Articles | Volume 29, issue 1
https://doi.org/10.5194/npg-29-53-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/npg-29-53-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
An approach for constraining mantle viscosities through assimilation of palaeo sea level data into a glacial isostatic adjustment model
Reyko Schachtschneider
CORRESPONDING AUTHOR
Earth System Modelling, Department Geodesy, Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
Jan Saynisch-Wagner
Earth System Modelling, Department Geodesy, Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
Volker Klemann
Earth System Modelling, Department Geodesy, Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
Meike Bagge
Earth System Modelling, Department Geodesy, Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
Maik Thomas
Earth System Modelling, Department Geodesy, Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
Institute for Meteorology, Freie Universität Berlin, Kaiserswerther Str. 16–18, 14195 Berlin, Germany
Related authors
Reyko Schachtschneider, Manuel Stavridis, Ines Fortmeier, Michael Schulz, and Clemens Elster
J. Sens. Sens. Syst., 8, 105–110, https://doi.org/10.5194/jsss-8-105-2019, https://doi.org/10.5194/jsss-8-105-2019, 2019
Short summary
Short summary
Virtual experiments have become an indispensable tool for the design and the accuracy assessment of novel measurement procedures and instruments. In this paper, we present SimOptDevice, a library for opto-mechanical virtual experiments. We describe the mathematical tools used for solving the related numerical tasks and give examples of application scenarios.
Torsten Albrecht, Meike Bagge, and Volker Klemann
The Cryosphere, 18, 4233–4255, https://doi.org/10.5194/tc-18-4233-2024, https://doi.org/10.5194/tc-18-4233-2024, 2024
Short summary
Short summary
We performed coupled ice sheet–solid Earth simulations and discovered a positive (forebulge) feedback mechanism for advancing grounding lines, supporting a larger West Antarctic Ice Sheet during the Last Glacial Maximum. During deglaciation we found that the stabilizing glacial isostatic adjustment feedback dominates grounding-line retreat in the Ross Sea, with a weak Earth structure. This may have consequences for present and future ice sheet stability and potential rates of sea-level rise.
Christoph Dahle, Eva Boergens, Ingo Sasgen, Thorben Döhne, Sven Reißland, Henryk Dobslaw, Volker Klemann, Michael Murböck, Rolf König, Robert Dill, Mike Sips, Ulrike Sylla, Andreas Groh, Martin Horwath, and Frank Flechtner
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-347, https://doi.org/10.5194/essd-2024-347, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
The satellite missions GRACE and GRACE-FO are unique observing systems to quantify global mass changes at the Earth’s surface from space. Time series of these mass changes are of high value for various applications, e.g., in hydrology, glaciology, and oceanography. GravIS provides easy access to user-friendly, regularly updated mass anomaly products. The associated portal visualizes and describes these data, aiming to highlight their significance for understanding changes in the climate system.
Uwe Mikolajewicz, Marie-Luise Kapsch, Clemens Schannwell, Katharina D. Six, Florian A. Ziemen, Meike Bagge, Jean-Philippe Baudouin, Olga Erokhina, Veronika Gayler, Volker Klemann, Virna L. Meccia, Anne Mouchet, and Thomas Riddick
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-55, https://doi.org/10.5194/cp-2024-55, 2024
Preprint under review for CP
Short summary
Short summary
A fully coupled atmosphere-ocean-ice sheet-solid earth model was applied to simulate the time from the last glacial maximum to the preindustrial. The model simulations are compared to proxy data. During the glacial and deglaciation the model simulates several abrupt changes in North Atlantic climate. The underlying meachanisms are analysed and described.
Matteo Willeit, Reinhard Calov, Stefanie Talento, Ralf Greve, Jorjo Bernales, Volker Klemann, Meike Bagge, and Andrey Ganopolski
Clim. Past, 20, 597–623, https://doi.org/10.5194/cp-20-597-2024, https://doi.org/10.5194/cp-20-597-2024, 2024
Short summary
Short summary
We present transient simulations of the last glacial inception with the coupled climate–ice sheet model CLIMBER-X showing a rapid increase in Northern Hemisphere ice sheet area and a sea level drop by ~ 35 m, with the vegetation feedback playing a key role. Overall, our simulations confirm and refine previous results showing that climate-vegetation–cryosphere–carbon cycle feedbacks play a fundamental role in the transition from interglacial to glacial states.
Reyko Schachtschneider, Manuel Stavridis, Ines Fortmeier, Michael Schulz, and Clemens Elster
J. Sens. Sens. Syst., 8, 105–110, https://doi.org/10.5194/jsss-8-105-2019, https://doi.org/10.5194/jsss-8-105-2019, 2019
Short summary
Short summary
Virtual experiments have become an indispensable tool for the design and the accuracy assessment of novel measurement procedures and instruments. In this paper, we present SimOptDevice, a library for opto-mechanical virtual experiments. We describe the mathematical tools used for solving the related numerical tasks and give examples of application scenarios.
Linsong Wang, Liangjing Zhang, Chao Chen, Maik Thomas, and Mikhail K. Kaban
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-142, https://doi.org/10.5194/tc-2018-142, 2018
Preprint withdrawn
Short summary
Short summary
The Greenland ice sheet (GrIS) variations estimated from GRACE gravity fields and SMB data have been investigated with respect to ice melting of Greenland and its contributions to sea level changes. Greenland contributes about 31 % of the total terrestrial water storage transferring to the sea level rise from 2003 to 2015. We also found that variations of the GrIS contribution to sea level have an opposite V shape during 2010–2012, while a clear global mean sea level drop also took place.
Jan Saynisch, Christopher Irrgang, and Maik Thomas
Ann. Geophys., 36, 1009–1014, https://doi.org/10.5194/angeo-36-1009-2018, https://doi.org/10.5194/angeo-36-1009-2018, 2018
Short summary
Short summary
By induction, ocean tides generate electromagnetic signals. Since the launch of magnetometer satellite missions, these signals are increasingly used to infer electromagnetic properties of the Earth. In many of these inversions, ocean tide models are used to estimate oceanic tidal electromagnetic signals which are generated via electromagnetic induction. This study's goal is to provide tide model errors for electromagnetic inversion studies.
Johannes Petereit, Jan Saynisch, Christopher Irrgang, Tobias Weber, and Maik Thomas
Ocean Sci., 14, 515–524, https://doi.org/10.5194/os-14-515-2018, https://doi.org/10.5194/os-14-515-2018, 2018
Short summary
Short summary
The study finds that changes in seawater temperature due to El Niño and La Niña, anomalous warm and cold events, are in principle detectable by means of the oceanic tidally induced magnetic field. Furthermore, subsurface processes in the onset of those anomalous events lead the surface processes by several months. This causes a lead in the oceanic tidally induced magnetic field signals over sea-surface temperature signals.
Milena Latinović, Volker Klemann, Christopher Irrgang, Meike Bagge, Sebastian Specht, and Maik Thomas
Clim. Past Discuss., https://doi.org/10.5194/cp-2018-50, https://doi.org/10.5194/cp-2018-50, 2018
Revised manuscript not accepted
Short summary
Short summary
By using geological samples we are trying to validate the models that are reconstructing the sea level in the past 20 000 years. We applied proposed statistical method using 4 types of shells that were found in the area of the Hudson Bay on 140 members of model ensemble. After the comparison of the the results with studies from this area, we concluded that the method is suitable for validation of model ensemble based sea-level change caused by land movement of the Earth due to ice-age burden.
Ingo Sasgen, Alba Martín-Español, Alexander Horvath, Volker Klemann, Elizabeth J. Petrie, Bert Wouters, Martin Horwath, Roland Pail, Jonathan L. Bamber, Peter J. Clarke, Hannes Konrad, Terry Wilson, and Mark R. Drinkwater
Earth Syst. Sci. Data, 10, 493–523, https://doi.org/10.5194/essd-10-493-2018, https://doi.org/10.5194/essd-10-493-2018, 2018
Short summary
Short summary
We present a collection of data sets, consisting of surface-elevation rates for Antarctic ice sheet from a combination of Envisat and ICESat, bedrock uplift rates for 118 GPS sites in Antarctica, and optimally filtered GRACE gravity field rates. We provide viscoelastic response functions to a disc load forcing for Earth structures present in East and West Antarctica. This data collection enables a joint inversion for present-day ice-mass changes and glacial isostatic adjustment in Antarctica.
Jorge Bernales, Irina Rogozhina, Ralf Greve, and Maik Thomas
The Cryosphere, 11, 247–265, https://doi.org/10.5194/tc-11-247-2017, https://doi.org/10.5194/tc-11-247-2017, 2017
Short summary
Short summary
This study offers a hard test to the models commonly used to simulate an ice sheet evolution over multimillenial timescales. Using an example of the Antarctic Ice Sheet, we evaluate the performance of such models against observations and highlight a strong impact of different approaches towards modeling rapidly flowing ice sectors. In particular, our results show that inferences of previous studies may need significant adjustments to be adopted by a different type of ice sheet models.
André Düsterhus, Alessio Rovere, Anders E. Carlson, Benjamin P. Horton, Volker Klemann, Lev Tarasov, Natasha L. M. Barlow, Tom Bradwell, Jorie Clark, Andrea Dutton, W. Roland Gehrels, Fiona D. Hibbert, Marc P. Hijma, Nicole Khan, Robert E. Kopp, Dorit Sivan, and Torbjörn E. Törnqvist
Clim. Past, 12, 911–921, https://doi.org/10.5194/cp-12-911-2016, https://doi.org/10.5194/cp-12-911-2016, 2016
Short summary
Short summary
This review/position paper addresses problems in creating new interdisciplinary databases for palaeo-climatological sea-level and ice-sheet data and gives an overview on new advances to tackle them. The focus therein is to define and explain strategies and highlight their importance to allow further progress in these fields. It also offers important insights into the general problem of designing competitive databases which are also applicable to other communities within the palaeo-environment.
I. Sasgen, H. Konrad, E. R. Ivins, M. R. Van den Broeke, J. L. Bamber, Z. Martinec, and V. Klemann
The Cryosphere, 7, 1499–1512, https://doi.org/10.5194/tc-7-1499-2013, https://doi.org/10.5194/tc-7-1499-2013, 2013
Related subject area
Subject: Predictability, probabilistic forecasts, data assimilation, inverse problems | Topic: Solid earth, continental surface, biogeochemistry | Techniques: Simulation
On parameter bias in earthquake sequence models using data assimilation
Inhomogeneous precursor characteristics of rock with prefabricated cracks before fracture and its implication for earthquake monitoring
Magnitude correlations in a self-similar aftershock rates model of seismicity
Arundhuti Banerjee, Ylona van Dinther, and Femke C. Vossepoel
Nonlin. Processes Geophys., 30, 101–115, https://doi.org/10.5194/npg-30-101-2023, https://doi.org/10.5194/npg-30-101-2023, 2023
Short summary
Short summary
The feasibility of physics-based forecasting of earthquakes depends on how well models can be calibrated to represent earthquake scenarios given uncertainties in both models and data. Our study investigates whether data assimilation can estimate current and future fault states in the presence of a bias in the friction parameter.
Andong Xu, Yonghong Zhao, Muhammad Irfan Ehsan, Jiaying Yang, Qi Zhang, and Ru Liu
Nonlin. Processes Geophys., 28, 379–407, https://doi.org/10.5194/npg-28-379-2021, https://doi.org/10.5194/npg-28-379-2021, 2021
Short summary
Short summary
Earthquake precursors and earthquake monitoring are always important in the earthquake research field, even if there is still debate about the existence of earthquake precursors. The existence of precursory signals is confirmed by our results. We then attempt to capture and quantity precursors before rock fracture, by which we establish a link between the rock experiments and natural earthquakes. We try to make a different type of analysis by comparing their similar characteristics.
Andres F. Zambrano Moreno and Jörn Davidsen
Nonlin. Processes Geophys., 27, 1–9, https://doi.org/10.5194/npg-27-1-2020, https://doi.org/10.5194/npg-27-1-2020, 2020
Short summary
Short summary
We study a model containing the characteristic of self-similarity (invariance under scale) which allows for scaling between lab experiments and geographical-scale seismicity. Particular to this model is the dependency of the earthquake rates on the magnitude difference between events that are causally connected. We present results of a statistical analysis of magnitude correlations for the model along with its implications for the ongoing efforts in earthquake forecasting.
Cited articles
Al-Attar, D. and Tromp, J.: Sensitivity kernels for viscoelastic loading based on adjoint methods, Geophys. J. Int., 196, 34–77, 2014. a
Anderson, B. and Moore, J.: Optimal filtering, Prentice-Hall, Englewood Cliffs, NJ, ISBN 13: 978-0-486-78899-9, 1979. a
Argus, D., Peltier, W., Blewitt, G., and Kreemer, C.: The Viscosity of the Top Third of the Lower Mantle Estimated Using GPS, GRACE, and Relative Sea Level Measurements of Glacial Isostatic Adjustment, J. Geophys. Res.-Sol. Ea., 126, e2020JB021537, https://doi.org/10.1029/2020JB021537, 2021. a
Bagge, M., Klemann, V., Steinberger, B., Latinović, M., and Thomas, M.: Glacial-Isostatic Adjustment Models Using Geodynamically Constrained 3D Earth Structures, Geochem. Geophy. Geosy., 22, e2021GC009853, https://doi.org/10.1029/2021GC009853, 2021. a
Bärenzung, J., Holschneider, M., Wicht, J., Sanchez, S., and Lesur, V.: Modeling and Predicting the Short-Term Evolution of the Geomagnetic Field, J. Geophys. Res.-Sol. Ea., 123, 4539–4560, https://doi.org/10.1029/2017JB015115, 2018. a
Bauer, P., Thorpe, A., and Brunet, G.: The quiet revolution of numerical weather prediction, Nature, 525, 47–55, https://doi.org/10.1038/nature14956, 2015. a
Bergstrand, S., Scherneck, H.-G., Milne, G., and Johansson, J.: Upper mantle viscosity from continuous GPS baselines in Fennoscandia, J. Geodyn., 39,
91–109, https://doi.org/10.1016/j.jog.2004.08.004, 2005. a, b
Box, G. and Tiao, G.: Bayesian inference in statistical analysis, John Wiley & Sons, vol. 40, ISBN: 978-0-471-57428-6, 2011. a
Carlson, A., Dutton, A., Long, A., and Milne, G.: PALeo constraints on SEA level rise (PALSEA): Ice-sheet and sea-level responses to past climate warming, Quaternary Sci. Rev., 212, 28–32, https://doi.org/10.1016/j.quascirev.2019.03.032, 2019. a, b
Caron, L., Métivier, L., Greff-Lefftz, M., Fleitout, L., and Rouby, H.: Inverting Glacial Isostatic Adjustment signal using Bayesian framework and two linearly relaxing rheologies, Geophys. J. Int., 209, 1126–1147, 2017. a
Caron, L., Ivins, E., Larour, E., Adhikari, S., Nilsson, J., and Blewitt, G.: GIA Model Statistics for GRACE Hydrology, Cryosphere, and Ocean Science, Geophys. Res. Lett., 45, 2203–2212, https://doi.org/10.1002/2017gl076644, 2018. a, b
Carrassi, A., Bocquet, M., Bertino, L., and Evensen, G.: Data assimilation in the geosciences: An overview of methods, issues, and perspectives, WIREs Clim. Change, 9, e535, https://doi.org/10.1002/wcc.535, 2018. a, b
Clark, J., Farrell, W., and Peltier, W.: Global Changes in Postglacial Sea Level: A Numerical Calculation, Quaternary Res., 9, 265–287, https://doi.org/10.1016/0033-5894(78)90033-9, 1978. a
Crisan, D. and Miguez, J.: Nested particle filters for online parameter estimation in discrete-time state-space Markov models, Bernoulli, 24, 3039–3086, https://doi.org/10.3150/17-BEJ954, 2018. a
Düsterhus, A., Rovere, A., Carlson, A. E., Horton, B. P., Klemann, V., Tarasov, L., Barlow, N. L. M., Bradwell, T., Clark, J., Dutton, A., Gehrels, W. R., Hibbert, F. D., Hijma, M. P., Khan, N., Kopp, R. E., Sivan, D., and Törnqvist, T. E.: Palaeo-sea-level and palaeo-ice-sheet databases: problems, strategies, and perspectives, Clim. Past, 12, 911–921, https://doi.org/10.5194/cp-12-911-2016, 2016. a
Dziewonski, A. and Anderson, D.: Preliminary Reference Earth Model, Phys. Earth Planet. In., 25, 297–356, https://doi.org/10.1016/0031-9201(81)90046-7, 1981. a
Engelhart, S. and Horton, B.: Holocene sea level database for the Atlantic coast of the United States, Quaternary Sci. Rev., 54, 12–25, https://doi.org/10.1016/j.quascirev.2011.09.013, 2012. a
Engelhart, S., Vacci, M., Horton, B., Nelson, A., and Kopp, R.: A sea-level database for the Pacific coast of central North America, Quaternary Sci. Rev., 113, 78–92, https://doi.org/10.1016/j.quascirev.2014.12.001, 2015. a
Evensen, G.: Data assimilation: the ensemble Kalman filter, Springer Science & Business Media, Berlin Heidelberg, 2nd edn., https://doi.org/10.1007/978-3-642-03711-5, 2009. a
Farrell, W. and Clark, J.: On postglacial sea level, Geophys. J. Int., 46, 647–667, https://doi.org/10.1111/j.1365-246x.1976.tb01252.x, 1976. a
Fearnhead, P.: Markov chain Monte Carlo, sufficient statistics, and particle filters, J. Comput. Graph. Stat., 11, 848–862, 2002. a
Fearnhead, P. and Künsch, H.: Particle filters and data assimilation, Annu. Rev. Stat. Appl., 5, 421–449, https://doi.org/10.1146/annurev-statistics-031017-100232, 2018. a, b, c
Fleming, K.: Glacial Rebound and Sea-level Change: Constraints on the Greenland Ice Sheet, PhD thesis, Australian National University, Camberra, https://doi.org/10.25911/5d650f066b061, 2000. a
Fournier, A., Nerger, L., and Aubert, J.: An ensemble Kalman filter for the time-dependent analysis of the geomagnetic field, Geochem. Geophy. Geosy., 14, 4035–4043, https://doi.org/10.1002/ggge.20252, 2013. a
Gordon, N. J., Salmond, D. J., and Smith, A. F. M.: Novel approach to nonlinear/non-Gaussian Bayesian state estimation, IEE Proc. F, 140, 107–113, https://doi.org/10.1049/ip-f-2.1993.0015, 1993. a
Gowan, E., Tregoning, P., Purcell, A., Montillet, J.-P., and McClusky, S.: A model of the western Laurentide Ice Sheet, using observations of glacial isostatic adjustment, Quaternary Sci. Rev., 139, 1–16, https://doi.org/10.1016/j.quascirev.2016.03.003, 2016. a
Gowan, E., Zhang, X., Khosravi, S., Rovere, A., Stocchi, P., Hughes, A., Gyllencreutz, R., Mangerud, J., Svendsen, J.-I., and Lohmann, G.: A new global ice sheet reconstruction for the past 80 000 years, Nat. Commun., 12, 1199, https://doi.org/10.1038/s41467-021-21469-w, 2021. a
Gregory, J., Griffies, S. M., Hughes, C., Lowe, J., Church, J., Fukimori, I., Gomez, N., Kopp, R., Landerer, F., Le Cozannet, G., Ponte, R., Stammer, D., Tamisiea, M. E., and Van de Wal, R.: Concepts and Terminology for Sea Level: Mean, Variability and Change, Both Local and Global, Surv. Geophys., 40, 1251–1289, https://doi.org/10.1007/s10712-019-09525-z, 2019. a
Hagedoorn, J., Wolf, D., and Martinec, Z.: An estimate of global sea level rise inferred form tide gauge measurements using glacial isostatic models consistent with the relative sea level record, Pure Appl. Geophys., 164, 791–818, https://doi.org/10.1007/s00024-007-0186-7, 2007. a
Haskell, N.: The motion of a viscous fluid under a surface load, Physics, 6, 265–269, https://doi.org/10.1063/1.1745329, 1935. a
Hay, C., Morrow, E., Kopp, R., and Mitrovica, J.: Estimating the sources of global sea level rise with data assimilation techniques, P. Natl. Acad. Sci. USA, 110, 3692–3699, https://doi.org/10.1073/pnas.1117683109, 2013. a
Hibbert, F., Rohling, E., Dutton, A., Williams, F., Chutcharavan, P., Zhao, C., and Tamisiea, M.: Coral indicators of past sea-level change: A global repository of U-series dated benchmarks, Quaternary Sci. Rev., 145, 1–56, https://doi.org/10.1016/j.quascirev.2016.04.019, 2016. a
Hill, E., Davis, J., Tamisiea, M., and Lidberg, M.: Combination of geodetic observations and models for glacial isostatic adjustment fields in Fennoscandia, 115, B07403, https://doi.org/10.1029/2009jb006967, 2010. a
Imbrie, J., Boyle, E., Clemens, S., Duffy, A., Howard, W., Kukla, G., Kutzbach, J., Martinson, D., McIntyre, A., Mix, A., Molfino, B., Morley, J., Peterson, L., Pisias, N., Prell, W., Raymo, M., Shackleton, N., and Toggweiler, J.: On the Structure and Origin of Major Glaciation Cycles 1. Linear Responses to Milankovitch Forcing, Paleoceanography, 7, 701–738, https://doi.org/10.1029/92PA02253, 1992. a
Irrgang, C., Saynisch, J., and Thomas, M.: Utilizing oceanic electromagnetic induction to constrain an ocean general circulation model: A data assimilation twin experiment, J. Adv. Model. Earth Sy., 9, 1703–1720, https://doi.org/10.1002/2017MS000951, 2017. a
Kendall, R., Mitrovica, J., and Milne, G.: On post-glacial sea level – II. Numerical formulation and comparative results on spherically symmetric models, Geophys. J. Int., 161, 679–706, https://doi.org/10.1111/j.1365-246X.2005.02553.x, 2005. a, b, c
Khan, N., Ashe, E., Shaw, T., Vacchi, M., Walker, J., Peltier, W., Kopp, R., and Horton, B.: Holocene Relative Sea-Level Changes from Near-, Intermediate-, and Far-Field Locations, Current Climate Change Reports, 1, 247–262, https://doi.org/10.1007/s40641-015-0029-z, 2015. a, b, c, d
Khan, N., Horton, B., Engelhart, S., Rovere, A., Vacchi, M., Ashe, E., Törnqvist, T., Dutton, A., Hijma, M., and Shennan, I.: Inception of a global atlas of sea levels since the Last Glacial Maximum, Quaternary Sci. Rev., 220, 359–371, https://doi.org/10.1016/j.quascirev.2019.07.016, 2019. a, b
Kitagawa, G.: Monte Carlo filter and smoother for non-Gaussian nonlinear state space models, J. Comput. Graph. Stat., 5, 1–25, https://doi.org/10.1080/10618600.1996.10474692, 1996. a
Klemann, V., Martinec, Z., and Ivins, E.: Glacial isostasy and plate motion,
J. Geodyn., 46, 95–103, https://doi.org/10.1016/j.jog.2008.04.005, 2008. a, b
Lambeck, K.: Glacial rebound of the British Isles–I. Preliminary model results, Geophys. J. Int., 115, 941–959, https://doi.org/10.1111/j.1365-246X.1993.tb01503.x, 1993. a
Lambeck, K., Smither, C., and Johnston, P.: Sea-level change, glacial rebound and mantle viscosity for northern Europe, Geophys. J. Int., 134, 102–144, https://doi.org/10.1046/j.1365-246x.1998.00541.x, 1998. a, b
Lambeck, K., Purcell, A., Johnston, P., Nakada, M., and Yokoyama, Y.: Water-load definition in the glacio-hydro-isostatic sea-level equation, Quaternary Sci. Rev., 22, 309–318, https://doi.org/10.1016/S0277-3791(02)00142-7, 2003. a
Lambeck, K., Rouby, H., Purcell, A., Sun, Y., and Sambridge, M.: Sea level and global ice volumes from the Last Glacial Maximum to the Holocene, P. Natl. Acad. Sci. USA, 111, 15296–15303, https://doi.org/10.1073/pnas.1411762111, 2014. a
Latinović, M.: A method for validation of GIA models using sea-level data with applications to Hudson Bay and SW Fennoscandia, PhD thesis, Free University, Berlin, https://doi.org/10.17169/refubium-29582, 2021. a
Liu, J. and West, M.: Combined parameter and state estimation in simulation-based filtering, in: Sequential Monte Carlo Methods in Practice. Statistics for Engineering and Information Science, edited by: Doucet, A., de Freitas, N., and Gordon, N., Springer, New York, NY, 197–223, https://doi.org/10.1007/978-1-4757-3437-9_10, 2001. a, b, c
Liu, J., Chen, R., and Logvinenko, T.: A theoretical framework for sequential importance sampling with resampling, in: Sequential Monte Carlo Methods in Practice. Statistics for Engineering and Information Science, edited by: Doucet, A., de Freitas, N., and Gordon, N., Springer, New York, NY, 225–246, https://doi.org/10.1007/978-1-4757-3437-9_11, 2001. a
Martinec, Z.: Spectral-finite element approach for three-dimensional viscoelastic relaxation in a spherical earth, Geophys. J. Int., 142, 117–141, https://doi.org/10.1046/j.1365-246x.2000.00138.x, 2000. a, b, c
Milne, G. A., Long, A. J., and Bassett, S. E.: Modelling Holocene relative sea-level observations from the Caribbean and South America, Quaternary Sc. Rev., 24, 1183–1202, https://doi.org/10.1016/j.quascirev.2004.10.005, 2005. a
Mitrovica, J. and Forte, A.: Radial profile of mantle viscosity: Results from the joint inversion of convection and postglacial rebound observables, J. Geophys. Res., 102, 2751–2769, https://doi.org/10.1029/96JB03175, 1997. a
Mitrovica, J. and Forte, A.: A new inference of mantle viscosity based upon joint inversion of convection and glacial isostatic adjustment data, Earth Planet. Sc. Lett., 225, 177–189, https://doi.org/10.1016/j.epsl.2004.06.005, 2004. a
Mitrovica, J. and Peltier, W.: The inference of mantle viscosity from an inversion of the Fennoscandian relaxation spectrum, Geophys. J. Int., 114, 45–62, https://doi.org/10.1111/j.1365-246x.1993.tb01465.x, 1993. a
Mitrovica, J., Davis, J., and Shapiro, I.: A spectral formalism for computing three-dimensional deformations due to surface loads: 1. Theory, J. Geophys. Res., 99, 7057–7073, https://doi.org/10.1029/93JB03128, 1994. a
Nerger, L., Hiller, W., and Schröter, J.: PDAF - The parallel data assimilation framework: experiences with kalman filtering, in: Use of High
Performance Computing in Meteorology, World Scientific, 63–83, https://doi.org/10.1142/9789812701831_0006, 2005. a
Paulson, A., Zhong, S., and Wahr, J.: Limitations on the inversion for mantle viscosity from postglacial rebound, Geophys. J. Int., 168, 1195–1209, https://doi.org/10.1111/j.1365-246x.2006.03222.x, 2007. a
Peltier, W.: The impulse response of a Maxwell Earth, Rev. Geophys., 12, 649–669, https://doi.org/10.1029/RG012i004p00649, 1974. a, b
Peltier, W.: Mantle Viscosity and Ice-Age Ice Sheet Topography, Science, 273, 1359–1364, https://doi.org/10.1126/science.273.5280.1359, 1996. a
Peltier, W.: Global Glacial Isostasy and the Surface of the Ice-Age Earth: The ICE-5G (VM 2) Model and GRACE, Annu. Rev. Earth Pl. Sc., 32, 111–149, https://doi.org/10.1146/annurev.earth.32.082503.144359, 2004. a, b
Peltier, W. and Andrews, J.: Glacial-isostatic adjustment–I. The forward problem, Geophys. J. Int., 46, 605–646, https://doi.org/10.1111/j.1365-246x.1976.tb01251.x, 1976. a
Peltier, W., Farrell, W., and Clark, J.: Glacial isostasy and relative sea level: A global finite element model, Tectonophysics, 50, 81–110, https://doi.org/10.1016/0040-1951(78)90129-4, 1978. a
Peltier, W., Argus, D., and Drummond, R.: Space geodesy constrains ice age terminal deglaciation: The global ICE-6G_C (VM5a) model, J. Geophys. Res.-Sol. Ea., 120, 450–487, https://doi.org/10.1002/2014jb011176, 2015. a
Pham, D.: Stochastic methods for sequential data assimilation in strongly nonlinear systems, Mon. Weather Rev., 129, 1194–1207, https://doi.org/10.1175/1520-0493(2001)129<1194:SMFSDA>2.0.CO;2, 2001. a
Poyiadjis, G., Doucet, A., and Singh, S.: Particle approximations of the score and observed information matrix in state space models with application to parameter estimation, Biometrika, 98, 65–80, https://doi.org/10.1093/biomet/asq062, 2011. a
Rosentau, A., Klemann, V., Bennike, O., Steffen, H., Wehr, J., Latinović, M., Ojala, A., Berglund, M., Becher, G., Schoning, K., Hansson, A., Nielsen, L., Clemmensen, L., Hede, M., Kroon, A., Pejrup, M., Sander, L., Stattegger, K., Schwarzer, K., Lampe, R., Lampe, M., Uścinowicz, S., Bitinas, A., Grudzinska, I., Vassiljev, J., Nirgi, T., Kublitskiy, Y., Subetto, D., and Bagge, M.: A Holocene relative sea-level database for the Baltic Sea,
Quaternary Sci. Rev., 266, 107071, https://doi.org/10.1016/j.quascirev.2021.107071, 2021. a
Rubin, D.: Using the SIR algorithm to simulate posterior distributions, Bayesian Stat., 3, 395–402, 1988. a
Saynisch, J., Bergmann-Wolf, I., and Thomas, M.: Assimilation of GRACE-derived oceanic mass distributions with a global ocean circulation model, J. Geodesy, 89, 121–139, https://doi.org/10.1007/s00190-014-0766-0, 2015. a
Schachtschneider, R., Bagge, M., Klemann, V., Saynisch-Wagner, J., and Thomas, M.: A synthetic dataset of paleo relative sea level observations for testing novel data assimilation approaches, V. 1.0, GFZ Data Services [data set], https://doi.org/10.5880/GFZ.1.3.2022.001, 2022. a
Shennan, I., Long, A., and Horton, B. (Eds.): Handbook of Sea-Level Research, Wiley, Blackwell, ISBN: 978-1-118-45258-5, 2015. a
Steffen, H. and Kaufmann, G.: Glacial isostatic adjustment of Scandinavia and northwestern Europe and the radial viscosity structure of the Earth's mantle, Geophys. J. Int., 163, 801–812, https://doi.org/10.1111/j.1365-246X.2005.02740.x, 2005.
a, b
Steffen, H. and Wu, P.: Glacial isostatic adjustment in Fennoscandia – A review of data and modeling, J. Geodyn., 52, 169–204, https://doi.org/10.1016/j.jog.2011.03.002, 2011. a, b
Unger, A., Schulte, S., Klemann, V., and Dransch, D.: A visual analysis concept for the validation of geoscientific simulation models, IEEE T. Vis. Comput. Gr., 18, 2216–2225, https://doi.org/10.1109/tvcg.2012.190, 2012. a
Vacchi, M., Engelhart, S., Nikitina, D., Ashe, E., Peltier, W., Roy, K., Kopp, R., and Horton, B.: Postglacial relative sea-level histories along the eastern Canadian coastline, Quaternary Sci. Rev., 201, 124–146, https://doi.org/10.1016/j.quascirev.2018.09.043, 2018. a
Van de Plassche, O. (Ed.): Sea-Level Research: A Manual for the Collection and Evaluation of Data, Geo Books, Norwich, ISBN: 978-9-401-08370-6, 1986. a
Van Leeuwen, P. J.: Particle Filtering in Geophysical Systems, Mon. Weather
Rev., 137, 4089–4114, https://doi.org/10.1175/2009MWR2835.1, 2009. a
Van Leeuwen, P. J., Künsch, H. R., Nerger, L., Potthast, R., and Reich, S.: Particle filters for high-dimensional geoscience applications: A review, Q. J. Roy. Meteor. Soc., 145, 2335–2365, https://doi.org/10.1002/qj.3551, 2019. a
Wessel, P., Luis, J., Uieda, L., Scharroo, R., Wobbe, F., Smith, W., and Tian, D.: The Generic Mapping Tools Version 6, Geochem. Geophy. Geosy., 20, 5556–5564, https://doi.org/10.1029/2019GC008515, 2019. a
Whitehouse, P.: Glacial isostatic adjustment and sea-level change. State of the art report, Technical Report TR-09-11, available at: https://www.osti.gov/etdeweb/servlets/purl/963505 (last access: 20 April 2021), 2009. a
Whitehouse, P. L.: Glacial isostatic adjustment modelling: historical perspectives, recent advances, and future directions, Earth Surf. Dynam., 6, 401–429, https://doi.org/10.5194/esurf-6-401-2018, 2018. a, b, c
Zhao, S., Lambeck, K., and Lidberg, M.: Lithosphere thickness and mantle viscosity inverted from GPS-derived deformation rates in Fennoscandia, Geophys. J. Int., 190, 278–292, https://doi.org/10.1111/j.1365-246x.2012.05454.x, 2012. a, b
Short summary
Glacial isostatic adjustment is the delayed reaction of the Earth's lithosphere and mantle to changing mass loads of ice sheets or water. The deformation behaviour of the Earth's surface depends on the ability of the Earth's mantle to flow, i.e. its viscosity. It can be estimated from sea level observations, and in our study, we estimate mantle viscosity using sea level observations from the past. This knowledge is essential for understanding current sea level changes due to melting ice.
Glacial isostatic adjustment is the delayed reaction of the Earth's lithosphere and mantle to...