Articles | Volume 29, issue 1
Research article
16 Feb 2022
Research article |  | 16 Feb 2022

Direct Bayesian model reduction of smaller scale convective activity conditioned on large-scale dynamics

Robert Polzin, Annette Müller, Henning Rust, Peter Névir, and Péter Koltai

Related authors

Decomposition of skill scores for conditional verification – Impact of AMO phases on the predictability of decadal temperature forecasts
Andy Richling, Jens Grieger, and Henning W. Rust
EGUsphere,,, 2024
Short summary
Using statistical models to depict the response of multi-timescale drought to forest cover change across climate zones
Yan Li, Bo Huang, and Henning W. Rust
Hydrol. Earth Syst. Sci., 28, 321–339,,, 2024
Short summary
Interannual variations in the seasonal cycle of extreme precipitation in Germany and the response to climate change
Madlen Peter, Henning W. Rust, and Uwe Ulbrich
Nat. Hazards Earth Syst. Sci. Discuss.,,, 2023
Revised manuscript accepted for NHESS
Short summary
Cell tracking of convective rainfall: sensitivity of climate-change signal to tracking algorithm and cell definition (Cell-TAO v1.0)
Edmund P. Meredith, Uwe Ulbrich, and Henning W. Rust
Geosci. Model Dev., 16, 851–867,,, 2023
Short summary
Meteorological, impact and climate perspectives of the 29 June 2017 heavy precipitation event in the Berlin metropolitan area
Alberto Caldas-Alvarez, Markus Augenstein, Georgy Ayzel, Klemens Barfus, Ribu Cherian, Lisa Dillenardt, Felix Fauer, Hendrik Feldmann, Maik Heistermann, Alexia Karwat, Frank Kaspar, Heidi Kreibich, Etor Emanuel Lucio-Eceiza, Edmund P. Meredith, Susanna Mohr, Deborah Niermann, Stephan Pfahl, Florian Ruff, Henning W. Rust, Lukas Schoppa, Thomas Schwitalla, Stella Steidl, Annegret H. Thieken, Jordis S. Tradowsky, Volker Wulfmeyer, and Johannes Quaas
Nat. Hazards Earth Syst. Sci., 22, 3701–3724,,, 2022
Short summary

Related subject area

Subject: Time series, machine learning, networks, stochastic processes, extreme events | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere | Techniques: Simulation
Empirical adaptive wavelet decomposition (EAWD): an adaptive decomposition for the variability analysis of observation time series in atmospheric science
Olivier Delage, Thierry Portafaix, Hassan Bencherif, Alain Bourdier, and Emma Lagracie
Nonlin. Processes Geophys., 29, 265–277,,, 2022
Short summary
Lévy noise versus Gaussian-noise-induced transitions in the Ghil–Sellers energy balance model
Valerio Lucarini, Larissa Serdukova, and Georgios Margazoglou
Nonlin. Processes Geophys., 29, 183–205,,, 2022
Short summary
Improvements to the use of the Trajectory-Adaptive Multilevel Sampling algorithm for the study of rare events
Pascal Wang, Daniele Castellana, and Henk A. Dijkstra
Nonlin. Processes Geophys., 28, 135–151,,, 2021
Short summary
Simulation-based comparison of multivariate ensemble post-processing methods
Sebastian Lerch, Sándor Baran, Annette Möller, Jürgen Groß, Roman Schefzik, Stephan Hemri, and Maximiliane Graeter
Nonlin. Processes Geophys., 27, 349–371,,, 2020
Short summary
A prototype stochastic parameterization of regime behaviour in the stably stratified atmospheric boundary layer
Carsten Abraham, Amber M. Holdsworth, and Adam H. Monahan
Nonlin. Processes Geophys., 26, 401–427,,, 2019
Short summary

Cited articles

Blanchard, D. O.: Assessing the vertical distribution of convective available potential energy, Weather Forecast., 13, 870–877, 1998. a
Bollmeyer, C., Keller, J., Ohlwein, C., Wahl, S., Crewell, S., Friederichs, P., Hense, A., Keune, J., Kneifel, S., Pscheidt, I., Redl, S., and Steinke, S.: Towards a high-resolution regional reanalysis for the European CORDEX domain, Q. J. Roy. Meteor. Soci., 141, 1–15, 2015. a, b, c
Bott, A.: Synoptische Meteorologie: Methoden der Wetteranalyse und-prognose, Springer-Verlag, ISBN 9-78366-248-1943, 2016. a
Coifman, R. R., Lafon, S., Lee, A. B., Maggioni, M., Nadler, B., Warner, F., and Zucker, S. W.: Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps, P. Natl. Acad. Sci. USA, 102, 7426–7431, 2005. a
Short summary
In this study, a recent algorithmic framework called Direct Bayesian Model Reduction (DBMR) is applied which provides a scalable probability-preserving identification of reduced models directly from data. The stochastic method is tested in a meteorological application towards a model reduction to latent states of smaller scale convective activity conditioned on large-scale atmospheric flow.