Nonlin. Processes Geophys., 31, 303-317, 2024
https://doi.org/10.5194/npg-31-303-2024

© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Selecting and weighting dynamical models using
data-driven approaches

Pierre Le Bras'-23, Florian Sévellec1’3, Pierre Tandeo®>, Juan Ruiz4’5’6, and Pierre Ailliot’

ILaboratoire d’Océanographie Physique et Spatiale, [UEM, Univ Brest CNRS IRD Ifremer, Brest, France
2IMT Atlantique, Lab-STICC, UMR CNRS 6285, 29238, Brest, France
30dyssey team project, INRIA IMT Atlantique CNRS, Brest, France

4Facultad de Ciencias Exactas y Naturales, Departamento de Ciencias de la Atmésfera y los Océanos,
Universidad de Buenos Aires, Buenos Aires, Argentina

SCentro de Investigaciones del Mar y la Atmdsfera (CIMA), CONICET-Universidad de Buenos Aires,

Buenos Aires, Argentina
SInstituto Franco-Argentino para el Estudio del Clima y sus Impactos (IRL IFAECI),

CNRS-IRD-CONICET-UBA, Buenos Aires, Argentina

"Univ Brest, CNRS UMR 6205, Laboratoire de Mathematiques de Bretagne Atlantique, Brest, France

Correspondence: Pierre Le Bras (pierre.lebras @univ-brest.fr)

Received: 8 November 2023 — Discussion started: 1 December 2023
Revised: 22 April 2024 — Accepted: 7 May 2024 — Published: 2 July 2024

Abstract. In geosciences, multi-model ensembles are helpful to explore the robustness of a range of results. To
obtain a synthetic and improved representation of the studied dynamic system, the models are usually weighted.
The simplest method, namely the model democracy, gives equal weights to all models, while more advanced
approaches base weights on agreement with available observations. Here, we focus on determining weights for
various versions of an idealized model of the Atlantic Meridional Overturning Circulation. This is done by as-
sessing their performance against synthetic observations (generated from one of the model versions) within a data
assimilation framework using the ensemble Kalman filter (EnKF). In contrast to traditional data assimilation, we
implement data-driven forecasts using the analog method based on catalogs of short-term trajectories. This ap-
proach allows us to efficiently emulate the model’s dynamics while keeping computational costs low. For each
model version, we compute a local performance metric, known as the contextual model evidence, to compare
observations and model forecasts. This metric, based on the innovation likelihood, is sensitive to differences in
model dynamics and considers forecast and observation uncertainties. Finally, the weights are calculated using
both model performance and model co-dependency and then evaluated on averages of long-term simulations.
Results show good performance in identifying numerical simulations that best replicate observed short-term
variations. Additionally, it outperforms benchmark approaches such as strategies based on model democracy or
climatology when reconstructing missing distributions. These findings encourage the application of the proposed
methodology to more complex datasets in the future, like climate simulations.
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1 Introduction

In the geosciences, several numerical models are usually
available to represent the same complex system. For exam-
ple, the Earth’s global climate system is implemented in
a range of different numerical models that are, for some,
gathered within the Couple Model Intercomparison Project
(CMIP; Eyring et al., 2016). Due to the different parame-
terizations (related to unresolved processes and numerical
implementations), and given particular structural equations,
a model represents an imperfect image of the studied sys-
tem. In other words, each model is characterized by its own
strengths and weaknesses, which impact its predictive skills.
The use of the multi-model ensemble (MME) to predict a
specific climate variable is then considered more informative
than any individual model. Here, the models are assumed to
complement each other using MME, which has the potential
to improve climate system representation (Abramowitz et al.,
2019).

Nevertheless the question of how to gather the informa-
tion produced by the range of models remains. In this con-
text, it is usual to follow a model democracy approach, giving
equal weight to all models to enhance the representativeness.
This is what is mostly done in the 6th Assessment Report
(AR6) of the Intergovernmental Panel on Climate Change
(IPCC, 2021). However, this strategy has been debated in the
community due to the strong assumptions it implies: equal
probability of all models to represent all variables in the
whole phase space of the system and independence between
them (e.g., Knutti, 2010; Sanderson et al., 2015; Knutti et al.,
2019).

A trade-off between MME-based model democracy and
selecting a single model would be to weight-average the
models. The weights can be found through model perfor-
mance, which consists in evaluating the consistency between
model simulations and available observations. This proce-
dure should be adapted to the specificities of model simula-
tions being processed (Eyring et al., 2019). In particular, the
models are characterized by nonlinearities which can signifi-
cantly influence trajectories over short timescales. Hence, the
dynamic behavior of the system needs to be properly taken
into account. This can be done, for example, by assessing the
models’ ability to describe successive sequences of observa-
tions. In addition, the weights should account for the degree
of dependency between the models, as they usually share
some elements in their structure or parameterizations (Knutti
et al., 2010; Abramowitz et al., 2019). Several approaches
have been suggested to measure the model-observation con-
sistency and thus obtain the individual model weights.

The first approaches are based on descriptive statis-
tics. This is the case of “reliability ensemble averaging”
(Giorgi and Mearns, 2002) and the “ClimWIP method” (Cli-
mate model Weighting by Independence and Performance;
Sanderson et al., 2015 and Knutti et al., 2017). In those two
methods, weights are based on the ability of model simu-
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lations to reproduce observed statistical diagnostics for one
or more variables (e.g., mean, variability, or trend fields),
while including a component that measures inter-model de-
pendence. However, the score formalism does not evaluate
how the models reproduce sequences of observations (which
reflect model dynamics). The ClimWIP method was applied
in numerous studies at global or regional spatial scales with a
range of climate variables such as atmospheric temperatures
or precipitations (Sanderson et al., 2015; Sanderson et al.,
2017; Brunner et al., 2019, 2020; Merrifield et al., 2020),
Arctic sea ice (Knutti et al., 2017), or Antarctic ozone deple-
tion (Amos et al., 2020).

Second approaches are included in a probabilistic
Bayesian framework, such as “Bayesian model averaging”
(BMA; e.g., Raftery et al., 2005; Min et al., 2007; Sexton
et al., 2012; Olson et al., 2016, 2019) and “kriging” methods
applied at global and local scale (Ribes et al., 2021, 2022).
In BMA, the distributions of model outputs are updated using
available observations to obtain a posterior weighted distri-
bution. The weights for candidate models are determined us-
ing Bayes’ theorem, which combines prior beliefs (typically
uniform weights) with the global likelihood of the observa-
tions estimated for each model. These weights reflect the
confidence in each model considering both the data and un-
certainty. However, evaluating model consistency over time
is tricky because the distributions involve time-aggregated
quantities for large time periods, making it less suitable for
exploiting information about model dynamics.

In this study, we evaluate the performance of competing
models based on their ability to reproduce short-term dy-
namics of the system described by observed sequences. To
achieve this, a data-driven approach is adopted within a data
assimilation framework (Ruiz et al., 2022). One of the main
advantages is the use of already existing simulations to pro-
duce free-model probabilistic forecasts (i.e., without having
to rerun the models, which greatly reduces the computational
cost), while retaining the useful properties of data assimila-
tion (Lguensat et al., 2017). The data-driven forecasts are es-
timated using regression based on the classic least squares
but applied locally in the phase space, to capture the nonlin-
earities in the evolution of the system (Platzer et al., 2021).
The proposed methodology is relevant for various reasons.
It effectively combines the advantages of multiple weighting
methods mentioned earlier. Moreover, it is integrated within
a data assimilation framework, enabling a thorough consid-
eration of the described dynamics. Also, it is written in a
Bayesian framework (as BMA and kriging strategies), where
data-driven forecasts are considered as Gaussian a priori in-
formation which are sequentially updated thanks to observa-
tions (which are also considered to be Gaussian). This pro-
vides accurate and reliable initialization for the next forecast.
The difference between the data-driven forecasts and the ob-
servations allows for the computation of the innovation like-
lihood (e.g., Carrassi et al., 2017), which is used locally in
time as a metric of model performance. The information of
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the local likelihood is then summarized following different
score formalisms to yield weights. Finally, one of the scores
takes into account the model dependency as in the formalism
of ClimWIP (Knutti et al., 2017). The weights are tested by
applying them to long-term simulations.

This study aims to develop a weighting methodology. As
a first step, we use numerical simulations of an idealized
chaotic deterministic model representing the centennial-to-
millennial dynamic of the Atlantic Meridional Overturning
Circulation (AMOC). The proposed alternative approach is
compared to more classic approaches, such as model democ-
racy, climatology, or a single best model.

The study is organized as follows. Section 2 details the
methodological framework for obtaining model weights and
applying them. Section 3 describes the numerical model and
the data used to implement the methodology. Section 4 is
devoted to the numerical results, and Sect. 5 concludes this
study and presents some perspectives for future research.

2 Methodology

This section first describes the framework to measure the
ability of a single dynamical model to fit a set of noisy obser-
vations. After applying it to an ensemble of competing mod-
els, the second part is devoted to the strategies for computing
model weights and their application.

2.1 Evaluating the local performance of a dynamical
model

Here, we evaluate the model performance based on its short-
term dynamics. For this purpose, initialized model forecasts
are crucial to estimate the accuracy of the dynamics with re-
gards to observations. By synchronizing model forecasts to
available observations, Bayesian data assimilation (DA) is a
suitable framework for addressing this. DA, like Kalman fil-
tering strategies, is commonly used to improve the estima-
tion of the latent unknown state of a system by sequentially
including the available observations (Carrassi et al., 2018).
The associated state-space model is expressed as

X =Mxp—1)+ny,
Vi =H(xp) + €,

(1)
(1b)

where k is the time index, x} is the true state, M is the model
propagator, 7, is the model error, y, is the noisy observa-
tions, H is the observational operator, and € is the obser-
vation error. Equation (1a) represents the model relation be-
tween the true state and the previous state given an additive
model error. Equation (1b) makes the relationship between
the observations to the true state with an additive observa-
tional error.

In the classic Kalman filter, an assimilation cycle aims to
sequentially update a Gaussian forecast distribution (gener-
ated by the model equations) with the information provided
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by the observations (also Gaussian), when available. The
posterior analysis distribution is a more accurate and reliable
estimation of the latent state by satisfying robust statistical
properties (i.e., best linear unbiased estimator). Therefore,
the forecast for the next time step benefits from this accu-
rate initial condition. The ensemble Kalman filter (EnKF)
is preferred when dealing with nonlinear systems (Evensen,
2003). At each time step, the two first moments of the Gaus-
sian forecast distribution are approximated empirically using
a Monte Carlo approach. To do this, N forecast members are
generated from the same model equations, each one initial-
ized from a sample of the previous analysis distribution. This
is expressed as

f
X1 =M (x?n,k) TG k1 2)

where j is the member sample index, xf Pk is the jth fore-
cast member at time k41, x? )k is the jth analysis member at
the previous time &, and 7)) ;41 1s the model error assumed
to be Gaussian. In Eq. (2), x?j)’k is calculated as

Xy =% (i + K (yk —H(x(j 0+ ‘<f>’k> : )

where €(j) « is the observation error drawn from a random
sample from the multivariate Gaussian with the 0-mean vec-
tor and an error covariance matrix R. The Kalman gain Ky in
Eq. (3) is defined as

—1
K =P HT (HP,ﬂHT + R) , (4)

where P,{ is the empirical covariance matrix of the forecast
distribution at time k calculated using the EnKF j members,
and H represents the tangent linear of the observation opera-
tor H.

DA allows the model performance evaluation by measur-
ing the consistency between the model forecasts and the
available observations. Directly computed in a DA cycle,
the contextual model evidence (CME) is defined as the log-
likelihood of observations at a given time for a model, tak-
ing into account the forecast state as prior information (Car-
rassi et al., 2017). Larger CME is obtained for more consis-
tency between the model forecast and observations. Under
the Gaussian assumption included in the EnKF cycle, CME
is approximated as follows:

CMEy(y; M) = —% (yk - H(fi)) (HP,EHT i R)’l

(yk - ’H(fi))T — %m (det (HPiHT + R))
- %ln(2n), 5)

where fz is the empirical mean of the ensemble forecasts,
and r is the number of available observations. At time k,
CME is defined as a mean square error function between
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the forecast and the observation (represented by the term
(ye = HED) (v — ’H(f{))T in Eq. (5)), which is normal-
ized by the covariance matrix accounting for both forecast
and observation error (denoted as the term (HP,f(HT + R)7l
in Eq. (5)). It has been demonstrated that by considering both
the prior and data uncertainty, CME exhibits greater effec-
tiveness in selecting the accurate model from a pool of mod-
els compared to using the RMSE alone (Metref et al., 2019
and Ruiz et al., 2022).

In principle, DA formalism requires access to the numer-
ical model to propagate the state of the system in order to
obtain the forecasts. When performing EnKF, a large num-
ber of model forecasts are generated, representing a sig-
nificant computational cost. An efficient and flexible data-
driven alternative aims at combining DA with a statistical
forecasting strategy based on analogs (Lorenz, 1969). In ana-
log data assimilation (AnDA), existing long-term simulations
are used instead of performing new sequential model simula-
tions (Tandeo et al., 2015; Lguensat et al., 2017). The simu-
lations are decomposed as a catalog of short-term trajectories
(i.e., pairs of analog states and their successors) sampling the
short-term model dynamics. Hence, using an appropriate dis-
tance, the analog states closest to the assimilated state are se-
lected from the catalog. Their successors are combined using
a statistical operator to obtain probabilistic forecasts. Hence,
AnDA corresponds to performing a classic DA process but
replacing the model propagator by its analog-based approxi-
mation in Eq. (1a). This reads

X =/\7(xk_1)+nk, (6)

where M refers to the analog-based forecasting propagator.

In practice, it consists in fitting a local linear regression
(Cleveland and Devlin, 1988) relating the selected analogs to
their successors, which has proven to be robust (Zhen et al.,
2020; Platzer et al., 2021). The regression is able to learn
the local-time dynamic of the model including nonlineari-
ties since the linear adjustment is applied locally in the phase
space. By projecting the current state with the regression,
statistical approximated forecasts are obtained. The forecast
takes into account the regression uncertainty (assumed Gaus-
sian) which is a robust estimate of the model error. When the
catalog is large enough (to approximately cover the full di-
mension of the phase space), it has been shown that AnDA
performs as well as DA (Lguensat et al., 2017). Ruiz et al.
(2022) have recently shown, using different idealized dy-
namical models, that CME can be robustly estimated using
AnDA. The combination of AnDA with CME is the basis of
the current study.

2.2 Strategies for model weighting average

The methodology described above is applied to an ensemble
of L models in order to individually measure their forecast
skills given a set of observations. For each model, CME time
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series are obtained and used to derive individual weights. The
weights are then applied to provide a model average that is
representative of the observations.

2.2.1 Calculating CME-based weights

The CME time series can be processed in various ways to ob-
tain a single scalar (i.e., the score) used to derive the model
weight. In this study, three CME scores are defined, together
with three benchmark scores (not using CME). Hence, we
define wglc)ore type as the score assigned to model MWD, For
simplicity, the scores are here described prior to their nor-

malization, which leads to the model weights.

a. The model democracy (Knutti, 2010) gives the same
weight to all models, regardless of model performance.

It reads
(@) 1

wdemocracy =

(7a)

b. The climatological score is based on the comparison of
model and observation distributions. Here, there is no
assimilation process, which means that this score does
not evaluate the local dynamics. It measures the min-
imum cumulative value of the two histograms, high-
lighting the common area between both distributions.
A score close to 0 denotes a model that poorly sim-
ulates the observed distribution, while a score of 1 is
obtained by a model with a perfect climatological dis-
tribution (Perkins et al., 2007). It reads

n
Wil o = > minimum(Y (), MD(j)),
Jj=1

(7b)

where Y and M® are the normalized histograms (such
that their respective sum equals 1) of the observations
and the model simulations, respectively, j is the index
of histogram equal-width bins, and # is their total num-
ber. Note that in the current study, single-variable obser-
vations are used, but the score could be adapted using
multivariate distributions.

c. The single best model score assigns 1 to the model
showing the best climatological score and O to the oth-
ers. Opposite to the democracy score, it only takes into
account the best-performing model over the whole set
of observations (Tebaldi and Knutti, 2007). It reads

e (D) ) . -
o _ 1 if Welimato = Welimato Vi # 7
Wgingle = . (7¢)
0, otherwise.

d. The CME-ClimWIP score is based on the ClimWIP ap-
proach (Knutti et al., 2017). Our adaptation reads

D;
) . €D
WCEME-ClimWIP = ﬁ (7d)
T+2 e

https://doi.org/10.5194/npg-31-303-2024



P. Le Bras et al.: Selecting and weighting dynamical models

where D; measures the intra-model performance with
its associated shape parameter op and S;; measures
the inter-model dependency with its associated shape
parameter os. D; and S;; are usually expressed with
Euclidian distance (Knutti et al., 2017). Here, we
evaluate D; such that D; = ZfZOCMEk( y; M®),
where K is the number of time steps, and S;;
is the sum of the defined inter-model such that
Sij = YroCMER(MD; MWDy, ;. The  CME-
ClimWIP score is higher if model forecasts match
observations and if they are sufficiently different from
other-model forecasts. The two parts of Eq. (7d) are
balanced thanks to the use of the parameters op and os.
When they are appropriately set within the score, a few
top-performing models are selected. Notably, higher
values for these parameters bring the score closer to the
model democracy, while when op = 1 and o5 — 400
the BMA expression is retrieved. In particular, the
numerator in Eq. (7d) corresponds to a formulation of
model evidence typically calculated for model selection
problems (see Appendix A for more details on this
specific point). Classic ClimWIP and BMA approaches
are special cases of the CME-ClimWIP score which
are discussed in Sect. 4.2.3. Note that op and og are
determined according to the specific experiment model
tests following Knutti et al. (2017) and Lorenz et al.
(2018).

e. The CME best punctual model score exploits the local-
time performance provided by CME. It assigns a local
value of 1 to the best model at time k and O to the other
models. The score reads

K

@)

1
Whunctual = E

]l{CMEk(y:M(i))>CMEk(y;M(j))}l-;éj, (7e)
k=0

where 1 is the indicator function assigning 1 when
the condition {CME(y; M®) > CMEy(y; MW)};;
is satisfied and O otherwise. This score captures the good
performance of model in specific regions of the phase
space, despite not necessary being optimal in other re-
gions. For example, extreme values are often only well
captured by a few specific models. By retaining the in-
formation from only one model at each time k&, the score
bypasses the need to identify temporal inter-model sim-
ilarities.
f. The CME best persistent model score wggrsistem is de-
rived from the previous score by overweighting mod-
els that are the best on several consecutive states. The
score is linearly proportional to the cumulative num-
ber of consecutive time steps where the model is the
best (expression not shown here). This score empha-
sizes consistently good local dynamics.
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2.2.2 Assessing the performance of weighting-averages

Here, the methodology for one experiment consists in two
successive stages (Fig. 1). The first step corresponds to a
training stage where AnDA is applied to obtain the CME
time series associated with each candidate model (left panel
of Fig. 1). From them, CME-based scores are calculated
following the expressions defined in Sect. 2.2.1 as well as
the three benchmark scores (bottom center panel of Fig. 1).
The second step is a testing stage consisting in applying the
six weighting approaches on new individual model simula-
tions and comparing their effectiveness to suitably recon-
struct the true one (right panel of Fig. 1). Considering prob-
ability density functions (PDFs) of model simulations, the
reconstructed PDF related to a score is calculated as follows:

P@MO, MBy)= 3 0 pGIMD) e, ®)

where p(@|M©@, ... M®) y) denotes the reconstructed
PDF of the normalized AMOC (denoted as @); p(@|M®)
represents the individual PDF associated with model i; and
ws'c)ore is the weight of model i for a given score, depending
on y the set of observations. To evaluate the skill of the re-
constructed PDF, its overlap (in terms of %) with the PDF of
the truth is calculated (following a similar formalism to that
of the climatological score wé'n)mam; Eq. (7b)). The resulting
reconstruction score performance for the six approaches can

then be compared.

3 Experimental setup

3.1 Idealized AMOC model

The study is based on an idealized autonomous low-order
deterministic model of the AMOC able of reproducing its
millennial variability within a chaotic dynamics (Sévellec
and Fedorov, 2014, 2015). The model is derived from the
long history of salinity loop-models (originally proposed
by Welander, 1957, 1965, 1967; Howard, 1971; Malkus,
1972). Its formalism with three equations (Dewar and Huang,
1995, 1996; Huang and Dewar, 1996) reads

do  w—epS (9a)
dl’ - w € NS, a

ds FoS

=BT — (Q0 + w) Sns — K Spr + ——2, (9b)
dr h

ds

% = —(Q0 + ) Sxs — K Sxs. (9c)

where 7 is the time; w is the variable component of the over-
turning circulation strength; Sgt and Sns are the bottom-top
salinity gradients and the north—south salinity gradients, re-
spectively; €2 is the steady part of the overturning circulation
strength, which acknowledges the impact of constant tem-
perature and surface winds; € is the buoyancy torque; A is a
linear friction; 8 is the haline contraction coefficient; K is a
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(a) TRAINING STAGE
Catalogs
20 Observations
10
AnDA
(with data-driven forecasts)
CME series
MO -3 (0)
= WeME
o ( I‘E))
10 s | Won i
-10

(b) TESTING STAGE

710

(C) = = Truth (target)

Model weights for each score

Independent simulations as PDFs

2O PEMO,. . MU0

w .
Reconstructed PDFs: ) p(@M")-wli,

Simulations

1 Benchmark + overlap

[0 CME score + overlap

(0)
Ubenchmark

(10)
Whenchmark

Figure 1. Schematic of the two-stage methodology for one experiment using 11 models. (a) Training stage performing AnDA with the
11 catalogs and a single set of observations leading to CME computation. (¢) Model weights calculated for two illustrative scores, one
based on CME and another based on a benchmark method (blue and red, respectively). (b) Individual PDFs of new model simulations
(grey) are weighted following Eq. (8) to obtain a reconstructed PDF associated with both competing scores (blue and red). The quality of
both reconstructions is assessed by measuring the overlap (blue and red shadings) with the true PDF (dashed black line) which allows for
comparison of the performance of the two scores. Here, the CME score shows a higher overlap with the true distribution, highlighting a better

reconstruction compared to the benchmark score.

linear damping; and FySp/h is the surface salt flux (where
Fy is the freshwater flux intensity; Sp is a reference salinity;
and £ is the loop thickness, i.e., the depth of the level of no
motion).

Equation (9a) describes the momentum balance. Here, the
rate of change of the ocean overturning strength is driven by
the meridional salinity gradients accounting for the buoyancy
torque and a linear friction. Equations (9b) and (9c) describe
the evolution of the salinity gradients driven by advection,
a linear damping representative of diffusion, and the surface
salt flux.

Numerical integrations are done using a fourth-order
Runge—Kutta method with a time step of 1 year. All ref-
erence parameters are set following Sévellec and Fedorov
(2014) (which we refer interested reader to). Their values are
h=1000m, Q=-25x10"2yr !, Fp=1myr!, So=
35psu, A = 1072 yr_l, e =0.35 yr‘z, K=10"* yr_l, and
B=7x10"*psu~!.

3.2 Ensemble of AMOC model versions

Various versions of the AMOC model are obtained by per-
turbing some parameters in the equations (29, K, and %),
while others remain fixed. All possible combinations be-
tween the reference values of the parameters, doubled, and
halved lead to 27 distinct parameterizations. A total of 11
are selected by ignoring the versions describing singular dy-
namics (e.g., with strong instabilities, constant over time, or
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presenting periodic behavior). Thus, for the same equations,
the 11 sets of parameters induce their own dynamics. These
dynamics show similarities and differences that can be vi-
sualized by the computation of the trajectories in the phase
space (Fig. 2).

3.3 Synthetic data

A model-as-truth experiment framework is set up (e.g.,
Herger et al., 2018), in which one model is used to gen-
erate noisy pseudo-observations. Here, only w is observed
and will be used as the variable of interest. To efficiently
select the analogs, the three variables are normalized (here
rescaled). In particular, the normalized values of the original
variable w are associated with the new variable called “nor-
malized AMOC” (Fig. 3). In all the experiments, the covari-
ance of the observations for the normalized AMOC is fixed to
R =0.5I5. The AnDA framework is applied over a period of
K = 8000 years with an assimilation step of 20 years, thus
resulting in 400 assimilation cycles. The choice of the as-
similation step allows the forecasts to be sufficiently differ-
entiated, so that the competing models can be distinguished
locally over time when using CME (sensitivity experiments
not shown). The methodology has been tested with differ-
ent catalog sizes. A catalog size of 400 000 years ensures ro-
bust data-driven forecasts estimates in all the experiments.
For each of the 200 EnKF members of an AnDA cycle,
forecast distributions are estimated using a fixed number of

https://doi.org/10.5194/npg-31-303-2024
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0 1
A=1e-02;e=0.350
Qg =-2.50e-02 ; K=1e-04

A=1e-02;e£=0.350
Qp=-1.25e-02 ; K=1e-04

Normalized AMOC
Normalized AMOC

A=1e-02;e£=0.175

A=1e-02;e=0175
Qp=-2.50e-02 ; K=2e-04

Qp=-2.50e-02 ; K=1e-04

Normalized AMOC
Normalized AMOC

A=1e-02;e=0.175

A=1e02;e=0175
Qg =-5.00e-02 ; K=2e-04

Qp=-5.00e-02 ; K=5e-05

Normalized AMoC
Normalized AMOC
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2 3
A=1e-02;£=0.350
Qg =-1.25e-02 ; K=2e-04

A=1e-02;e=0.350
Qp =-5.00e-02 ; K=5e-05

Normalized AMoC
Normalized AMOC

A=1e02;e=0.175

A=1e-02;e=0.175
Qp =-5.00e-02 ; K=1e-04

Qp=-1.25e-02 ; K=5e-05

Normalized AMOC
Normalized AMOC

10
A=5e-03;e=0.350
Qg =-2.50e-02 ; K=5e-05

Normalized AMoOC

Figure 2. Chaotic trajectories in the phase space of the 11 perturbed versions of the three-variable (normalized here) AMOC model (Sévellec
and Fedorov, 2014). The values of the perturbed parameters (A, €, 20, and K) used to generate the 11 model versions are indicated in the
title of each panel. The attractor labeled O (top left) corresponds to the model with the reference set of parameters.

10000 analogs. These ensure the stability of the forward
propagator algorithm across all 11 experiments, particularly
in areas less frequently visited. These areas are often asso-
ciated with extreme values, making it more challenging to
track suitable analogs (Lguensat et al., 2017).

4 Experimental results

The different methods are evaluated using two protocols.
In the first one, we consider a “perfect experiment”, where
the model used to generate the pseudo-observations is also
included in the catalog. In the second one, the model is
excluded from the catalog, and we talk about an “imper-
fect experiment”. For both perfect and imperfect cases, we

https://doi.org/10.5194/npg-31-303-2024

first describe an illustrative experiment when model 8 is
used as pseudo-observations and then summarized the re-
sults for each model alternately used to generate the pseudo-
observations following a leave-one-out experiment design.

4.1 Perfect model experiment

The goal of the perfect model approach is to measure the
ability of the three CME-based scores to retrieve the correct
model (by giving it a predominant weight) from a pool of
catalogs, including the true one. The skills of these scores
are then compared with the skills of the three benchmarks. In
all the perfect model experiments of this study, the CME-
ClimWIP score is computed using the optimal values of

Nonlin. Processes Geophys., 31, 303-317, 2024
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sions.

op = 0.3 and os = 0.4, which maximize the overall over-
lap scores in all the experiments combined (following Knutti
et al., 2017 and Lorenz et al., 2018).

4.1.1 Experiment with model 8

AnDA is performed on the 11 models with the same pseudo-
observations from model 8, and CME is computed for each
assimilation cycle. The resulting CME series for each indi-
vidual model varies significantly over time and differs locally
from model to model (Fig. 4). CME of models 0, 1, 2, 6, and
10 is more than 75 % lower than —1 (Fig. 5), showing their
inefficiency to replicate model 8 system dynamics. The CME
distributions of models 3, 7, and 9 show a narrower distribu-
tion, with 75 % values greater than —1. This means they are
both accurate and reliable. As expected, the model with the
highest and more consistent CME is model 8. This demon-
strates the ability of CME to retrieve the correct model from
a range of models.

The climatology-based score produces almost uniform
weights close to model democracy (Table 1). Indeed, the
model climatological distributions are very comparable. This
impacts the reliability of selecting a single model following
the best model score. Beyond that, the observation error leads
the climatology-based score to misidentify model 9 instead
of model 8. The CME-ClimWIP score assigns its highest
weight to the correct model, model 8, while giving significant
weights to models 7 and 9. Regarding the two other CME-
based scores, although the weight associated with model 8
is high, these scores give the highest weight to model 9. We
conclude that the time selection characteristics of them make
both scores more sensitive to observation errors.

4.1.2 Overall 11 experiments

By varying the model used to generate the pseudo-
observations in the 11 AnDA experiments, we can robustly
assess the ability of the six scores to efficiently retrieve the
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correct model (Table 2). As emphasized in the specific exper-
iment for model 8, the scores based on climatology do not al-
low for a clear discrimination between models. Hence the cli-
matological and the best single model only retrieved the cor-
rect model twice over the 11 experiments (i.e., experiments
with models 1 and 10). The CME-based scores perform bet-
ter, attributing their highest weight to the correct model eight
times for CME-ClimWIP and six times for both CME best
punctual and CME best persistent. As for the model 8 exper-
iment, in most of the unsuccessful experiments of the three
CME scores, the correct model still has a weight close to the
weight of the selected one (not shown here). These results
emphasize that identifying the correct model is more effec-
tive using local dynamics (thanks to DA framework) rather
than climatological statistics.

4.2 Imperfect model experiment

The imperfect model approach aims to reconstruct the sta-
tistical properties of the distribution of a missing model us-
ing distinct models. In all the imperfect experiments of this
study, the CME-ClimWIP score is computed using the op-
timal values of op = 0.5 and o5 = 0.7 which maximize the
overlap scores in all the experiments combined (following
Knutti et al., 2017 and Lorenz et al., 2018).

4.2.1 Experiment with model 8

The model democracy approach yields the worst reconstruc-
tion (Fig. 6, left panel), stressing that, in this case, the ob-
servation information should be included in the weight cal-
culation. The climatology-based score slightly improves the
reconstruction provided by the model democracy (+0.8 %
compared to model democracy). By selecting model 9, the
best single-model score improve the reconstruction of the
true model 8 distribution by 6 % compared to the model
democracy. The reconstructed distributions associated with
the three strategies (i.e., model democracy, climatology, best
single model) are all positively skewed, underestimating the
true normalized AMOC (Fig. 6, left panel). The three CME-
based scores outperform the three benchmark ones, with
greater overlaps of their reconstruction with the truth. In
particular, they all reconstruct better statistics for high posi-
tive values of normalized AMOC. For CME-ClimWIP, three
models contribute the most to the reconstruction of the true
missing model: model 3 by 18.1 %, model 7 by 49.1 %, and
model 9 by 31.7 %. To a lesser extent, the same three mod-
els are also selected for the best punctual and best persistent
scores but still leave a greater contribution from the other
seven models. This suggests that the information provided by
these seven models is negligible, as the two last CME strate-
gies have lower overlapping scores than the one obtained us-
ing CME-ClimWIP.
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Figure 4. AnDA results on 400 cycles using model 8 to generate the pseudo-observations: examples of three assimilated models among the
11. (a) Time series of normalized AMOC with forecasts mean states and 90 % prediction interval (in shades). The red series denotes the true
model (i.e., model 8), and the orange and blue ones refer to models 0 and 7, respectively. The black dots represent the noisy observations
generated from the true states denoted by the dashed black line. (b) Associated CME time series for each model. Values of CME close to
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CME values
4

" ==
T

]

|

T

|

6]
Of ewe o o wae come
e cerd o amees e o]

2 3

5 6 7 8 9 10

Models
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whiskers show the minimum and maximum values (excluding the outliers denoted with the black diamonds). The mean is indicated with the

small yellow triangle.

4.2.2 Overall 11 experiments

When the 11 models are reconstructed independently in the
imperfect framework, the three CME-based scores produce
better reconstructions on average than the democracy and cli-
matologies scores (Fig. 7). Similar to the specific model 8
reconstruction, the climatology comparison score does not
provide meaningful distinctions between the models. This
results in high variations in the reconstruction score when
using the best single model across all experiments, further
highlighting its unreliability. For instance, while the score ef-
fectively captures most of the distribution when reconstruct-
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ing models 1 and 2 (due to their highly similar dynamics),
for other experiments, it yields lower reconstruction perfor-
mance. These results highlight the ability of using local-
dynamics over climatology statistics for accurately differen-
tiating between models for our reconstruction problem.

The reconstruction performances in the 11 experiments
show that CME-ClimWIP greatly outperforms the model
democracy for 7 of 11 model reconstructions. As for model
8 reconstruction, CME-ClimWIP gives higher weights to a
small subset of models, making it well suited to reconstruct-
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Table 1. Perfect model results for model 8 as the pseudo-observation. For each score (in row): weights (in %) associated with the 11 models.

The sum of the weights per row is 100. Values in bold highlight the model with the highest weight for each score.

0 1 2 3 4 5 6 7 8 9 10
Model democracy 9.1 91 9.1 9.1 91 9.1 9.1 9.1 9.1 9.1 9.1
Climatologies 6.2 9 9.1 98 94 95 87 93 9.7 10 9.2
Best single model 0 0 0 0 0 0 0 0 0 100 0
CME-ClimWIP 0.1 0 0 162 03 05 01 304 312 212 0
CME best punctual 4 23 2 10 83 65 48 123 168 24 93
CME best persistent 3.3 1.9 1.7 85 713 6 5 125 175 281 8.1

Table 2. Summarized perfect model results of the leave-one-out model-as-truth experiments. For each column representing an experiment
(i.e., the model index used to generate pseudo-observations), the index of the model with the highest weight is specified for each score in the
row. The indices in bold show when the true model is recovered. The last column summarizes how frequently the correct model is identified
among the candidate models across the 11 experiments for the five scores. Note that “N/A” is indicated for model democracy since the score

prevents differentiation between models.

0 1 2 3 4 5 6 7 8 9 10 No. success
Model democracy N/A NA NA NA NA NA NA NA NA NA NA 0/11
Climatologies 6 1 1 5 5 3 1 3 9 8 10 2/11
Best single model 6 1 1 5 5 3 1 3 9 8 10 2/11
CME-ClimWIP 0 1 2 3 5 5 6 8 8 8 10 8/11
CME best punctual 0 10 10 3 5 5 6 9 9 9 10 6/11
CME best persistent 0 10 10 3 5 5 6 9 9 9 10 6/11

ing distributions that share similarities with some others in
the ensemble.

On the other hand, CME-ClimWIP is close but less useful
than democracy (and climatologies) for reconstructing mod-
els 3, 5, 9, and 10. Here, despite the six scores having lost
performance, uniform weights are appropriate for good re-
construction. A typical example of such case is the recon-
struction of model 10 whose distribution is quite symmetric,
whereas all the other models have asymmetric distribution.
For model 3, 5, 9, and 10 experiments, CME best punctual
and persistent give better results than CME-ClimWIP. 1t is
worth noting that these two scores also have greater reliabil-
ity across all 11 experiments than CME-ClimWIP, since their
reconstruction performance remains consistently superior to
the model democracy score, with minimal variation between
all the experiments.

4.2.3 Comparing CME-CIimWIP reconstruction
performance to alternative literature scores

As expressed in Eq. (7d), the CME-ClimWIP score is com-
posed of the performance and dependence of the models,
both expressed using the CME. CME at time k depends on
the innovation (i.e., the difference between fi and y;) and
the covariance error matrices Pi and R. The degree of con-
tribution of the performance and independence is controlled
by two tuned shape parameters: op and os. Hence, to assess
the importance of each component in the reconstruction per-
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formance, various versions of the CME-ClimWIP score are
tested, by taking into account the influence of each compo-
nent or not (Table 3). Note here that two alternative versions
represent weighting strategies of the literature mentioned in
the Introduction. Hence, BMA formalism (with model evi-
dence estimated using successive CME) and the ClimWIP
approach (not considering the covariance error matrix) are
presented (refer to rows 5 and 6, respectively, in Table 3).

The degree of dependence between models does not con-
tribute significantly to the reconstruction performance (Ta-
ble 3). Since the 11 model versions are based on the same
set of equations and the three variables are normalized, the
model-model redundancy is significant. This implies that the
inter-model dependency (i.e., the denominator in Eq. (7d)), is
too similar across the models to contribute notably to differ-
entiate them. The shape parameter (op) has the main impact
on the CME-ClimWIP by driving the score performance.
The reconstruction performance of the CME-ClimWIP ver-
sion without tuning the shape parameters is more than 10 %
lower than the reference performance. The same conclusion
can be done concerning the BMA approach. The ClimWIP
score computed without information from P and R has lower
performance than the reference, confirming the usefulness
of CME (including the covariances in its formulation) over
a metric only based on Euclidian distance. Finally, when
both covariances and shape parameters are excluded from the
score, the performance lost is even more important.
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Figure 6. Imperfect model results of the model 8 experiment (by excluding it). (a) Reconstructed distribution of normalized circulation
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Figure 7. Imperfect model results (i.e., excluding the true model) of the leave-one-out model-as-truth experiments. (a) The model index used
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5 Conclusion and perspectives observations of the AMOC component. In the 11 experi-
ments, model weights are extracted from the CME series
using different strategies. They take into account the per-
formance of the models with respect to pseudo-observations
and the degree of similarity with other models. The method
is then assessed by applying the weights to the distributions
of long-term model simulations. In this way, we test the ex-
tent to which the short-term dynamics of individual models
can provide relevant information for reconstructing the statis-
tics of a targeted distribution. Reconstruction performance is
measured by the percentage of overlap between the recon-
structed and the true distributions. The reconstruction perfor-
mance associated with the three CME-based scores is com-
pared to three benchmark approaches that do not include DA
framework (i.e., model democracy, climatological distribu-
tions comparison, and best single model).

The results of the perfect model approach highlight a bet-
ter performance of CME-based scores in recovering the cor-
rect model, compared to benchmarks, suggesting the impor-
tance of using DA. The results of the benchmark strategies
generally suffer from a lack of discrimination between mod-

This study aims at developing a data-driven methodology
for weighting models, only based on their ability to repre-
sent the dynamics of observations. For this purpose, a set of
dynamical models is compared to noisy observations, where
model equations are replaced by available simulations. The
method combines a machine learning approach (i.e., an ana-
log forecasting method) to estimate the model forecasts in
a cost-effective manner (i.e., without the need to re-run the
model) and a sequential data assimilation algorithm (i.e., the
ensemble Kalman filter). The time-varying performance of
the models with respect to observations is evaluated using the
contextual model evidence (also known as innovation likeli-
hood), which benefits from DA properties.

To test this methodology, an ensemble of 11 models is
obtained by perturbing parameters of an idealized chaotic
model of the AMOC. For each model version, the equa-
tions are only used to generate large simulations of its three
variables. Each version alternately plays the role of truth
(i.e., leave-one-out experiments) used to construct pseudo-
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Table 3. Sensitivity of the reconstruction performance (based on overlap of the reconstruction distribution with the truth) to various al-
ternative/simplified versions of the ClimWIP score (first column) in the imperfect model approach. The second column shows the overlap
associated with the model 8 experiment. The third column shows the results of all leave-one-out experiments combined.

ClimWIP alternative/simplified versions

Model 8 experiment (%)  All experiments

mean [mean — SD, mean + SD] (%)

CME-ClimWIP reference o130 f7451§9 93.29]

Score without co-dependency part (i.e., og — +00) 2093 %[37451019 93.13]

Score without the influence of shape parameters (i.e., op = o5 = 1) 8032 ?712189 1,89.58]

BMA with CME (i.e., op = 1 and og — —+00) 7 ?712'150 89.55]
89.45 83.68

. . . : f i i

Classic ClimWIP score (i.e., without P' and R information) [74.61,92.75]

79.24 80.84

Score without Pf or R and with o = og =1

[72.47,89.21]

els to correctly identify the right one. In the context of the
imperfect model approach, the scores based on CME are
able to reconstruct the targeted distribution more suitably
than the benchmarks using the same partial noisy observa-
tions. This emphasizes the valuable information contained
within the short-term dynamics, rather than the general in-
formation provided by climatological statistics, enabling ef-
ficient differentiation between models. The results underline
that CME-based scores can be seen as a compromise be-
tween the “democracy score” and the so-called “dictatorial
score” which selects only a single model. Within the CME-
based score, the CME-ClimWIP score is relatively closer to
“dictatorship™. It is suitable for reconstructing distributions
sharing similarities with few models in the ensemble and
when democracy is not appropriate. On the other hand, the
CME best punctual and CME persistent scores are closer
to “democracy”. By exploiting temporal performance, their
weights are more adaptive, which is advantageous for outper-
forming the already successful democracy in any experiment
(when CME-ClimWIP does not succeed).

An inherent assumption of our study is the Gaussian-
ity of the EnKF forecast distributions. Testing its validity
through a Jarque—Bera test (Jarque and Bera, 1980), we find
that it is valid for up to 50.5 % of the 400 total forecasts
for model 0 and pseudo-observations from model 8 (results
not shown). To go beyond our Gaussian approach, a non-
parametric assimilation method, such as the use of particle
filters (Van Leeuwen, 2009), could be implemented. This ap-
proach is more suitable where the Gaussian assumption is not
appropriate. In this context, a performance metric adapted
to the non-parametric PDF should be used instead of CME
(e.g., Wasserstein distance) to assess whether reconstruction
performance improvements can still be achieved.

Nonlin. Processes Geophys., 31, 303-317, 2024

In the current study, the weights are fixed and do not
change over time, as long-term averages of stationary series
are reconstructed. From a methodological standpoint, there is
potential to better leverage the local-time properties of CME
by computing time-dependent weights. This would be espe-
cially relevant in a non-autonomous framework (e.g., in the
context of climate changes).

This study initiates the implementation of the methodolog-
ical framework, whose ultimate goal is to weight a larger en-
semble of dynamic models representing more complex sys-
tems, such as those provided by the CMIP6 (Eyring et al.,
2016). Here, the aim will be to find weights that will be cal-
culated on the performance of climate models (represented
by their catalog of simulations) in correctly reproducing cur-
rent partial observations. Extrapolating the weighted model
averages using future climate projection simulations could
provide a more accurate and reliable response of the AMOC
to anthropogenic forcing. However, some aspects need to be
examined due to the differences between a CMIP study and
the present one. Firstly, whereas here the simulations are sta-
tionary, the CMIP simulations describe a trend and variabil-
ities in response to the time-varying forcing (e.g., solar ac-
tivity, volcano eruption, and greenhouse gas emissions). Sec-
ondly, in this proof-of-concept study, the full phase space of
the idealized model is known, whereas using CMIP simu-
lations, additional variables would need to be investigated
to increase the unknown number of dimensions. This could
be valuable for obtaining accurate and reliable AnDA recon-
structions needed for deriving relevant weights. The diversity
of available observations types could be particularly benefi-
cial in this case.
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Appendix A: Link between CME-ClimWIP and
Bayesian model averaging (BMA)

Including CME as a metric in the CME-ClimWIP expression
brings the score into the Bayesian model averaging (BMA)
framework, which relies on marginal likelihoods. Specifi-
cally, erZOCMEk(y ;M(i)), in the numerator of Eq. (7d), rep-
resents the approximate marginal likelihood of the observa-
tions. This is estimated within the AnDA process using suc-
cessive innovation likelihoods (i.e., the CME values, e.g.,
Carrassi et al., 2017; Pulido et al., 2018; Metref et al., 2019;
Tandeo et al., 2020). This approach offers two key advan-
tages. Firstly, it avoids the need for calculating a climato-
logical distribution, which can be challenging to estimate
accurately and computationally expensive. Secondly, it pro-
vides more informative insights into current conditions, in-
cluding forecast states with their uncertainties. This is espe-
cially useful for dealing with nonlinearities in dynamic sys-
tems, instead of using globally defined climatological dis-
tributions (Metref et al., 2019). Furthermore, the denomina-
tor in Eq. (7d) serves as a prior that contains information
about inter-model dependency. This provides more valuable
insights compared to a uniform prior commonly used in stan-
dard BMA approaches (e.g., George, 2010; Garthwaite and
Mubwandarikwa, 2010).

Code and data availability. Python codes developed for
the current study are available in the GitHub open reposi-
tory (https://github.com/pilebras/AnDA_weight_idealAMOC/
tree/main, last access: 7 November 2023) and Zenodo
(https://doi.org/10.5281/zenodo.12575576, pilebras, 2024)
under the GNU license. They include the code for generating the
data, performing the experiments using AnDA, and obtaining the
figures of the paper.
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