
Nonlin. Processes Geophys., 32, 243–259, 2025
https://doi.org/10.5194/npg-32-243-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.

R
esearch

article

Intermittency in fluid and magnetohydrodynamics (MHD)
turbulence analyzed through the prism of moment

scaling predictions of multifractal models

Annick Pouquet1,z, Raffaele Marino2, Hélène Politano3, Yannick Ponty4, and Duane Rosenberg5

1National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307, USA
2Laboratoire de Mécanique des Fluides et d’Acoustique, CNRS, École Centrale de Lyon,

Université Claude Bernard Lyon 1, INSA de Lyon, 69134 Écully, France
3Université Côte d’Azur, CNRS, LJAD, Nice, France

4Université Côte d’Azur, CNRS, Observatoire de la Côte d’Azur, Laboratoire Lagrange, Nice, France
5Cooperative Institute for Research in the Atmosphere (CIRA), NOAA/OAR Global Systems Laboratory,

Colorado State University, 325 Broadway Boulder, Fort Collins, CO 80305, USA
zInvited contribution by Annick Pouquet, recipient of the EGU Lewis Fry Richardson Medal 2024.

Correspondence: Annick Pouquet (pouquet@ucar.edu)

Received: 10 December 2024 – Discussion started: 19 December 2024
Revised: 15 April 2025 – Accepted: 16 April 2025 – Published: 23 July 2025

Abstract. In the presence of waves due, e.g., to gravity, rotation, or a quasi-uniform magnetic field, energy
transfer timescales, spectra, and physical structures within turbulent flows differ from the fully developed fluid
case, but some features remain, e.g., intermittency or quasi-parabolic behaviors of normalized moments of rel-
evant fields, for the most part in that intermediate regime where waves and nonlinear eddies interact strongly.
After reviewing some of the roles intermittency can play in various geophysical flows, we present the results of
direct numerical simulations at moderate resolution and run for long times. We show that the power law scal-
ing relations between kurtosis K and skewness S found in multiple and diverse environments can be recovered
using a selection of existing multifractal intermittency frameworks. Indeed, in the specific context of the She–
Lévêque model (She and Lévêque, 1994) generalized to magnetohydrodynamics (MHD) and developed as a
two-parameter system in Politano and Pouquet (1995), we find that a parabolic K(S) law can be recovered for
maximal intermittency involving the most extreme dissipative structures.

1 Introduction

A word-frequency study performed on research papers cen-
tered on a variety of atmospheric issues indicated that
the most frequent cloud-controlling factor is turbulence
(Siebesma et al., 2009; see also Pumir and Wilkinson, 2016),
likely because of its ubiquity but also because it could pre-
sumably explain a multitude of somewhat puzzling phenom-
ena that occur at small scales, even if only that of unity-order
dissipation at high Reynolds numbers. More recently, fully
developed turbulence (FDT) has been associated with the
barotropic state of large-scale atmospheric turbulence, with

a multiplicative effect due to turbulence on the acceleration
of the jet stream and the rapid intensification of hurricanes
(Shepherd, 2020; Emanuel et al., 2023; Shaw and Miyawaki,
2024). A similar study for plasma physics might reveal the
same feature, i.e., that the complexity of nonlinear phenom-
ena is the dominant property impeding the development of
wide-ranging theoretical and modeling techniques of small-
scale behavior, thus making the much-needed prediction of
disruptions in fusion plasmas difficult, even though this is
essential.

Observations of magnetohydrodynamics (MHD) and
plasma turbulence in space physics are numerous, with con-
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sistent progress in the resolution of satellite instrumentation
and now with exploration of the kinetic regime (Fox et al.,
2016; Muller et al., 2020). Access to small-scale dynamics
through newly launched spacecraft allows, e.g., for a direct
evaluation of the dissipation rate spectrum through the mea-
surement of the current and electric fields using the Mag-
netospheric MultiScale Mission (MMS, He et al., 2019). It
has been known for a long time that vortex sheets observed
in the first direct numerical simulations (DNS) of turbulence
using pseudo-spectral methods could roll up into vortex fil-
aments (Patterson and Orszag, 1971; Siggia and Patterson,
1978) (see Douady et al., 1991, for experimental evidence),
whereas in MHD the dynamics lead to complex current and
vorticity structures stemming from the sheet destabilization
observed in DNS in two dimensions (2-D) (Matthaeus and
Lamkin, 1986; Pouquet et al., 1986) and various reconnec-
tion processes and possible singularities (Friedel et al., 1997;
Kerr and Brandenburg, 1999; Cartes et al., 2009), a topic
however which will not be covered in this review (see also,
e.g., Bhattacharjee, 2004; Mininni et al., 2008; Zweibel and
Yamada, 2009; Daughton et al., 2011; Zhdankin et al., 2013;
Lazarian et al., 2020; Oka et al., 2022). Reconnection and the
intermittency associated with singularities have been related
(Osman et al., 2014), including at high cross-helicity (Smith
et al., 2009), and can lead to plasma heating (Marino et al.,
2008). Lastly, studies were done to determine the possible
development of singular structures in fluids and plasmas in
the limit of an infinite Reynolds number, but the problem re-
mains open.

Furthermore, new and accurate observations of Earth’s
magnetic field were obtained recently from global ocean cir-
culation measurements, potentially leading to a better un-
derstanding of oceanic tides, ionosphere–magnetosphere in-
teractions, and their variabilities (Hornschild et al., 2022).
Thus, one of the marked properties of velocity and mag-
netic fields is that of intermittency (and the ensuing anoma-
lous scaling), which is the presence of strong localized struc-
tures. These structures can be identified as vortex filaments,
Alfvén vortices observed in the solar wind (Wang et al.,
2019), or current sheets which experience instabilities such
as Kelvin–Helmholtz (KH) ones (see Barkley et al., 2015, for
a recent review of KH instabilities), reconnection, and thus
dissipation (Matthaeus and Montgomery, 1981; Uzdensky
et al., 2010; Faganello and Califano, 2017; Adhikari et al.,
2021). An abundance of observations of our close environ-
ment points to a complex suite of systems and structures
that include turbulence and nonlinearities in MHD as well
as plasma instabilities; these also exhibit anomalous scal-
ing and dissipation. See, e.g., Matthaeus et al. (2015), Chen
(2016), Galtier (2018), Schekochihin (2022), Balasis et al.
(2023), and Marino and Sorriso-Valvo (2023) for recent re-
views. Intermittent dissipation in the MHD range has been
shown to lead to beam acceleration in the magnetosphere at
ionic scales and below (Sorriso-Valvo et al., 2019), and par-
ticle acceleration has also been observed with MMS in the

vicinity of a reconnection X line, also leading to strong tur-
bulence (Ergun et al., 2020).

There are of course plenty of other manifestations of in-
termittency, e.g., through non-Gaussian wings of probabil-
ity distribution functions (PDFs) for Eulerian and Lagrangian
fields. Thus, one way of characterizing intermittency in tur-
bulence is through the dual observation of large-scale struc-
tures separated by sharp active gradients for both fluids and
MHD, which is particularly noticeable in 2-D (Kinney et al.,
1995; Meneguzzi et al., 1996; Matthaeus et al., 2015). An-
other way of quantifying the degree of intermittency of a flow
is to measure the anomalous exponents of structure func-
tions, i.e., measure a departure from self-similarity, as done
for the solar wind (Burlaga, 1991) and DNS (Politano et al.,
1995). MHD intermittency models were built (Grauer et al.,
1994; Politano and Pouquet, 1995) (see also Horbury and
Balogh, 1997) to explain the observed behavior, but one diffi-
culty resides in the necessity of having a vast amount of data.
In this context, after giving the equations in the next section,
we will analyze in Sect. 3 numerical results on the third- and
fourth-order normalized moments in several systems run at
moderate Reynolds numbers for long times and give a justi-
fication of the power law behavior between moments in the
framework of turbulence models in Sect. 4, together with,
in fact, an extension to scaling laws for arbitrary orders. We
mention other frameworks for the study of such intermittency
in Sect. 5 and draw conclusions in the last section.

2 Equations, parameters, and numerical setup

The incompressible equations for rotating stratified flows in
the Boussinesq incompressible framework are

∂tu+u · ∇u=−∇p−Nθẑ+ 2u× f0ẑ+ ν∇
2u+Fu,

∂tθ +u · ∇θ =Nw+ κ0∇
2θ +Fθ , ∇ ·u= 0 , (1)

with u and θ the velocity and temperature fluctuations (here
in velocity units), w the velocity in the direction of imposed
gravity and/or rotation (here, the vertical z direction), p the
pressure, N and f0/2 the Brunt–Väisälä and rotation fre-
quencies, and ν and κ0 the viscosity and thermal diffusivi-
ties, taken to be equal (unit Prandtl number). Fu and Fθ are
forcing terms. Potential temperature forcing was only used
in the quasi-geostrophic (QG) runs (see Sect. 3.2 and Fig.
2), and otherwise it was always set to zero. For N = 0 and
f0 = 0, one recovers the Navier–Stokes (NS) equations with
a passive scalar. We also write the MHD equations, again for
the incompressible case, and with b the induction in Alfvén
velocity units and P = p+ |b|2/2 the total pressure:

[∂t +u · ∇]u≡Dtu=−∇P + b · ∇b+ ν1u+Fu,
[∂t +u · ∇]b ≡Dtb = b · ∇u+ η1b,

∇ · b = 0 , PM = ν/η . (2)

Here, η is the magnetic diffusivity and PM = ν/η is the
magnetic Prandtl number. The results described herein have
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been obtained by integrating numerically these equations
with pseudo-spectral accuracy using the GHOST (Rosen-
berg et al., 2020) and CUBBY (Ponty et al., 2005) codes.
In the absence of dissipation (ν = 0, η = 0, and κ0 = 0), the
total energy is conserved, together with the cross-helicity and
magnetic helicity in MHD and the potential vorticity in the
stratified case (see Sect. 3.3 for a definition of helicity).

Given a typical large scale taken as the integral scale L0
and a characteristic root mean square velocity at that scale u0,
one defines the kinetic and magnetic Reynolds numbers and
the Froude and Rossby numbers Fr and Ro in a standard
way, i.e.,

RV =
u0L0

ν
, RM =

u0L0

η
, F r =

u0

L0N
,

Ro=
u0

L0f0
; RB = RoFr

2 , Rλ =
λ

L0
RV,

Rig =N (N − ∂zθ )/[∂zu⊥]2 . (3)

Fr and Ro measure the ratio of the wave period to the
turnover time τNL = L0/u0, and RB measures the intensity
of the waves. The Taylor–Reynolds number Rλ based on the
Taylor scale λ=

√
〈u2〉/〈ω2〉 is also defined, and ω =∇×u

is the vorticity and Rig is the gradient Richardson num-
ber. The kinetic and magnetic energies are EV = 〈u

2
〉/2 and

EM = 〈b
2
〉/2, and u ·Fu is the kinetic energy input. The

point-wise dissipation rates of kinetic and magnetic energy
are εv(x)= u·∂tu and εm(x)= b·∂tb. They can be expressed
in terms of the symmetric parts of the velocity gradient tensor
Sij and j2, with j =∇ × b the current density:

Sij (x)=
∂jui(x)+ ∂iuj (x)

2
,

εv(x)= 2ν6ijSij (x)Sij (x) , εm(x)= ηj2(x) . (4)

Finally, the skewness and excess kurtosis (both zero for a
Gaussian) for a scalar field f and the flatness Ff are

Sf = 〈f
3
〉/〈f 2

〉
3/2 , Kf = 〈f

4
〉/〈f 2

〉
2
− 3=

Ff− 3 , Kf(Sf)∼ S
αf
f . (5)

In the following sections, variations of αf with parameters
will be analyzed succinctly for several turbulence fields and
settings.

3 Numerical data on K (S) ∼ Sα behavior for a few
geophysical turbulent flows

3.1 The fluid case

Many articles and books have been devoted to an in-depth
analysis of turbulence – and perhaps its main distinctive
property, that of intermittency – from statistical and geomet-
rical points of view (see, e.g., Kolmogorov, 1962; Arnold,
1963; Frisch, 1995; Chapman and Watkins, 2001; Lovejoy

and Schertzer, 2013; Arnold and Khesin, 2021; Benzi and
Toschi, 2023)1. Intermittency is found in the inertial range
and at the onset of the dissipative range (Kraichnan, 1967a;
Sreenivasan, 1985), and it is also present in quantum turbu-
lence (Müller et al., 2021) or MHD turbulence in the labora-
tory and cosmos (Zel’dovich et al., 1983). Recall that, in the
presence of waves, there are three distinct regimes (see Pou-
quet et al., 2019, for a recent detailed study of the context of
rotating stratified flows), whereby the waves are faster (quasi-
linear regime), the eddies are faster (fully turbulent regime),
or there is an intermediate state where both strongly interact.
This leads to variable efficiency of energy transfer and en-
hanced intermittency, as in the form of large excess kurtosis
in a reduced volume of the fluid (Marino et al., 2022). The
resulting complexity of turbulent flows has been described
using a multitude of tools such as stochastic Langevin equa-
tions, self-organized criticality, or multifractals, and the pres-
ence of anisotropy due to an external agent such as grav-
ity, rotation, or a uniform magnetic field has proven useful
for consideration (see, e.g., Bak et al., 1987; Sreenivasan
and Antonia, 1997; Bramwell et al., 2000; Chapman and
Watkins, 2001; Sagaut and Cambon, 2008; Nazarenko, 2011;
Lovejoy and Schertzer, 2013).

In this context, and associating here intermittency with
non-Gaussian behavior through a measure of third- and
fourth-order normalized moments K and S, we briefly give
numerical results showing the ubiquity of K(S)∼ κSα scal-
ing in turbulent flows with variable α, and we stress the fol-
lowing examples: Navier–Stokes fluid turbulence, stratified
flows without or with rotation in the atmosphere and oceans,
and MHD in the fast dynamo regime.

Perhaps the first instance of a K(S)∼ S2 law was derived
analytically in Longuet-Higgins (1963) in the context of the
ocean and verified observationally in Ochi and Wang (1984)
for coastal waves. It was viewed as a correction to a Gaussian
law for small departures from normality, and with K ≥ 0, a
quadratic term in the K(S) expansion arises at a lower order
together with a constant term. A somewhat surprising result
of later studies was that this scaling persisted in some in-
stances for regimes that were strongly turbulent, which was
discovered for geo-fluids in the troposphere and boundary
layer (Mahrt, 1989; Lenschow et al., 1994, 2012; Lyu et al.,
2018), for the mesosphere (Chau et al., 2021), for ocean and
climate dynamics (Sardeshmukh and Sura, 2009; Sardesh-
mukh and Penland, 2015), and for diverse plasma experi-
ments (Labit et al., 2007; Krommes, 2008). Several studies in
a variety of physical contexts ensued, indicating the ubiquity
of this law, although a strict parabola was hard to determine.
See Pouquet et al. (2023) and Ponty et al. (2025) for recent
accounts.

The pure fluid case, somewhat surprisingly, was examined
only recently to our knowledge (Pouquet et al., 2023) (see

1For a recent review of turbulence and intermittency in the pres-
ence of waves, see, e.g., Nazarenko (2011).
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also Sattin et al., 2009). In Sreenivasan and Antonia (1997),
one finds a compilation of skewness and flatness up to a
Taylor–Reynolds number in excess of 3× 104 for a variety
of flows, whether experimental, numerical, or in the atmo-
spheric boundary layer (see their Figs. 5 and 6). By digital-
izing the data, making log–log fits, and selecting points with
Rλ ≥ 660, one finds a fit of K ≈ S2.34. It will be of interest
to redo this compilation with more recent experiments, but
this already tells us that a pseudo-parabolic scaling K(S)∼
Sα, α ≈ 2 is present for fluid turbulence, as also shown in
numerical simulations of the Navier–Stokes equations with a
passive scalar (see Table 1 in Pouquet et al. (2023), a paper
denoted hereafter as PRM2). Note that the analysis in PRM2
was done rather in terms of the variation with flows or with
governing parameters, e.g., the Froude number Fr , of the
coefficient assuming a parabolic fit K ∼ a(Fr)S2, whereas
in the present paper we do not assume a priori the power
law scaling between K and S and instead search for α. We
observed in PRM2 that quasi-parabolas emerge, e.g., for the
vertical buoyancy flux 〈wθ〉. Also, it was found that K(S)
statistics of local square vorticity and local dissipation dif-
fer somewhat, in particular at moderate RV values, but such
statistics are shown in Donzis et al. (2008) to be quite simi-
lar for the most extreme events, defined as having 104 times
the mean dissipation at high Rλ. It will thus be of interest to
extend these types of studies to substantially higher RV.

3.2 Stratified flows in the presence or not of rotation

Now taking into account stable stratification, as is found in
the atmosphere and the ocean, we plot in Fig. 1 for several
Froude numbers (see the insets) the power law fits for the flat-
ness in terms of F (S)∼ Sαε for the kinetic energy dissipation
εv , which is a good indicator of clean-air turbulence (Storer
et al., 2019). This leads to an exponent αε that increases con-
tinuously with Fr from ≈ 2.22 to 2.45 (parameters for the
runs are given in Table 1 of PRM2). The highest values of
both Sεv and Fεv are reached for the run with Fr ≈ 0.076,
corresponding to the strongest intermittency of the vertical
velocity in particular (Feraco et al., 2018; Marino et al.,
2022), strong local dissipation, and the associated strong lo-
calized shear layers.

When combining rotation and stratification of comparable
magnitudes as found in the ocean (N/f0 ≈ 5), we can ob-
serve in Fig. 2 (left) for runs with quasi-geostrophic (QG)
forcing (see Table 1 for the PRM2 run specifications) a sharp
transition in the exponent of theK(S)∼ Sα fits for the buoy-
ancy flux around RB ≈ 25, corresponding to an average gra-
dient Richardson number of 〈Rig〉 ≈ 1.5, which is close to
that of a KH transition to instability. As noted before, and
as opposed to associating the transition with a parabolic law
with measurably different coefficients, the transition is now
linked to a change in the power law scaling itself, as backed
up by the theoretical investigation in Sect. 4, particularly in
the context of the generalized She–Lévêque models. This

also points to the importance of the occurrence of turbulence
at small scales once the Ozmidov scale is larger than the
Kolmogorov scale, i.e., `Oz ≥ ηK with `Oz =

√
εV /N3 and

ηK = [εV /ν
3
]
−1/4. We also give in Fig. 2 the PDFs of the

potential energy dissipation εθ = κ0〈|∇θ |
2
〉 for the QG runs

Q1 (center) and Q8 (right), with buoyancy Reynolds numbers
RB of 3.2 and 385 (see Table 1 in PRM2). The respective fits
(≈ 0.1exp−2.7εθ and ≈ 0.0008exp−0.37εθ ) are in agreement
with the expected increase in small-scale structures and dis-
sipation as RB grows and a fully turbulent regime is reached.

3.3 Coupling to a magnetic field in MHD: fast dynamos
in the ABC, Roberts, and Taylor–Green flows

The dynamo problem is that of the growth of magnetic fields
due to either, at small scales, chaotic streamlines of the ve-
locity, or, at large scales, the kinetic helicity content of the
flow, where HV = 〈u ·ω〉 (Steenbeck et al., 1966; Moffatt,
1969; Zel’dovich et al., 1983; Brandenburg and Subrama-
nian, 2005) plays an essential role in the solar context in
the presence of convection (see, e.g., Ponty et al., 2001).
Both the cross-helicity HC = 〈u · b〉 (Pouquet et al., 1986;
Yokoi, 2013) and the magnetic helicity HM = 〈A · b〉, with
b =∇ ×A, also play roles, the latter in the nonlinear sat-
uration of the large-scale dynamo associated with an in-
verse cascade of HM (Pouquet et al., 1976).2 In fact, with
sufficient large-scale separation, a dynamo can occur with
HV ≡ 0 overall but with sufficient local fluctuations (Gilbert
et al., 1988). The dynamo can also be subcritical because the
growing magnetic seed will alter the flow and reduce the tur-
bulence (Ponty et al., 2007; Mannix et al., 2022). The result-
ing 3-D turbulent system is made up of current and vorticity
sheets, rolling up around the local mean magnetic field and
with a strong twist of b across the sheet (Mininni et al., 2006;
Ponty and Plunian, 2011; Homann et al., 2014); see also Uz-
densky et al. (2010), Lazarian et al. (2020), and Oka et al.
(2022).

(Quasi)-parabolic K(S) laws in MHD have been found in
both laboratory plasmas and the cosmos (Labit et al., 2007;
Krommes, 2008; Osmane et al., 2015). Recently, variations
of α with parameters were discussed briefly in the context of
the classical She–Lévêque (SL) model as found in the fast
dynamo context (Ponty et al., 2025), and we expand on these
results presently for the generalized SL models (see Eq. (8)
analyzed in Sect. 4.1) as well as for higher-order moment
ratios.

We now give new results for runs already analyzed in part
in Ponty et al. (2025) as well as for two new runs with a
so-called Roberts flow with helical forcing. These are runs
GOR1 and GOR2, with Reynolds numbers of 147 and 445

2See Enciso and Peralta-Salas (2023) for a recent review of Bel-
trami fields and the central role of the helicity invariants HV,HM,
andHC. The conservation ofHM was first derived in Woltjer (1958)
in the context of force-free fields.
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Figure 1. Stratified turbulence: kurtosis-skewness plots for εv for several Froude numbers (see the insets in which the fit parameters are also
given, assuming K ∼ a · Sb). Note the different scales for S and K , in particular the high K values for the run with Fr ≈ 0.076 (middle).

Figure 2. Quasi-geostrophic (QG) turbulence: (a) variation with RB of the exponent for the K(S)∼ Sα scaling of the kinetic energy
dissipation, using QG forcing. Note the sharp transition which occurs for RB ≈ 20 corresponding to 〈Rig〉 ≈ 1. (b, c) PDFs of potential
energy dissipation εθ for runs with RB = 3 (run Q1, b) and RB = 385 (run Q8, c); see Table 1 and Eq. (3) in PRM2, where PDFs for εv are
given). Dashed lines are for equivalent Gaussians, and lin–log coordinates are used, giving plausibility to the exponential fits (see the text).

(and Rλ values of 38 and 66). The runs are performed on
642
× 128 and 1282

× 256 grids. These flows are resolved
well (the dissipation scale is more than twice the numerical
cutoff according to the Kaneda criteria), and they are run for
long times (15 000 and 2000 τNL). However, we note that the
energy spectra (not shown) are not yet sufficiently developed
(see also Ponty and Plunian (2011) for different runs using
the Roberts dynamo configuration), although the skewness
of j2 already reaches high values (above 18).

Preliminary results indicate the following. The energy ra-
tio rE = EM/EV approaches equipartition (Fig. 3a), and the
K(S) scatterplot for j2 for run GOR2 in the plot (Fig. 3b)
indicates a rather clear power law, with the blue line follow-
ing the parabolaK(S)= 3/2[S2

−1] (see Garcia, 2012). Note
that the colors of the dots indicate the time lapse from the on-
set of the run, in turnover times, from blue (early times) to red
(late times on the order of 104; see the color bar to the right).
The remaining graphs of Fig. 3 give scatterplots for the nor-

malized fifth-order momentQ=
〈
δf 5〉/〈δf 2〉5/2 for a field f

(see Eq. (12) below, with K52 ≡Q, in an effort to simplify
the notation). f is vz or bz for Fig. 3c, e, and f is εv or j2 for
Fig. 3d, f. In theQ(S) data, power laws emerge in the tails of
the kinetic variables and bz and throughout for j2.

The scaling exponent α and constant κ for the normalized
fifth-order moments Q are given in Fig. 4 for the ABC (top),
TG (middle), and GOR (bottom) runs for j2 (left) and εv
(right). They show variations with the forcing function, with
Reynolds numbers and the threshold for S used for the plot,
together with, possibly, the equipartition ratio rE. As is the
case for the TG and ABC flows, the Reynolds number leads
to a difference in scaling for the fit parameters. Thus, runs
at higher Reynolds numbers and with several configurations
will have to be performed in order to study the scaling of the
α and κ parameters for relevant variables, but in the next sec-
tion we formulate an approach that can elucidate these scal-
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Figure 3. Fast dynamos in MHD for run GOR2 with RV ≈ 445. (a) EM/EV(t) and (b) K(S) for j2. We also giveQ(S) for the same run for
j2 (b), vz (c), εv (d), bz (e), and (f) for j2 again, this time in log–log form.

ing laws in the framework of three multifractal intermittency
models.

4 Theoretical moment scaling using several
multifractal intermittency models

4.1 Expression for the kurtosis–skewness scaling
exponent, K ∼ Sα, for both fluids and MHD in the
SL framework

We now give a path towards a theoretical formulation for
K(S) scaling using a classical intermittency model and sev-
eral of its extensions, assuming a power law dependency for
velocity and magnetic field structure functions δu(r),δb(r)
defined as for (scalar) components u and b:

〈[u(x+ r)− u(x)]p〉 ≡ 〈δu(r)p〉 ∼ rζ
(f )
p ,

〈[b(x+ r)− b(x)]p〉 ≡ 〈δb(r)p〉 ∼ rζ
(m)
p . (6)

Also assuming power law scaling between kurtosis and
skewness for both fluids (f ) and MHD (m), we easily ob-
tain

Kf(Sf)∼ S
αf
f , Km(Sm)∼ Sαmm ,

αf =
ζ

(f )
4 − 2ζ (f )

2

ζ
(f )
3 − 3ζ (f )

2 /2
, αm =

ζ
(m)
4 − 2ζ (m)

2

ζ
(m)
3 − 3ζ (m)

2 /2
, (7)

with the functions ζ (f,m)
p depending on the (fluid or MHD)

intermittency dynamics or an explicit model.
We now recall the scaling laws derived in the context of

the She–Lévêque formulation for fluids (She and Lévêque,
1994) and for MHD as generalized in Politano et al. (1995).
These generalized She–Lévêque models, named gslf and
gslm for fluids and MHD, depend on two open parameters
0< x < 1 and 0< β < 1, where, in the limit of the non-
intermittent case, β→ 1, whereas β→ 0 for a monofractal.
The anomalous exponents ζ gsl

p at order p are3

ζ
gslf
p =

p(1− x)
3

+
x(1−βp/3)

1−β
,

ζ
gslm
p =

p(1− x)
4

+
x(1−βp/4)

1−β
. (8)

3One could obtain similar relations for the fluid SL model
derived for sheet-like dissipative eddies in Horbury and Balogh
(1997). Also, the SL model written in the framework of MHD is
generalized in Merrifield et al. (2005) to include extended self-
similarity (see also Merrifield et al. (2007) for 2.5-D).
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Figure 4. Fast dynamos in MHD. Exponent α for the scaling of

Q=
〈
δf 5

〉
/
〈
δf 2

〉5/2
as a function of the threshold of skewness for

the magnetic current (f = j2; a, c, and e) and kinetic energy dis-
sipation (f = εv ; b, d, and f) for runs ABC (a, b), TG (c, d), and
GOR (e, f). Note the higher skewness values for j2 when compared
to εv and its higher dependency on Reynolds numbers compared to
εv for the ABC and TG runs.

We note that x is related to the codimension of the most
dissipative structures in the nonlinear system and that β is a
measure of the efficiency of energy transfer and dissipation
among intermittent structures as the moment order varies.
This formulation leads to log-Poisson statistics (see, e.g.,
She and Lévêque, 1994; Dubrulle, 1994; Frick et al., 1995).
A further assumption of the models concerns the scaling of
nonlinear transfer in terms of characteristic times of the prob-
lem, i.e., the nonlinear eddy turnover time, the wave period
(in MHD, the Alfvén wave), and the transfer time of energy
to small scales.

The multifractal framework (see Frisch, 1995) allows for
a multiplicity of dissipative structures of diverse physical
(co)dimensions: vortex and current sheets, flux tubes, current
filaments, or bubbles. These result in a non-integer effective
β parameter. An extension of the multifractal framework to
vectors (velocity field) as opposed to scalars (velocity ampli-
tude) can be found in Schertzer and Tchiguirinskaia (2020).
The SL formulation for MHD has been used for example
in modeling intermittent nanoflares in connection with so-
lar wind data (Veltri et al., 2005). In the numerical context, it
is stressed in Servidio et al. (2011) that a high resolution is
needed to properly quantify the properties of local reconnec-

tion and current sheets; moreover, reconnection events and
the ensuing dissipation are highly local and very varied in
amplitude, which is somewhat reminiscent of the multifrac-
tality property reviewed in detail in Lovejoy and Schertzer
(2013) and Benzi and Toschi (2023).

From Eq. (8), we can compute the general scaling expo-
nents of kurtosis and skewness using Eq. (7). We obtain

αgslf =
2(1− 2β2/3

+β4/3)
1+ 2β − 3β2/3 ;

αgslm =
2(1− 2β1/2

+β)
1+ 2β3/4− 3β1/2 , β 6= 1 . (9)

Note that, interestingly, both the αgslf and αgslm exponents are
independent of x, the fractal codimension of the most dissi-
pative structures. It is also easy to see, again for both fluids
and MHD, that the limit for β→ 0 is α→ 2. In other words,
a parabolic law is reached when the most dissipative struc-
ture dominates the small-scale dynamics irrespective of its
geometrical (co)dimension, likely at high RV, high RM, and
〈Rig〉 ≈ 1 (see Eq. 3). We note that a similar result from the
computation of the α exponent could be written in the con-
text of the model developed in Horbury and Balogh (1997).
We also note however that, in the shell models examined in
Frick et al. (1995), β never reaches this low limit. Another
point concerns the fact that the variation of α could reflect the
dependence on the form of the second invariant in the shell
models, which is akin to helicity (Frick et al., 1995; Kadanoff
et al., 1995). This may point to a limitation of such models
when restricted to nearest-neighbor interactions or with dif-
ferent sets of invariants, restrictions that cannot encompass
by construction the highly nonlocal (in scale) interactions
leading to anomalous dissipation. Thus, this point will need
further investigations.

4.2 The standard choice of parameters for the SL
models for fluids and MHD

The standard case for the classical fluid SL model is ob-
tained for x = 2/3, β = 2/3 and is associated with vortex
filaments, whereas in the MHD case with wave–vortex inter-
actions and current sheets, the standard parameters become
x = 1/2, β = 1/2 (Grauer et al., 1994; Politano and Pou-
quet, 1995). This yields, respectively, for the K(S)∼ Sα for
fluids (sslf) and MHD (sslm),

ζ sslf
p =

p

9
+ 2

[
1−

(
2
3

)p/3]
, αsslf ≈ 2.56 ;

ζ sslm
p =

p

8
+ 1−

1
2p/4

, αsslm ≈ 2.53 . (10)

These α values for the standard SL models are also given in
Ponty et al. (2025)4.

4Note that such values are sensitive to the number of decimals
taken; in the fluid case using strictly two decimal points throughout,
one finds αsslf ≈ 2.00.
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All α values are close except for extreme cases (β at its
limits), in part because the values of the anomalous expo-
nents for structure functions for fluids are anchored at ζ3 ≡ 1.
For θ,v, and b, there are more complex constraints since
they involve cross-correlations between fields at third or-
der (Yaglom, 1949; Antonia et al., 1997; Politano and Pou-
quet, 1998) and also because the analytical expressions for
α lead to a small fractional power of β, and we are at rel-
atively low orders of the structure functions. In fact, an ex-
tension of the SL theory to the intermittency of the passive
scalar θ in the fluid case can be found in Lévêque et al.
(1999). We can then derive the expression KFθ ∼ S

αθ
Fθ

in the
framework of that model. Here, the scalar flux Fθ is defined
as Fθ (r)(p)

:= 〈|δu(r)δθ (r)2
|
p/3
〉 ∼ 〈|δu(r)δθ (r)2

|
ζp 〉, an ex-

pression using the flux arising from the aforementioned exact
law for the conservation of scalar energy derived in Yaglom
(1949). With the numerical values given in Lévêque et al.
(1999), we find αEθ ≈ 2.61 using anomalous exponents stem-
ming from experiments, αDθ ≈ 2.38 for DNS, and αTθ ≈ 2.44
using the theory developed in that paper. This shows again
the sensitivity of these power laws to the accuracy of the data.

4.3 Generalized scaling for higher-order normalized
structure functions in the framework of the
She–Lévêque models

Let us now rewrite the generalized SL models for fluid and
MHD slightly differently, with (as before) 0< β < 1 and 0<
x < 1:

3(1−β)ζ gslf
p = x[3(1−βp/3)+p(β − 1)] +p(1−β) ,

4(1−β)ζ gslm
p = x[4(1−βp/4)+p(β − 1)] +p(1−β) . (11)

We now compute the scaling of a generalized adimension-
alized structure function versus another one, provided they
exist, writing

Kpq =
〈δup〉

〈δuq〉p/q
,Krs =

〈δur 〉

〈δus〉r/s
,

Kpq = f (Krs) = Kασ
rs , σ = [pr/qs] ,

ασ =
ζp − [p/q]ζq

ζr − [r/s]ζs
, (12)

with σ ∈ N+, p >max[q,r], r > s. In Sect. 4.1, we con-
sidered the case K = Sα or, in the present notation, K42 =

K
α43/22
32 , with p = 4,q = 2= s, and r = 3. After a slightly

cumbersome but straightforward computation, one finds
again that ασ is independent of x, the codimension of dis-
sipative structures, for all values of the indices encapsulated
in σ ; one finds, specifically, that

α
(gslf)
σ =

s

q

[
q(1−βp/3)−p(1−βq/3)
s(1−βr/3)− r(1−βs/3)

]
,

α
(gslm)
σ =

s

q

[
q(1−βp/4)−p(1−βq/4)
s(1−βr/4)− r(1−βs/4)

]
. (13)

In the case of extreme intermittency with β→ 0, we also
have, for fluids, MHD, and s 6= r , as stated before,

β→ 0 , α
(gslf),(gslm)
pr/qs →

s(p− q)
q(r − s)

. (14)

This formula simplifies, for q = s (same normalization of
moments), into [p− q]/[r − q] and gives a parabolic scal-
ing for p+ q = 2r . Thus, when choosing for the normaliza-
tion the second-order energy moment (q = s = 2), we have a
parabolic scaling for 2r = p+ 2. Similarly, for a normaliza-
tion by the skewness, q = s = 3, we again obtain a parabola
for 2r = p+ 3. These parabolic solutions for β→ 0 are di-
rectly linked to the algebraic and hierarchical formulations
of the SL models.

Finally, let us take two specific examples: Q(S) with p =
5,q = s = 2, and r = 3 and H6(S) with p = 6,q = s = 2,
and r = 3 (sometimes called hyper-flatness). The first ex-
ample for Q(S) is also discussed in Sardeshmukh and Sura
(2009). We find in the standard case (β = 2/3 for fluids and
β = 1/2 for MHD) the scalings αsslf

53/22 ≈ 4.6 and αsslm
53/22 ≈

4.5, whereas the numerical estimate for the ABC runs gives
a maximum of Q≈ 3.5. When β→ 0, α

β→0
53/22→ 3, a value

advocated in Sardeshmukh and Sura (2009) for this Q(S)
scaling for both vorticity and potential height using a linear
stochastically forced Langevin equation model for climate
dynamics with correlated additive and multiplicative noise
(see also Sect. 5.1 below). To give a second and final exam-
ple, for H6 in the standard case again, we have αsslf

63/22 ≈ 7.1

and αsslm
63/22 ≈ 6.8, and when β→ 0, α

β→0
63/22→ 4, whereas

the numerical value we find for the ABC runs is close to
3.7. The discrepancy with the data in Fig. 4 is thus large. In
this context, a study in terms of variation in Reynolds num-
bers will be informative, but one may have to investigate the
MHD turbulence case in 2-D or so-called “2.5-D” (two space
variations and three components of the fields) to reach sub-
stantially higher RV and RM values.

4.4 K ∼ Sα scaling for the Yakhot intermittency model

One can use other models of structure function scaling in tur-
bulent flows. For example, a model of intermittency in fluid
turbulence by Yakhot (2006) (hereafter model Y ) yields the
scaling

ζ
(Y )
2p =

2(1+ 3βy)p
3(1+ 2pβy)

, ζ
(Y )
3 = 1 ∀ βy,

q = 2p , ζ (Y )
q =

q(1+ 3βy)
3(1+ qβy)

. (15)

The model comes from evaluating, in terms of perturbation,
the corrections to 2-D turbulence when close to a critical di-
mension at which the energy cascade reverses its direction
to small scales. One can verify that βy = 0 gives a ζp = p/3
standard scaling. We immediately get αy ≈ 2.56 for the rela-
tionshipK ∼ Sαy when choosing the value βy ≈ 0.05 for the
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open parameter, which is close to that given by the experi-
ments. See also Nickelsen (2017) and Friedrich and Grauer
(2020) for recent analyses of this and other models5. The
anomalous ζp exponents themselves (see Fig. 1 in Friedrich
and Grauer, 2020) do not differ by much from model to
model, especially at a relatively low order. However, in view
of the sensitivity of α to the evaluation of the anomalous ex-
ponents, α scaling in an empirical K(S) law may prove a
valuable tool in order to distinguish between different inter-
mittency modeling and small-scale parameterizations in gen-
eral, which is somewhat better than with the ζp values them-
selves, given sufficiently resolved data leading to precise fits
to the quasi-parabolic power law behavior for long runs in
terms of turnover times.

In conclusion, if the change in K(S) scaling with the
Reynolds number is not known and is difficult to evaluate
experimentally or numerically, the data are sufficient to see
that such scalings will be observed at high RV values. In-
deed, this can be expected in the framework of random mul-
tiplicative systems (see Benzi and Toschi (2023) for a recent
introduction). We also recall here that a parabolic law can be
justified on several grounds. First, as stated earlier, one can
write a Taylor expansion for K(S) for a quasi-Gaussian PDF
and note that K ≥ 0. Another reason for observing a K(S)
parabolic law relies on the existence of Cauchy–Schwarz
relationships (and their generalizations) between the third-
and fourth-order moments of a stochastic variable f , i.e.,
S2

f ≤Kf+ 3, with a tightening of the inequality for a uni-
modal PDF, i.e., S2

f ≤Kf+186/125, for a finite fourth-order
moment (Klaassen et al., 2000). We also note that Beta distri-
butions are advocated in Labit et al. (2007) for the intermit-
tency of density fluctuations in drift-exchange turbulence in
plasmas, in particular because they admit both positive and
negative skewnesses, as observed in many instances, e.g., the
fast dynamo (Ponty et al., 2025). These K(S) relations also
provide useful bounds for the data.

5 Other approaches for quasi-parabolic scaling
beyond the GSL and Y models

5.1 Linear and nonlinear Langevin models

Langevin equations have long been written in the context of
turbulent flows, e.g., in order to take into account the non-
locality of mode interactions leading to intermittency, mod-
eling as such the separation of spatial and temporal scales
(Nazarenko et al., 2000a; Laval et al., 2003). Indeed, dis-
sipative and intermittent structures such as shear layers or
current sheets are multiscale, spanning a range from the in-
tegral scale characteristic of their length to the dissipative

5In the Markov process (M) interpretation of the SL model, the
independence of α from the codimension of dissipative structures is
an independence of the jump distribution in the associated stochas-
tic process due to M , and only the amplitude of the velocity jumps
(leading to dissipation intermittency) matters.

scale defined by viscosity or resistivity, e.g., the Kolmogorov
scale ηK for NS, providing one possibility for intermittency
to be found at both large and small scales. We note how-
ever that, in a multifractal framework such as in SL models,
there is a range of dissipative scales also corresponding to
a plage of spectral indices. This provides a justification for
the application of a Langevin framework, where the original
nonlinearities of the primitive equations are modeled through
fast-evolving additive and multiplicative stochastic noise. It
is shown in Wan et al. (2012) that the kurtosis of the magnetic
field filtered at the dissipation scale and smaller increases
sharply and significantly in high-resolution 2-D DNS and in
ACE and Cluster solar wind data. Recent observations in the
heliosphere analyzing data from the Parker Solar Probe con-
firm the importance of such nonlocal interactions in the case
of so-called imbalanced MHD turbulence with z± = v±b of
unequal amplitudes (Yang et al., 2023), which is an imbal-
ance enhanced by the quasi-absence of collisions (Miloshe-
vich et al., 2021).

One can write a stochastic Langevin equation for a fluc-
tuating field c̃ in terms of Dt c̃ =−(λ̄k + λ′k)c̃+ ζ̃k , where
[λ̄k,λ

′

k] represents large-scale and fluctuating small-scale ve-
locities stretching the magnetic field lines in the kinematic
phase and ζ̃k is an additive noise due to (plausible) rapid
small-scale fluctuations. The essential features in the devel-
opment by Sura and Sardeshmukh (2008) for climate can
thus be reproduced in the MHD case; this will likely lead
to the same conclusion of parabolic behavior. The large-
scale velocity and induction are constrained by divergence-
free conditions, by Galilean invariance for the velocity, and
perhaps even more importantly by existing so-called exact
laws6. Such laws involve third-order cross-correlations of u

and b (see Marino and Sorriso-Valvo (2023) for a recent re-
view), whereas the fourth-order moments do not have such
constraints for quadratically nonlinear equations. A nonzero
energy dissipation rate (a plausible conjecture) thus implies
non-Gaussianity (S 6= 0 and K 6= 0). A Langevin equation
developed in the kinematic dynamo regime can be amended
to model the back reaction of the Lorenz force, as discussed
briefly in Ponty et al. (2025). We finally note that, start-
ing from well-resolved data, one can reconstruct a Langevin
equation model of the observed stochastic process (Friedrich
et al., 2011; Rinn et al., 2016). This may prove instructive,
in particular if different models were to emerge for different
regimes or dynamo types.

5.2 The nonlinear Langevin approach for the dynamo
regime

Several Langevin approaches in MHD have been derived in
the nonlinear case (see Zwanzig, 1973, for an early study for

6These exact laws have been extended to fluid and MHD turbu-
lence as applied to the heliosphere; see, e.g., Ferrand et al. (2021)
and David and Galtier (2022).
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fluids). For example, a sub-diffusive behavior was shown by
Balescu et al. (1994), from first principles, in the context of a
stochastic magnetic field. One can also choose to add a cubic
term to the induction equation (cubic so that the symmetry
of the axial magnetic field is preserved) in order to mimic
the effect the Lorentz force has on the velocity (see, e.g.,
Boldyrev, 2001; Leprovost and Dubrulle, 2005), in particular
for large magnetic Prandtl numbers. On the other hand, it was
shown in Nazarenko et al. (2000b) that, in the case of the fast
dynamo, the feedback of the growing induction is through
the creation of counter-rotating vortices, a point not included
in a saturation involving only the magnetic field equation.
One can also consider the role of Alfvén waves in the non-
linear regime by introducing an oscillatory term into a linear
Langevin equation (Bandyopadhyay et al., 2018). Note that,
in a Langevin equation, in a sense one is getting rid of the
closure problem for turbulent motions since it is linear, with
the complex nonlinear small-scale dynamics bundled up in a
rapid stochastic forcing with an assumption of (mostly) local
interactions between these fast motions.

5.3 Self-organized criticality and the 1/f law as other
possible frameworks for intermittent quasi-parabolic
scaling

Self-organized criticality (SOC) has been introduced in the
context of sandpile systems and their avalanching proper-
ties (Bak et al., 1987), such as when modeling solar flares
(Lu and Hamilton, 1991); see also Bramwell et al. (2000),
Chapman and Watkins (2001), Osman et al. (2014), Watkins
et al. (2016), and Balasis et al. (2023) for recent discussions.
It can be seen as a system with slow driving and fast relax-
ation, leading to power law scaling of spatiotemporal dissipa-
tive avalanches. In the context of DNS in 3-D MHD, Uritsky
et al. (2010) identified SOC in the dissipative range of decay-
ing runs (i.e., with a local critical Reynolds number of order
unity). However, SOC was not found in the inertial range, a
fact that was interpreted as SOC properties propagating from
the dissipative to inertial ranges, with merging of current
structures. Indeed, the dissipative features of turbulent flows
are multiscale, spanning from the energy-containing range to
the dissipative one, such as in vortex filaments and current
sheets (see Watkins et al., 2016, for a comparative study of
the definitions of SOC behavior). The critical state is that
in which the source (the energy cascade at a fixed rate) and
sink (the dissipation at a fixed rate through, e.g., eddy vis-
cosity) balance out, as they do on average. Note that Smyth
et al. (2019) identified SOC in rotating stratified flows with
the Richardson number (governing shear instabilities such
as KH), being the critical parameter (see also Fig. 2a). The
nonlinear interactions in the inertial range are conservative,
and dissipation sets in through nonlocal interactions between
energy-containing eddies and dissipative ones, leading these
interactions to be described by SOC together with 1/f noise
(Vespignani and Zapperi, 1998). As shown in Dmitruk and

Matthaeus (2007), this leads to an emphasis on the dynam-
ics of the largest modes and their interactions with the early
dissipative range, where intermittency is strongest (Kraich-
nan, 1967b; Chen et al., 1993). Also, the sharp variations
of the flow and field due to the nonlinearities of the primi-
tive equations can be treated as a stochastic force using re-
normalization group techniques, which is again reminiscent
of a Langevin approach (Materassi and Consolini, 2008). In
all of these studies, nonlinear shear instabilities appear cen-
tral to the interrelated small-scale and large-scale behavior of
the stochastic turbulent flows.

6 Conclusions and perspectives

We have analyzed in this paper the relative behavior of nor-
malized moments of the velocity, magnetic field, and temper-
ature fluctuations in a variety of contexts, and we have given
a rationale for casting these results in the mold of classical
intermittency models for fluid and MHD turbulence, models
which provide a natural framework for such relative scalings.
The variability of the scaling is linked to the details of the dis-
sipative structures and their relative intensities. The ubiquity
of a quasi-parabolic K(S)∼ Sα law could be interpreted as
it having no specific physical meaning; on the other hand, it
may be pointing to a universality of intermittency in turbu-
lent flows. We also note that the power law exponent α is in-
dependent of the (co)dimension of the dissipative structures.
The abrupt transition in α scaling for the rotating stratified
case when shear instabilities arise (see Fig. 2) is indicative of
underlying dynamics where the development of turbulence,
as measured by the Ozmidov scale becoming larger than the
dissipative scale in that case, plays a dynamical role (Pou-
quet et al., 2023). In MHD, one issue absent from the present
analysis is the incorporation of the potential effect of helical
structures (with nonzero kinetic helicity, magnetic helicity,
and/or cross-helicity) into theK(S) scaling. It is known from
multiple studies that helicity plays a central role in large-
scale dynamos (see Brandenburg and Subramanian, 2005)
and that its incorporation into closures of turbulence leads
to better modeling of these flows (Yokoi, 2013).

The multifractality of the She–Lévêque model is measured
through the β parameter. As β→ 0, the intermittency of the
flow is carried by one single structure and the flow becomes,
in that extreme case, monofractal. In such a limit, α→ 2
(see Eq. 9), so that a strict parabolic behavior for K(S), in
the framework of such models, is linked to monofractality.
We also note that the PDFs of the potential energy dissipa-
tion rate computed in this paper for quasi-geostrophic flows
have exponential tails (see Fig. 2), with lesser decay as the
Reynolds number increases. For the so-called α-stable pro-
cesses, the scaling exponents of normalized moments of the
multifractal dynamics can be computed, and this can be as-
sociated with (in some cases unbounded) singularities; see
Serinaldi (2010) in the context of rainfall. Furthermore, such
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multifractal analysis could give information on the latitudi-
nal dependency of data and unravel different regimes in the
dynamics of the atmosphere, weather, macroweather, and cli-
mate (Lovejoy, 2018).

In this context, a standard analysis of anomalous expo-
nents of temporal structure functions (as opposed to spa-
tial ones) in the various data sets presented herein will be
of great interest and is planned for future work. Moreover,
temporal moment analysis allows one to sort out shorter
and longer timescales in time series of nonlinear phenomena
and their statistics, such as in climate data (Franzke et al.,
2020). Finally, multifractal analysis, through the computa-
tion of anomalous scaling exponents of order p and of an
evaluation of their limit as the order p→∞ (see, e.g., Pier-
rehumbert, 1996), can lead to useful characterizations of tur-
bulent structures, e.g., in kilometer-sized clouds (Freischem
et al., 2024).

In order to pursue the investigation of K(S) laws of tur-
bulence at higher Taylor–Reynolds numbers, one can imple-
ment hyperviscosity algorithms or else use models which,
because they are significantly less costly numerically, will
allow for longer statistics at substantially higher RV val-
ues. Such approaches are numerous. One can think of shell
models retaining only one mode per field per wavenumber
shell and only nearest-neighbor interactions as developed for
MHD in Gloaguen et al. (1985) (see Plunian et al., 2013, for a
review). One can also simplify the dynamics by lowering the
space dimension, as for the 1-D, 2-D, and 2.5-D cases (see,
e.g., Thomas, 1970; Hada, 1993; Laveder et al., 2013; Mer-
rifield et al., 2007; Servidio et al., 2011). Numerical adap-
tation, preferably spectral when dealing with L∞ norms as
for extreme intermittent events (see Ng et al., 2008), vari-
ous large-eddy simulations (Sagaut and Cambon, 2008), or
the so-called α model (Holm et al., 1998) used for exam-
ple in the framework of oceanic dynamics (Pietarila Graham
and Ringler, 2013) or also analyzed in MHD (Montgomery
and Pouquet, 2002), will be similarly useful. These methods
will allow for disentanglement between Reynolds numbers
and intermittency effects, the consequences of the presence
or not of helicity linked to vortex filaments and the dynamo,
and equipartition or not of kinetic, potential, or magnetic en-
ergy.

One further important issue will be incorporating the role
of anisotropy, which can affect scaling properties and inter-
pretations of the intermittency, as shown in the context of the
atmosphere in Lovejoy et al. (2001) or MHD in Schekochi-
hin (2022). Finally, it was noted in Yeung et al. (2018) that
the grid resolution, Courant number, and machine precision
all affect the estimate of the overall enstrophy. Furthermore,
the scaling for the strongest gradients becomes linear in Rλ
at high values of Rλ, with intermittent structures found at
scales smaller than the Kolmogorov scale ηK (Buaria et al.,
2019), confirming the existence of intermittency beyond ηK .
In addition, in Buaria and Pumir (2025), a relative scaling
of moments of the velocity gradient tensor (restricted to lon-

gitudinal components) is analyzed using high Rλ numerical
and experimental fluid turbulence data. These authors show
the possibility of a universal scaling behavior of relative mo-
ments where Rλ disappears, and with explicit data on H6.
This type of analysis is not performed here for lack of a
sufficiently large Reynolds number and the ensuing lack of
sufficiently intense localized dissipation, but a study of inter-
mittent structures in MHD at a substantially higher Reynolds
number is planned for the future.
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