Articles | Volume 31, issue 4
https://doi.org/10.5194/npg-31-497-2024
https://doi.org/10.5194/npg-31-497-2024
Research article
 | Highlight paper
 | 
21 Oct 2024
Research article | Highlight paper |  | 21 Oct 2024

A global analysis of the fractal properties of clouds revealing anisotropy of turbulence across scales

Karlie N. Rees, Timothy J. Garrett, Thomas D. DeWitt, Corey Bois, Steven K. Krueger, and Jérôme C. Riedi

Related authors

Climatologically invariant scale invariance seen in distributions of cloud horizontal sizes
Thomas D. DeWitt, Timothy J. Garrett, Karlie N. Rees, Corey Bois, Steven K. Krueger, and Nicolas Ferlay
Atmos. Chem. Phys., 24, 109–122, https://doi.org/10.5194/acp-24-109-2024,https://doi.org/10.5194/acp-24-109-2024, 2024
Short summary
Idealized simulation study of the relationship of disdrometer sampling statistics with the precision of precipitation rate measurement
Karlie N. Rees and Timothy J. Garrett
Atmos. Meas. Tech., 14, 7681–7691, https://doi.org/10.5194/amt-14-7681-2021,https://doi.org/10.5194/amt-14-7681-2021, 2021
Short summary
Mass and density of individual frozen hydrometeors
Karlie N. Rees, Dhiraj K. Singh, Eric R. Pardyjak, and Timothy J. Garrett
Atmos. Chem. Phys., 21, 14235–14250, https://doi.org/10.5194/acp-21-14235-2021,https://doi.org/10.5194/acp-21-14235-2021, 2021
Short summary

Related subject area

Subject: Scaling, multifractals, turbulence, complex systems, self-organized criticality | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere | Techniques: Theory
Multifractal analysis of wind turbine power and rainfall from an operational wind farm – Part 1: Wind turbine power and the associated biases
Jerry Jose, Auguste Gires, Yelva Roustan, Ernani Schnorenberger, Ioulia Tchiguirinskaia, and Daniel Schertzer
Nonlin. Processes Geophys., 31, 587–602, https://doi.org/10.5194/npg-31-587-2024,https://doi.org/10.5194/npg-31-587-2024, 2024
Short summary
Multifractal analysis of wind turbine power and rainfall from an operational wind farm – Part 2: Joint analysis of available wind power and rain intensity
Jerry Jose, Auguste Gires, Ernani Schnorenberger, Yelva Roustan, Daniel Schertzer, and Ioulia Tchiguirinskaia
Nonlin. Processes Geophys., 31, 603–624, https://doi.org/10.5194/npg-31-603-2024,https://doi.org/10.5194/npg-31-603-2024, 2024
Short summary
Stieltjes functions and spectral analysis in the physics of sea ice
Kenneth M. Golden, N. Benjamin Murphy, Daniel Hallman, and Elena Cherkaev
Nonlin. Processes Geophys., 30, 527–552, https://doi.org/10.5194/npg-30-527-2023,https://doi.org/10.5194/npg-30-527-2023, 2023
Short summary
Review article: Scaling, dynamical regimes, and stratification. How long does weather last? How big is a cloud?
Shaun Lovejoy
Nonlin. Processes Geophys., 30, 311–374, https://doi.org/10.5194/npg-30-311-2023,https://doi.org/10.5194/npg-30-311-2023, 2023
Short summary
Brief communication: Climate science as a social process – history, climatic determinism, Mertonian norms and post-normality
Hans von Storch
Nonlin. Processes Geophys., 30, 31–36, https://doi.org/10.5194/npg-30-31-2023,https://doi.org/10.5194/npg-30-31-2023, 2023
Short summary

Cited articles

Ackerman, S. A., Strabala, K., Menzel, W., Frey, R., Moeller, C., and Gumley, L.: Discriminating clear sky from clouds with MODIS, J. Geophys. Res., 103, 32 141–157, 1998. a
Ackerman, S. A., Holz, R. E., Frey, R., Eloranta, E. W., Maddux, B. C., and McGill, M.: Cloud detection with MODIS. Part II: Validation, J. Atmos. Ocean. Tech., 25, 1073–1086, 2008. a, b
Alder, B. and Wainwright, T.: Decay of the velocity autocorrelation function, Phys. Rev. A, 1, 18, https://doi.org/10.1103/PhysRevA.1.18, 1970. a
Batista-Tomás, A., Díaz, O., Batista-Leyva, A., and Altshuler, E.: Classification and dynamics of tropical clouds by their fractal dimension, Q. J. Roy. Meteorol. Soc., 142, 983–988, 2016. a
Benner, T. C. and Curry, J. A.: Characteristics of small tropical cumulus clouds and their impact on the environment, J. Geophys. Res.-Atmos., 103, 28753–28767, 1998. a, b
Download
Executive editor
This is an interesting contribution to the long-running debate on the anisotropic scaling of atmospheric dynamics, confirming that it is neither 3D nor 2D, but rather 23/9 D. This is of interest to the whole atmospheric community.
Short summary
The shapes of clouds viewed from space reflect vertical and horizontal motions in the atmosphere. We theorize that, globally, cloud perimeter complexity is related to the dimension of turbulence also governed by horizontal and vertical motions. We find agreement between theory and observations from various satellites and a numerical model and, remarkably, that the theory applies globally using only basic planetary physical parameters from the smallest scales of turbulence to the planetary scale.