using simplified models.
Turbulence is found in many natural systems. We study its statistics in terms of scaling laws of...