Articles | Volume 29, issue 1
Nonlin. Processes Geophys., 29, 37–52, 2022
Nonlin. Processes Geophys., 29, 37–52, 2022
Research article
16 Feb 2022
Research article | 16 Feb 2022

Direct Bayesian model reduction of smaller scale convective activity conditioned on large-scale dynamics

Robert Polzin et al.

Related authors

Meteorological, impact and climate perspectives of the 29 June 2017 heavy precipitation event in the Berlin metropolitan area
Alberto Caldas-Alvarez, Markus Augenstein, Georgy Ayzel, Klemens Barfus, Ribu Cherian, Lisa Dillenardt, Felix Fauer, Hendrik Feldmann, Maik Heistermann, Alexia Karwat, Frank Kaspar, Heidi Kreibich, Etor Emanuel Lucio-Eceiza, Edmund P. Meredith, Susanna Mohr, Deborah Niermann, Stephan Pfahl, Florian Ruff, Henning W. Rust, Lukas Schoppa, Thomas Schwitalla, Stella Steidl, Annegret H. Thieken, Jordis S. Tradowsky, Volker Wulfmeyer, and Johannes Quaas
Nat. Hazards Earth Syst. Sci., 22, 3701–3724,,, 2022
Short summary
Cell tracking of convective rainfall: sensitivity of climate-change signal to tracking algorithm and cell definition (Cell-TAO v1.0)
Edmund P. Meredith, Uwe Ulbrich, and Henning W. Rust
Geosci. Model Dev. Discuss.,,, 2022
Revised manuscript accepted for GMD
Short summary
Deep Learning Approach Towards Precipitation Nowcasting: Evaluating Regional Extrapolation Capabilities
Tarek Beutler, Annette Rudolph, Daniel Goehring, and Nikki Vercauteren
EGUsphere,,, 2022
Preprint withdrawn
Short summary
The impact of atmospheric blocking on the compounding effect of ozone pollution and temperature: a copula-based approach
Noelia Otero, Oscar E. Jurado, Tim Butler, and Henning W. Rust
Atmos. Chem. Phys., 22, 1905–1919,,, 2022
Short summary
Flexible and consistent quantile estimation for intensity–duration–frequency curves
Felix S. Fauer, Jana Ulrich, Oscar E. Jurado, and Henning W. Rust
Hydrol. Earth Syst. Sci., 25, 6479–6494,,, 2021
Short summary

Related subject area

Subject: Time series, machine learning, networks, stochastic processes, extreme events | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere | Techniques: Simulation
Empirical adaptive wavelet decomposition (EAWD): an adaptive decomposition for the variability analysis of observation time series in atmospheric science
Olivier Delage, Thierry Portafaix, Hassan Bencherif, Alain Bourdier, and Emma Lagracie
Nonlin. Processes Geophys., 29, 265–277,,, 2022
Short summary
Lévy noise versus Gaussian-noise-induced transitions in the Ghil–Sellers energy balance model
Valerio Lucarini, Larissa Serdukova, and Georgios Margazoglou
Nonlin. Processes Geophys., 29, 183–205,,, 2022
Short summary
Improvements to the use of the Trajectory-Adaptive Multilevel Sampling algorithm for the study of rare events
Pascal Wang, Daniele Castellana, and Henk A. Dijkstra
Nonlin. Processes Geophys., 28, 135–151,,, 2021
Short summary
Simulation-based comparison of multivariate ensemble post-processing methods
Sebastian Lerch, Sándor Baran, Annette Möller, Jürgen Groß, Roman Schefzik, Stephan Hemri, and Maximiliane Graeter
Nonlin. Processes Geophys., 27, 349–371,,, 2020
Short summary
A prototype stochastic parameterization of regime behaviour in the stably stratified atmospheric boundary layer
Carsten Abraham, Amber M. Holdsworth, and Adam H. Monahan
Nonlin. Processes Geophys., 26, 401–427,,, 2019
Short summary

Cited articles

Blanchard, D. O.: Assessing the vertical distribution of convective available potential energy, Weather Forecast., 13, 870–877, 1998. a
Bollmeyer, C., Keller, J., Ohlwein, C., Wahl, S., Crewell, S., Friederichs, P., Hense, A., Keune, J., Kneifel, S., Pscheidt, I., Redl, S., and Steinke, S.: Towards a high-resolution regional reanalysis for the European CORDEX domain, Q. J. Roy. Meteor. Soci., 141, 1–15, 2015. a, b, c
Bott, A.: Synoptische Meteorologie: Methoden der Wetteranalyse und-prognose, Springer-Verlag, ISBN 9-78366-248-1943, 2016. a
Coifman, R. R., Lafon, S., Lee, A. B., Maggioni, M., Nadler, B., Warner, F., and Zucker, S. W.: Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps, P. Natl. Acad. Sci. USA, 102, 7426–7431, 2005. a
Short summary
In this study, a recent algorithmic framework called Direct Bayesian Model Reduction (DBMR) is applied which provides a scalable probability-preserving identification of reduced models directly from data. The stochastic method is tested in a meteorological application towards a model reduction to latent states of smaller scale convective activity conditioned on large-scale atmospheric flow.