Articles | Volume 31, issue 3
https://doi.org/10.5194/npg-31-303-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/npg-31-303-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Selecting and weighting dynamical models using data-driven approaches
Pierre Le Bras
CORRESPONDING AUTHOR
Laboratoire d’Océanographie Physique et Spatiale, IUEM, Univ Brest CNRS IRD Ifremer, Brest, France
IMT Atlantique, Lab-STICC, UMR CNRS 6285, 29238, Brest, France
Odyssey team project, INRIA IMT Atlantique CNRS, Brest, France
Florian Sévellec
Laboratoire d’Océanographie Physique et Spatiale, IUEM, Univ Brest CNRS IRD Ifremer, Brest, France
Odyssey team project, INRIA IMT Atlantique CNRS, Brest, France
Pierre Tandeo
IMT Atlantique, Lab-STICC, UMR CNRS 6285, 29238, Brest, France
Odyssey team project, INRIA IMT Atlantique CNRS, Brest, France
Juan Ruiz
Facultad de Ciencias Exactas y Naturales, Departamento de Ciencias de la Atmósfera y los Océanos, Universidad de Buenos Aires, Buenos Aires, Argentina
Centro de Investigaciones del Mar y la Atmósfera (CIMA), CONICET–Universidad de Buenos Aires, Buenos Aires, Argentina
Instituto Franco-Argentino para el Estudio del Clima y sus Impactos (IRL IFAECI), CNRS–IRD–CONICET–UBA, Buenos Aires, Argentina
Pierre Ailliot
Univ Brest, CNRS UMR 6205, Laboratoire de Mathematiques de Bretagne Atlantique, Brest, France
Related authors
Juan Ruiz, Pierre Ailliot, Thi Tuyet Trang Chau, Pierre Le Bras, Valérie Monbet, Florian Sévellec, and Pierre Tandeo
Geosci. Model Dev., 15, 7203–7220, https://doi.org/10.5194/gmd-15-7203-2022, https://doi.org/10.5194/gmd-15-7203-2022, 2022
Short summary
Short summary
We present a new approach to validate numerical simulations of the current climate. The method can take advantage of existing climate simulations produced by different centers combining an analog forecasting approach with data assimilation to quantify how well a particular model reproduces a sequence of observed values. The method can be applied with different observations types and is implemented locally in space and time significantly reducing the associated computational cost.
Paul Platzer, Pierre Ailliot, Bertrand Chapron, and Pierre Tandeo
Clim. Past, 20, 2267–2286, https://doi.org/10.5194/cp-20-2267-2024, https://doi.org/10.5194/cp-20-2267-2024, 2024
Short summary
Short summary
Old observations are necessary to understand the atmosphere. When direct observations are not available, one can use indirect observations, such as tide gauges, which measure the sea level in port cities. The sea level rises when local air pressure decreases and when wind pushes water towards the coast. Several centuries-long tide gauge records are available. We show that these can be complementary to direct pressure observations for studying storms and anticyclones in the 19th century.
Pierre Tandeo, Pierre Ailliot, and Florian Sévellec
Nonlin. Processes Geophys., 30, 129–137, https://doi.org/10.5194/npg-30-129-2023, https://doi.org/10.5194/npg-30-129-2023, 2023
Short summary
Short summary
The goal of this paper is to obtain probabilistic predictions of a partially observed dynamical system without knowing the model equations. It is illustrated using the three-dimensional Lorenz system, where only two components are observed. The proposed data-driven procedure is low-cost, is easy to implement, uses linear and Gaussian assumptions and requires only a small amount of data. It is based on an iterative linear Kalman smoother with a state augmentation.
Said Obakrim, Pierre Ailliot, Valérie Monbet, and Nicolas Raillard
Adv. Stat. Clim. Meteorol. Oceanogr., 9, 67–81, https://doi.org/10.5194/ascmo-9-67-2023, https://doi.org/10.5194/ascmo-9-67-2023, 2023
Short summary
Short summary
Ocean wave climate has a significant impact on human activities, and its understanding is of socioeconomic and environmental importance. In this study, we propose a statistical model that predicts wave heights in a location in the Bay of Biscay. The proposed method allows us to understand the spatiotemporal relationship between wind and waves and predicts well both wind seas and swells.
Robin Marcille, Maxime Thiébaut, Pierre Tandeo, and Jean-François Filipot
Wind Energ. Sci., 8, 771–786, https://doi.org/10.5194/wes-8-771-2023, https://doi.org/10.5194/wes-8-771-2023, 2023
Short summary
Short summary
A novel data-driven method is proposed to design an optimal sensor network for the reconstruction of offshore wind resources. Based on unsupervised learning of numerical weather prediction wind data, it provides a simple yet efficient method for the siting of sensors, outperforming state-of-the-art methods for this application. It is applied in the main French offshore wind energy development areas to provide guidelines for the deployment of floating lidars for wind resource assessment.
Juan Ruiz, Pierre Ailliot, Thi Tuyet Trang Chau, Pierre Le Bras, Valérie Monbet, Florian Sévellec, and Pierre Tandeo
Geosci. Model Dev., 15, 7203–7220, https://doi.org/10.5194/gmd-15-7203-2022, https://doi.org/10.5194/gmd-15-7203-2022, 2022
Short summary
Short summary
We present a new approach to validate numerical simulations of the current climate. The method can take advantage of existing climate simulations produced by different centers combining an analog forecasting approach with data assimilation to quantify how well a particular model reproduces a sequence of observed values. The method can be applied with different observations types and is implemented locally in space and time significantly reducing the associated computational cost.
Etienne Pauthenet, Loïc Bachelot, Kevin Balem, Guillaume Maze, Anne-Marie Tréguier, Fabien Roquet, Ronan Fablet, and Pierre Tandeo
Ocean Sci., 18, 1221–1244, https://doi.org/10.5194/os-18-1221-2022, https://doi.org/10.5194/os-18-1221-2022, 2022
Short summary
Short summary
Temperature and salinity profiles are essential for studying the ocean’s stratification, but there are not enough of these data. Satellites are able to measure daily maps of the surface ocean. We train a machine to learn the link between the satellite data and the profiles in the Gulf Stream region. We can then use this link to predict profiles at the high resolution of the satellite maps. Our prediction is fast to compute and allows us to get profiles at any locations only from surface data.
Marceau Michel, Said Obakrim, Nicolas Raillard, Pierre Ailliot, and Valérie Monbet
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 83–95, https://doi.org/10.5194/ascmo-8-83-2022, https://doi.org/10.5194/ascmo-8-83-2022, 2022
Short summary
Short summary
In this study, we introduce a deep learning algorithm to establish the relationship between wind and waves in order to predict the latter. The performance of the proposed method has been evaluated both on the output of numerical wave models and on in situ data and compared to other statistical methods developed by our research team. The results obtained confirm the interest of deep learning methods for forecasting ocean data.
Juan Ruiz, Guo-Yuan Lien, Keiichi Kondo, Shigenori Otsuka, and Takemasa Miyoshi
Nonlin. Processes Geophys., 28, 615–626, https://doi.org/10.5194/npg-28-615-2021, https://doi.org/10.5194/npg-28-615-2021, 2021
Short summary
Short summary
Effective use of observations with numerical weather prediction models, also known as data assimilation, is a key part of weather forecasting systems. For precise prediction at the scales of thunderstorms, fast nonlinear processes pose a grand challenge because most data assimilation systems are based on linear processes and normal distribution errors. We investigate how, every 30 s, weather radar observations can help reduce the effect of nonlinear processes and nonnormal distributions.
Dafydd Stephenson, Simon A. Müller, and Florian Sévellec
Geosci. Model Dev., 13, 2031–2050, https://doi.org/10.5194/gmd-13-2031-2020, https://doi.org/10.5194/gmd-13-2031-2020, 2020
Short summary
Short summary
Different water types are created at the sea surface with a signature based on the local conditions of the atmosphere. They then take these conditions with them into the deeper ocean, and so their journey is an important climate process to understand. In this study, we modify and repurpose a specialised model which simulates the ocean forward and backward in time to determine where new ocean water goes, where at the surface existing water comes from, and how old it is, by tracking it as a dye.
Soledad Osores, Juan Ruiz, Arnau Folch, and Estela Collini
Geosci. Model Dev., 13, 1–22, https://doi.org/10.5194/gmd-13-1-2020, https://doi.org/10.5194/gmd-13-1-2020, 2020
Short summary
Short summary
Volcanic ash dispersal forecasts are routinely used to avoid aircraft encounters with volcanic ash. However, the accuracy of these forecasts depends on the knowledge of key factors that are usually difficult to observe directly. In this work we apply an inverse methodology to improve ash concentration forecasts. Results are encouraging, showing that accurate estimations of ash emissions can be performed using the proposed approach, leading to an improvement in ash concentration forecasts.
Julie Bessac, Pierre Ailliot, Julien Cattiaux, and Valerie Monbet
Adv. Stat. Clim. Meteorol. Oceanogr., 2, 1–16, https://doi.org/10.5194/ascmo-2-1-2016, https://doi.org/10.5194/ascmo-2-1-2016, 2016
Short summary
Short summary
Several multi-site stochastic generators of zonal and meridional components of wind are proposed in this paper. Various questions are explored, such as the modeling of the regime in a multi-site context, the extraction of relevant clusterings from extra variables or from the local wind data, and the link between weather types extracted from wind data and large-scale weather regimes. We also discuss the relative advantages of hidden and observed regime-switching models.
Related subject area
Subject: Predictability, probabilistic forecasts, data assimilation, inverse problems | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere | Techniques: Big data and artificial intelligence
A quest for precipitation attractors in weather radar archives
Robust weather-adaptive post-processing using model output statistics random forests
Guidance on how to improve vertical covariance localization based on a 1000-member ensemble
Weather pattern dynamics over western Europe under climate change: predictability, information entropy and production
Calibrated ensemble forecasts of the height of new snow using quantile regression forests and ensemble model output statistics
Enhancing geophysical flow machine learning performance via scale separation
Training a convolutional neural network to conserve mass in data assimilation
Data-driven predictions of a multiscale Lorenz 96 chaotic system using machine-learning methods: reservoir computing, artificial neural network, and long short-term memory network
From research to applications – examples of operational ensemble post-processing in France using machine learning
Loris Foresti, Bernat Puigdomènech Treserras, Daniele Nerini, Aitor Atencia, Marco Gabella, Ioannis V. Sideris, Urs Germann, and Isztar Zawadzki
Nonlin. Processes Geophys., 31, 259–286, https://doi.org/10.5194/npg-31-259-2024, https://doi.org/10.5194/npg-31-259-2024, 2024
Short summary
Short summary
We compared two ways of defining the phase space of low-dimensional attractors describing the evolution of radar precipitation fields. The first defines the phase space by the domain-scale statistics of precipitation fields, such as their mean, spatial and temporal correlations. The second uses principal component analysis to account for the spatial distribution of precipitation. To represent different climates, radar archives over the United States and the Swiss Alpine region were used.
Thomas Muschinski, Georg J. Mayr, Achim Zeileis, and Thorsten Simon
Nonlin. Processes Geophys., 30, 503–514, https://doi.org/10.5194/npg-30-503-2023, https://doi.org/10.5194/npg-30-503-2023, 2023
Short summary
Short summary
Statistical post-processing is necessary to generate probabilistic forecasts from physical numerical weather prediction models. To allow for more flexibility, there has been a shift in post-processing away from traditional parametric regression models towards modern machine learning methods. By fusing these two approaches, we developed model output statistics random forests, a new post-processing method that is highly flexible but at the same time also very robust and easy to interpret.
Tobias Necker, David Hinger, Philipp Johannes Griewank, Takemasa Miyoshi, and Martin Weissmann
Nonlin. Processes Geophys., 30, 13–29, https://doi.org/10.5194/npg-30-13-2023, https://doi.org/10.5194/npg-30-13-2023, 2023
Short summary
Short summary
This study investigates vertical localization based on a convection-permitting 1000-member ensemble simulation. We derive an empirical optimal localization (EOL) that minimizes sampling error in 40-member sub-sample correlations assuming 1000-member correlations as truth. The results will provide guidance for localization in convective-scale ensemble data assimilation systems.
Stéphane Vannitsem
Nonlin. Processes Geophys., 30, 1–12, https://doi.org/10.5194/npg-30-1-2023, https://doi.org/10.5194/npg-30-1-2023, 2023
Short summary
Short summary
The impact of climate change on weather pattern dynamics over the North Atlantic is explored through the lens of information theory. These tools allow the predictability of the succession of weather patterns and the irreversible nature of the dynamics to be clarified. It is shown that the predictability is increasing in the observations, while the opposite trend is found in model projections. The irreversibility displays an overall increase in time in both the observations and the model runs.
Guillaume Evin, Matthieu Lafaysse, Maxime Taillardat, and Michaël Zamo
Nonlin. Processes Geophys., 28, 467–480, https://doi.org/10.5194/npg-28-467-2021, https://doi.org/10.5194/npg-28-467-2021, 2021
Short summary
Short summary
Forecasting the height of new snow is essential for avalanche hazard surveys, road and ski resort management, tourism attractiveness, etc. Météo-France operates a probabilistic forecasting system using a numerical weather prediction system and a snowpack model. It provides better forecasts than direct diagnostics but exhibits significant biases. Post-processing methods can be applied to provide automatic forecasting products from this system.
Davide Faranda, Mathieu Vrac, Pascal Yiou, Flavio Maria Emanuele Pons, Adnane Hamid, Giulia Carella, Cedric Ngoungue Langue, Soulivanh Thao, and Valerie Gautard
Nonlin. Processes Geophys., 28, 423–443, https://doi.org/10.5194/npg-28-423-2021, https://doi.org/10.5194/npg-28-423-2021, 2021
Short summary
Short summary
Machine learning approaches are spreading rapidly in climate sciences. They are of great help in many practical situations where using the underlying equations is difficult because of the limitation in computational power. Here we use a systematic approach to investigate the limitations of the popular echo state network algorithms used to forecast the long-term behaviour of chaotic systems, such as the weather. Our results show that noise and intermittency greatly affect the performances.
Yvonne Ruckstuhl, Tijana Janjić, and Stephan Rasp
Nonlin. Processes Geophys., 28, 111–119, https://doi.org/10.5194/npg-28-111-2021, https://doi.org/10.5194/npg-28-111-2021, 2021
Short summary
Short summary
The assimilation of observations using standard algorithms can lead to a violation of physical laws (e.g. mass conservation), which is shown to have a detrimental impact on the system's forecast. We use a neural network (NN) to correct this mass violation, using training data generated from expensive algorithms that can constrain such physical properties. We found that, in an idealized set-up, the NN can match the performance of these expensive algorithms at negligible computational costs.
Ashesh Chattopadhyay, Pedram Hassanzadeh, and Devika Subramanian
Nonlin. Processes Geophys., 27, 373–389, https://doi.org/10.5194/npg-27-373-2020, https://doi.org/10.5194/npg-27-373-2020, 2020
Short summary
Short summary
The performance of three machine-learning methods for data-driven modeling of a multiscale chaotic Lorenz 96 system is examined. One of the methods is found to be able to predict the future evolution of the chaotic system well from just knowing the past observations of the large-scale component of the multiscale state vector. Potential applications to data-driven and data-assisted surrogate modeling of complex dynamical systems such as weather and climate are discussed.
Maxime Taillardat and Olivier Mestre
Nonlin. Processes Geophys., 27, 329–347, https://doi.org/10.5194/npg-27-329-2020, https://doi.org/10.5194/npg-27-329-2020, 2020
Short summary
Short summary
Statistical post-processing of ensemble forecasts is now a well-known procedure in order to correct biased and misdispersed ensemble weather predictions. But practical application in European national weather services is in its infancy. Different applications of ensemble post-processing using machine learning at an industrial scale are presented. Forecast quality and value are improved compared to the raw ensemble, but several facilities have to be made to adjust to operational constraints.
Cited articles
Abramowitz, G., Herger, N., Gutmann, E., Hammerling, D., Knutti, R., Leduc, M., Lorenz, R., Pincus, R., and Schmidt, G. A.: ESD Reviews: Model dependence in multi-model climate ensembles: weighting, sub-selection and out-of-sample testing, Earth Syst. Dynam., 10, 91–105, https://doi.org/10.5194/esd-10-91-2019, 2019. a, b
Amos, M., Young, P. J., Hosking, J. S., Lamarque, J.-F., Abraham, N. L., Akiyoshi, H., Archibald, A. T., Bekki, S., Deushi, M., Jöckel, P., Kinnison, D., Kirner, O., Kunze, M., Marchand, M., Plummer, D. A., Saint-Martin, D., Sudo, K., Tilmes, S., and Yamashita, Y.: Projecting ozone hole recovery using an ensemble of chemistry–climate models weighted by model performance and independence, Atmos. Chem. Phys., 20, 9961–9977, https://doi.org/10.5194/acp-20-9961-2020, 2020. a
Brunner, L., Lorenz, R., Zumwald, M., and Knutti, R.: Quantifying uncertainty in European climate projections using combined performance-independence weighting, Environ. Res. Lett., 14, 124010, https://doi.org/10.1088/1748-9326/ab492f, 2019. a
Brunner, L., Pendergrass, A. G., Lehner, F., Merrifield, A. L., Lorenz, R., and Knutti, R.: Reduced global warming from CMIP6 projections when weighting models by performance and independence, Earth Syst. Dynam., 11, 995–1012, https://doi.org/10.5194/esd-11-995-2020, 2020. a
Carrassi, A., Bocquet, M., Bertino, L., and Evensen, G.: Data assimilation in the geosciences: An overview of methods, issues, and perspectives, Wires Clim. Change, 2018, e535, https://doi.org/10.1002/wcc.535, 2018. a
Cleveland, W. S. and Devlin, S. J.: Locally weighted regression: an approach to regression analysis by local fitting, J. Ame. Stat. Assoc., 83, 596–610, 1988. a
Dewar, W. K. and Huang, R. X.: Fluid flow in loops driven by freshwater and heat fluxes, J. Fluid Mech., 297, 153–191, 1995. a
Dewar, W. K. and Huang, R. X.: On the forced flow of salty water in a loop, Phys. Fluids, 8, 954–970, 1996. a
Evensen, G.: The ensemble Kalman filter: Theoretical formulation and practical implementation, Ocean Dynam., 53, 343–367, 2003. a
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016. a, b
Eyring, V., Cox, P. M., Flato, G. M., Gleckler, P. J., Abramowitz, G., Caldwell, P., Collins, W. D., Gier, B. K., Hall, A. D., Hoffman, F. M., Hurtt, G.C., Jahn, A., Chris D. Jones, C.D., Klein, S. A., Krasting, J. P., Kwiatkowski, L., Lorenz, R., Maloney, E., Meehl, G. A., Pendergrass, A. G., Pincus, R., Ruane, A. C., Russell, J. L., Sanderson, B. M., Santer, B. D., Sherwood, S. C., Simpson, I. R., Stouffer, R. J., and Williamson, M. S.: Taking climate model evaluation to the next level, Nat. Clim. Change, 9, 102–110, 2019. a
Garthwaite, P. and Mubwandarikwa, E.: Selection of weights for weighted model averaging: prior weights for weighted model averaging, Aust. N. Zeal. J. Stat., 52, 363–382, 2010. a
George, E. I.: Dilution priors: Compensating for model space redundancy, in: Borrowing Strength: Theory Powering Applications–A Festschrift for Lawrence D. Brown, Institute of Mathematical Statistics, vol. 6, 158–166, https://doi.org/10.1214/10-IMSCOLL611, 2010. a
Giorgi, F. and Mearns, L. O.: Calculation of average, uncertainty range, and reliability of regional climate changes from AOGCM simulations via the “reliability ensemble averaging” (REA) method, J. Climate, 15, 1141–1158, 2002. a
Herger, N., Abramowitz, G., Knutti, R., Angélil, O., Lehmann, K., and Sanderson, B. M.: Selecting a climate model subset to optimise key ensemble properties, Earth Syst. Dynam., 9, 135–151, https://doi.org/10.5194/esd-9-135-2018, 2018. a
Howard, L.: ABC's of convection, Geophysical Fluid Dynamics Summer School, WHOI Internal Tech. Rep, 71, 102–105, 1971. a
Huang, R. X. and Dewar, W. K.: Haline circulation: Bifurcation and chaos, J. Phys. Oceanogr., 26, 2093–2106, 1996. a
IPCC: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, https://doi.org/10.1017/9781009157896, 2021. a
Jarque, C. M. and Bera, A. K.: Efficient tests for normality, homoscedasticity and serial independence of regression residuals, Econ. Lett., 6, 255–259, 1980. a
Knutti, R.: The end of model democracy?, Climatic Change, 102, 395–404, https://doi.org/10.1007/s10584-010-9800-2, 2010. a, b
Knutti, R., Furrer, R., Tebaldi, C., Cermak, J., and Meehl, G. A.: Challenges in combining projections from multiple climate models, J. Climate, 23, 2739–2758, 2010. a
Knutti, R., Baumberger, C., and Hadorn, G. H.: Uncertainty quantification using multiple models – Prospects and challenges, in: Computer Simulation Validation, Springer, 835–855, https://doi.org/10.1007/978-3-319-70766-2_34, 2019. a
Lorenz, E. N.: Atmospheric predictability as revealed by naturally occurring analogues, J. Atmos. Sci., 26, 636–646, 1969. a
Malkus, W. V.: Non-periodic convection at high and low Prandtl number, Mem. Societe Royale des Sciences de Liege, 125–128, 1972. a
Merrifield, A. L., Brunner, L., Lorenz, R., Medhaug, I., and Knutti, R.: An investigation of weighting schemes suitable for incorporating large ensembles into multi-model ensembles, Earth Syst. Dynam., 11, 807–834, https://doi.org/10.5194/esd-11-807-2020, 2020. a
Metref, S., Hannart, A., Ruiz, J., Bocquet, M., Carrassi, A., and Ghil, M.: Estimating model evidence using ensemble-based data assimilation with localization – The model selection problem, Q. J. Roy. Meteor. Soc., 145, 1571–1588, https://doi.org/10.1002/qj.3513, 2019. a, b, c
Min, S.-K., Simonis, D., and Hense, A.: Probabilistic climate change predictions applying Bayesian model averaging, Philos. T. Roy. Soc. A, 365, 2103–2116, 2007. a
Olson, R., Fan, Y., and Evans, J. P.: A simple method for Bayesian model averaging of regional climate model projections: Application to southeast Australian temperatures, Geophys. Res. Lett., 43, 7661–7669, 2016. a
Olson, R., An, S.-I., Fan, Y., and Evans, J. P.: Accounting for skill in trend, variability, and autocorrelation facilitates better multi-model projections: Application to the AMOC and temperature time series, Plos one, 14, e0214535, https://doi.org/10.1371/journal.pone.0214535, 2019. a
Perkins, S., Pitman, A., Holbrook, N. J., and McAneney, J.: Evaluation of the AR4 climate models’ simulated daily maximum temperature, minimum temperature, and precipitation over Australia using probability density functions, J. Climate, 20, 4356–4376, 2007. a
pilebras: pilebras/AnDA_weight_idealAMOC: AnDA_weight_ideal_AMOC_archived (AnDA_weight_AMOC), Zenodo [code and data set], https://doi.org/10.5281/zenodo.12575576, 2024. a
Pulido, M., Tandeo, P., Bocquet, M., Carrassi, A., and Lucini, M.: Stochastic parameterization identification using ensemble Kalman filtering combined with maximum likelihood methods, Tellus A, 70, 1–17, 2018. a
Raftery, A. E., Gneiting, T., Balabdaoui, F., and Polakowski, M.: Using Bayesian model averaging to calibrate forecast ensembles, Mon. Weather Rev., 133, 1155–1174, 2005. a
Ribes, A., Qasmi, S., and Gillett, N. P.: Making climate projections conditional on historical observations, Sci. Adv., 7, eabc0671, https://doi.org/10.1126/sciadv.abc0671, 2021. a
Ribes, A., Boé, J., Qasmi, S., Dubuisson, B., Douville, H., and Terray, L.: An updated assessment of past and future warming over France based on a regional observational constraint, Earth Syst. Dynam., 13, 1397–1415, https://doi.org/10.5194/esd-13-1397-2022, 2022. a
Ruiz, J., Ailliot, P., Chau, T. T. T., Le Bras, P., Monbet, V., Sévellec, F., and Tandeo, P.: Analog data assimilation for the selection of suitable general circulation models, Geosci. Model Dev., 15, 7203–7220, https://doi.org/10.5194/gmd-15-7203-2022, 2022. a, b, c
Sanderson, B. M., Wehner, M., and Knutti, R.: Skill and independence weighting for multi-model assessments, Geosci. Model Dev., 10, 2379–2395, https://doi.org/10.5194/gmd-10-2379-2017, 2017. a
Sévellec, F. and Fedorov, A. V.: Unstable AMOC during glacial intervals and millennial variability: The role of mean sea ice extent, Earth Planet. Sc. Lett., 429, 60–68, 2015. a
Sexton, D. M., Murphy, J. M., Collins, M., and Webb, M. J.: Multivariate probabilistic projections using imperfect climate models part I: outline of methodology, Clim. Dynam., 38, 2513–2542, 2012. a
Tandeo, P., Ailliot, P., Ruiz, J., Hannart, A., Chapron, B., Cuzol, A., Monbet, V., Easton, R., and Fablet, R.: Combining analog method and ensemble data assimilation: application to the Lorenz-63 chaotic system, in: Machine Learning and Data Mining Approaches to Climate Science: proceedings of the 4th International Workshop on Climate Informatics, Springer, 3–12, https://doi.org/10.1007/978-3-319-17220-0_1, 2015. a
Tandeo, P., Ailliot, P., Bocquet, M., Carrassi, A., Miyoshi, T., Pulido, M., and Zhen, Y.: A review of innovation-based methods to jointly estimate model and observation error covariance matrices in ensemble data assimilation, Mon. Weather Rev., 148, 3973–3994, 2020. a
Tebaldi, C. and Knutti, R.: The use of the multi-model ensemble in probabilistic climate projections, Philos. T. Roy. Soc. A, 365, 2053–2075, 2007. a
Van Leeuwen, P. J.: Particle filtering in geophysical systems, Mon. Weather Rev., 137, 4089–4114, 2009. a
Welander, P.: Note on the self-sustained oscillations of a simple thermal system, Tellus, 9, 419–420, 1957. a
Welander, P.: Steady and oscillatory motions of a differentially heated fluid loop, Woods Hole Oceanographic Institution, https://doi.org/10.1017/S0022112067000606, 1965. a
Welander, P.: On the oscillatory instability of a differentially heated fluid loop, J. Fluid Mech., 29, 17–30, 1967. a
Zhen, Y., Tandeo, P., Leroux, S., Metref, S., Penduff, T., and Le Sommer, J.: An adaptive optimal interpolation based on analog forecasting: application to SSH in the Gulf of Mexico, J. Atmos. Ocean. Tech., 37, 1697–1711, 2020. a
Short summary
The goal of this paper is to weight several dynamic models in order to improve the representativeness of a system. It is illustrated using a set of versions of an idealized model describing the Atlantic Meridional Overturning Circulation. The low-cost method is based on data-driven forecasts. It enables model performance to be evaluated on their dynamics. Taking into account both model performance and codependency, the derived weights outperform benchmarks in reconstructing a model distribution.
The goal of this paper is to weight several dynamic models in order to improve the...