
Nonlin. Processes Geophys., 29, 37–52, 2022
https://doi.org/10.5194/npg-29-37-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Direct Bayesian model reduction of smaller scale convective activity
conditioned on large-scale dynamics
Robert Polzin1, Annette Müller2, Henning Rust2, Peter Névir2, and Péter Koltai1
1Institute of Mathematics, Free University Berlin, Berlin, Germany
2Institute of Meteorology, Free University Berlin, Berlin, Germany

Correspondence: Robert Polzin (robert.polzin@fu-berlin.de)

Received: 6 August 2021 – Discussion started: 11 August 2021
Revised: 7 December 2021 – Accepted: 8 January 2022 – Published: 16 February 2022

Abstract. We pursue a simplified stochastic representation
of smaller scale convective activity conditioned on large-
scale dynamics in the atmosphere. For identifying a Bayesian
model describing the relation of different scales we use
a probabilistic approach by Gerber and Horenko (2017)
called Direct Bayesian Model Reduction (DBMR). This is
a Bayesian relation model between categorical processes
(discrete states), formulated via the conditional probabili-
ties. The convective available potential energy (CAPE) is ap-
plied as a large-scale flow variable combined with a subgrid
smaller scale time series for the vertical velocity. We found
a probabilistic relation of CAPE and vertical up- and down-
draft for day and night. This strategy is part of a develop-
ment process for parametrizations in models of atmospheric
dynamics representing the effective influence of unresolved
vertical motion on the large-scale flows. The direct prob-
abilistic approach provides a basis for further research on
smaller scale convective activity conditioned on other pos-
sible large-scale drivers.

1 Introduction

Complex dynamical processes involving scaling cascades are
omnipresent in natural science. Such processes feature dif-
ferent characteristic scales. The smallest and largest scales
are far apart, and much of the scale range is involved by
scale interactions. Dynamics in the atmosphere take place
across a large range of timescales and length scales, from
micro-seconds to months and lengths from 10−5 to 106 m.
For processes of a spatial scale above several kilometers,
geostrophic and hydrostatic equilibria induce a spatial–

temporal separation of scales (see Klein, 2010). Thunder-
storms last a few tens of minutes for example, whereas hurri-
canes may last for days. Medium-range weather forecasts are
made up to 10 d in advance. Predictions of convection further
in advance cannot be deterministic and are highly uncertain
because errors of the variable on a small scale at the initial
state are growing.

A new perspective for weather and climate models came
from stochastic parametrizations that represent the small-
scale effects of convection on large-scale dynamics (see
Berner et al., 2017; Franzke et al., 2015). For instance,
Gottwald et al. (2016) parametrize in the tropics convec-
tive area fraction conditioned on large-scale vertical veloc-
ity. Also, many data-driven approaches consider stochas-
tic parametrization methodologies involving the convective
available potential energy (CAPE) as a large-scale driver
for convection (see Khouider et al., 2010; Dorrestijn et al.,
2013a, b). Their approaches need high computing capaci-
ties, and the costs to process large quantities of data can
become a limiting factor. Some statistical analyses of at-
mospheric dynamics simulations require dimensionality re-
duction techniques which yield applicable reduced models
(e.g., Horenko, 2008). One way is empirical orthogonal func-
tion (EOF) analysis, which is a tool for data compression
and dimensionality reduction used in meteorology. Since its
introduction by Lorenz (1956), EOF analysis – also known
as principal component analysis (PCA) or proper orthogo-
nal decomposition (POD) – has become an important statis-
tical tool in atmosphere science. For example, in Horenko
et al. (2008), different sets of EOFs are used for a reduced
representation of meteorological data. Other examples of re-
duced approximation in terms of relation matrices are co-
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variance matrices (Schölkopf et al., 1997; Jolliffe, 2003),
partial autocorrelation matrices of autoregressive processes
(Schmid, 2010), Gaussian distance kernel matrices (Donoho
and Grimes, 2003; Coifman et al., 2005), Laplacian matri-
ces as in the case of spectral clustering methods for graphs
(Von Luxburg, 2007), and adjacency matrices in community
identification methods for networks (Zhao et al., 2012) (see
Gerber and Horenko, 2017). A recent algorithmic framework
called Direct Bayesian Model Reduction (DBMR) provides
a computationally scalable probability-preserving identifica-
tion of reduced models and latent states directly from the
data (see Gerber and Horenko, 2017; Gerber et al., 2018).
The method constructs a directly low-rank transition matrix,
reducing numerical effort and estimation error due to finite
data. The approach does not require a distributional assump-
tion but works instead with a discretized state vector. Our
aim is the development of a model combining the determinis-
tic large-scale atmospheric flow with a conceptual stochastic
description of small-scale convection. Towards this goal, we
develop a conceptual categorical description for smaller scale
vertical velocity, which is linked to a large-scale flow vari-
able. The probabilistic description is proposed using DBMR.
This Bayesian relation model between the large scale and
smaller scales can be formulated categorically via a condi-
tional probabilities in the law of total probability. Various en-
ergetic variables are applicable on a large scale. Other poten-
tial large-scale variables driving the smaller scale stochastics
besides CAPE are the Dynamic State Index (DSI) in Müller
et al. (2020) and Müller and Névir (2019), available mois-
ture, or vertical wind shear. The DSI is a scalar diagnostic
field that quantifies local deviations from a steady and adi-
abatic wind solution and thus indicates non-stationarity as
well as diabaticity.

The paper is structured as follows: in Sect. 2 the math-
ematical methodology of DBMR is presented. Afterwards,
in Sect. 3 the setup for a reduced model in the atmosphere
is described. In Sect. 4 the results are discussed with regard
to atmospheric dynamics. Finally, in the conclusion the re-
sults and future work towards the direct Bayesian model re-
duction of smaller scale convective activity conditioned on
large-scale dynamics are formulated.

2 Mathematical methodology

Our aim is to study and understand a stochastic relation be-
tween two variables X and Y that can take values from two
finite sets. The sets of both variables can be different, as we
discuss in our meteorological applications. We assume that
the probabilistic dependence of Y on X is time-independent.
WhetherXt and Yt as t-parametrized stochastic processes are
themselves stationary does not play a role here. The categor-
ical random variables X and Y will later on encode quan-
titative information of the atmosphere on different spatial
scales. We will review a novel computational framework for

the estimation of a reduced (low-rank) Bayesian model from
data. This method is called Direct Bayesian Model Reduc-
tion (DBMR). “Direct” refers to a directly low-rank estima-
tion, which is useful for the identification of reduced models,
yielding thereby an advantageous estimation error, especially
if data are not abundant (see Gerber and Horenko, 2017).

2.1 Full Bayesian model formulation

We are interested in modeling the probabilistic relationship
of two potentially random quantities, X and Y . For us, it
will only be relevant that Y is a random function of X –
randomness of X itself is irrelevant. Since the observations
typically arise as time series, we consider X and Y as pro-
cesses X(t) and Y (t) with time t ; however t can denote any
parameter ordering the realizations of the process. We will
consider the case where X and Y can only attain a finite
number of values, such that we call the processes discrete-
state or categorical. Say, Y (t) is taking one of the possible
values from m categories {y1,y2, . . .,ym} and X(t) from the
n categories {x1,x2, . . .,xn}. The central quantity of interest
describing the relationship of X and Y is the m×n matrix of
conditional probabilities, also called transition matrix,

3= P
[
Y = y1 |X = x1

]
· · · P

[
Y = y1 |X = xn

]
...

. . .
...

P
[
Y = ym |X = x1

]
· · · P

[
Y = ym |X = xn

]
 . (1)

Note that 3 is a column-stochastic matrix. In practical stud-
ies, when the3ij values are estimated from the available ob-
servations of X and Y , one needs to guarantee that the data
are acceptably randomized (see Holland, 1986). We will as-
sume that

Law[Y (t) |X(1),X(2), . . .]= Law[Y (t) |X(t)] ; (2)

i.e., given the input X(t), the distribution of the output Y (t)
is independent of the other inputs.

2.2 Maximum likelihood approach

Typically, the transition matrix3 is not directly available and
can only be estimated from observed data. Let S be the num-
ber of observation pairs for the categorical processes X and
Y , such that the following observational data are available:

XY = {X(1),X(2), . . .,X(S),Y (1),Y (2), . . .,Y (S)} , (3)

where X(t) ∈ {x1, . . .,xn} and Y (t) ∈ {y1, . . .,ym}, as above.
Given XY , it is reasonable to search for the 3 for which the
total probability of obtaining the particular sequences of ob-
servations (3) is maximized. By the independence assump-
tion (2), the likelihood of a matrix 3 of conditional prob-
abilities – i.e., the probability of observing the data if the
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conditional probabilities were given by 3 – is given by

P [XY |3] ∝
m∏
i=1

n∏
j=1

P
[
Y = yi |X = xj

]︸ ︷︷ ︸
=3ij

Nij , (4)

where Nij is the total number of instances in the
data when (X(t),Y (t))= (xj ,yi). The optimum can be
more easily computed if one considers the log-likelihood
log(P [XY |3])=

∑m
i=1
∑n
j=1Nij log3ij , with which we

arrive at the maximum likelihood problem

3∗ = argmax
3

{
m∑
i=1

n∑
j=1

Nij log3ij

}
,

such that

3ij ≥ 0,
m∑
i=1

3ij = 1. (5)

The optimal solution of that constrained optimization prob-
lem can be determined analytically (Gerber and Horenko,
2017), resulting in the empirical frequency estimator:

3∗ij =
Nij∑n
jNij

. (6)

Since we merely have a finite amount of observation at
hand, it is essential to be aware of the uncertainty of the sta-
tistical estimate (6). While we refer the reader interested in
exact bounds to Gerber and Horenko (2017, their Supple-
ment, Eq. 14), an intuition can be gained as follows. To esti-
mate each3ij to a sufficient (statistical) accuracy, the transi-
tions Nij should be, on average, numerous. As there are nm
parameters in 3 to estimate, this asks for the sample size S
to be reasonably large as compared to nm. In practice, this
can be problematic if n and m are large. Thus, next we will
discuss a modification of the above method that can mitigate
this problem.

2.3 Model reduction to latent states

In numerous situations the apparent complexity of our ob-
servations is an artifact of our measurement procedure, and
there are low-dimensional features that govern the process at
hand. Thus, even if we were able to find a full matrix 3 of
conditional probabilities, the ultimate goal would be to re-
duce this through such low-dimensional features.

The following approach, proposed by Gerber and Horenko
(2017), achieves both estimation and reduction in one step.
We assume that the output depends on the input through a
latent variable Z, which can merely take a small number
K �min{n,m} of different states {z1, . . .,zK}. In terms of
probabilistic influences, we assume the structure

X
0
−→ Z

λ
−→ Y, (7)

Figure 1. Introduction of intermediate latent states in DBMR for
efficient and scalable estimation of 3.

where λ and 0 are matrices of conditional probabilities,

0kj = P
[
Z = zk |X = xj

]
,

λik = P
[
Y = yi |Z = zk

]
. (8)

We also assume conditional independence of Y on X given
Z; that is, the input–output conditional probability matrix 3
satisfies 3= λ0. Note that we can interpret 0kj as an affili-
ation of input category xj to the latent state zk; see Fig. 1.

The task is now to determine the pair of column-stochastic
matrices (λ,0) from the observation data XY , as given in
Eq. (3). Again, we wish to solve the problem with a max-
imum likelihood approach, which would require solving
Eq. (5) by replacing 3ij by (λ0)ij and the constraints by re-
quiring λ and 0 to be stochastic matrices. This, however, is a
computationally hard optimization problem, which in Gerber
and Horenko (2017) relaxes to

(
λ∗,0∗

)
= argmax

λ,0

m∑
i=1

n∑
j=1

K∑
k=1

Nij0kj log {λik} (9)

subject to

λik ≥ 0,
m∑
i=1

λik = 1, 0kj ≥ 0,
K∑
k=1

0kj = 1. (10)

While Eq. (9) produces suboptimal estimates, its advantage
comes from the fact that it is concave in both variables λ
and 0, respectively, allowing for a very simple alternating
maximization as the optimization procedure (see Gerber and
Horenko, 2017). The resulting algorithm is DBMR. More-
over, the method yields 0∗kj ∈ {0,1}; i.e., the original input
categories are assigned to the reduced system’s (latent) cate-
gories in a deterministic fashion (no “fuzziness” in the affilia-
tions). The binary nature is a property of the optimal solution
(see Gerber and Horenko, 2017). Of course, the number K
of latent states is not known in advance and has to be chosen
judiciously by compromising between “expressiveness” (the
likelihood of the model, i.e., the optimal value in Eq. 9) and
“effort” (the number of total parameters to be estimated and
their statistical error). This can be done comparing multiple
DBMR runs with different K .
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The obtained models are also less subject to overfitting is-
sues and are more advantageous in terms of the model quality
measures (Gerber and Horenko, 2017; Gerber et al., 2018).
This is expressed in the variance of the estimated parameter
λ∗ik , which shows a K/n times smaller uncertainty than 3ij
(see Gerber and Horenko, 2017, Theorem and Eq. 7). Again,
intuitively this advantage of DBMR over the full model (6)
can be seen by noting that from the same amount of data
DBMR only needs to estimate k(n+m) parameters, while
the full model estimates nm parameters.

Let us emphasize that additionally to all the computational
advantages of DBMR that allow it to work with large data
sets, its conceptual strength is that it combines model es-
timation and model reduction in one step. The latent states
often have a physical meaning – a property that we shall fo-
cus on in our application. All computations in Sect. 4 have
been conducted with the DBMR implementation; see Gerber
(2017).

3 Meteorological data processing

To apply DBMR, a quantization of the input and output pro-
cesses into categories has to be performed. First, we discuss
the choice of meteorological variables and scales in view of
the categorical processes. As input we use a variable related
to large-scale atmospheric flow, convective available poten-
tial energy (CAPE), a measure for the energy an air parcel
would gain if lifted to a specific height in the atmosphere.

3.1 Scales, variables, and data preprocessing

CAPE can be seen as a measure for atmospheric stability,
first suggested by Weisman and Klemp (1982). It is defined
by

CAPE= g

zET∫
zLFC

θe− θ

θ
dz, (11)

where θe is the pseudo-potential temperature of the ascend-
ing air parcel, θ is the potential temperature of the surround-
ing air, and zLFC is the so-called level of free convection
(LFC). The LFC is the height at which the rising air par-
cel becomes significantly warmer than its environment; zET
denotes the height, where the rising air parcel has the same
temperature as its environment (ET stands for equal temper-
ature). Thus, regarding its definition (11), CAPE becomes
large if the temperature difference between the rising air and
the environmental air is large (see Bott, 2016, p. 431ff). For
positive CAPE, this difference must be positive. CAPE is de-
termined by the layer thickness between the starting and end-
ing points in space (height) and by the integrand in Eq. (11).
Boundary conditions can vary. θ can be a function of z; it de-
pends on the difference between the heights and the potential
temperature. As an integral, CAPE is a global variable that

we consider a representative variable on the larger scale. To
capture convective activity, characterized by strong up- and
downdrafts, on the smaller scale, we regard the vertical ve-
locity. Parcel theory predicts

CAPE∼
w2

max
2

, (12)

where wmax is the maximum vertical motion in meters per
second expected from the release of CAPE in joules per kilo-
gram (see Dutton, 1976). The relation in Eq. (12) is a kinetic
description of a potential which does not have to be released
to vertical updraft. Moncrieff and Miller (1976) were the
first to use the term CAPE. The USAF Air Weather Service
(which changed its name to the Air Force Weather Agency
in 1997) simply called it positive area (see Blanchard, 1998).
Fritsch and Chappell (1980) called it potential buoyant en-
ergy (PBE), while variations of this include +BE and net pos-
itive buoyant energy. Despite the abundance of names, it now
appears that CAPE is the de facto standard terminology. In
Kirkpatrick et al. (2009) over 200 convective storm simula-
tions are analyzed to examine the variability in storm vertical
velocity and updraft area characteristics as a function of basic
environmental parameter CAPE.

For our studies, the COSMO-REA6 reanalysis data set
is used (see Bollmeyer et al., 2015). This reanalysis is
based on the non-hydrostatic numerical weather prediction
model COSMO (COnsortium for Small scale MOdelling)
by the German Meteorological Service (Deutscher Wetter-
dienst, DWD) using a continuous nudging scheme. It has
a horizontal resolution of 6 km and 40 vertical layers (see
Bollmeyer et al., 2015). Since we focus on smaller scale con-
vective events conditioned on large-scale dynamics in the at-
mosphere, we consider the summer months July and August
in the years 1995 to 2015. The summer months are predes-
tinated for convective events. The months from May to Au-
gust are possible. We only worked with 2 months in order
not to have too much data. For our analysis, the raw data are
hourly REA6 data (Polzin, 2022). We first computed CAPE
as a REA6 variable and then averaged it for the respective
spatial scale to 12 h means. The sample size of the reanalysis
data set used in Sect. 2.2 sums up to S = 1302 (2×31×21).
Moreover, REA6 data are available for Germany. In order to
focus our method we started at the top left with the first quad-
rant; see Fig. 2. Here we expect the relatively flat surface in
the north of Germany to be more homogeneous and different
from the pre-alpine southern regions with forced uplifting.
The top left quadrant is bounded by [45.2 to 54.7◦ N, 5.8
to 15.3◦ E] and shown in Fig. 2. The northwest coordinate
is [5.8◦ E, 54.7◦ N], and the southeast coordinate is [15.3◦ E,
45.2◦ N]. As a vertical layer the 600 hPa surface is considered
because here the latent heat release takes place, and the ver-
tical velocity reaches its maximum (see Müller et al., 2020).
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Figure 2. REA6 domain that covers Germany consisting of grid
boxes 1 to 4; grid box 1 is applied on the large scale for DBMR and
is of approximately 500 km× 500 km. Image credit of the map: US
Geological Survey (USGS).

Table 1. Number of grid boxes am and edge length for box
discretization of the atmosphere from the large synoptic scale
(1000 km) across intermediate scales up to the meso-γ scale with
convective activity (2–20 km).

No. of grid boxes am Edge length

12
= 1 1000 km

22
= 4 500 km

42
= 16 250 km

62
= 36 167 km

82
= 64 125 km

102
= 100 100 km

122
= 144 83 km

162
= 256 63 km

322
= 1024 31 km

642
= 4096 15 km

Filtering CAPE and vertical velocity

We used the term “domain” for the total region we con-
sidered in Fig. 2, “quadrant” for the respective quarters on
its large scale, and “grid boxes” for the other partitions of
the domain on smaller scales. For the large scale, the do-
main that covers Germany in Fig. 2 is divided into four
500 km× 500 km quadrants. For smaller scales, the quad-
rants are refined in am grid boxes of different sizes; see Ta-
ble 1.

3.2 CAPE and vertical velocity as in- and output data

According to the meteorological data described in Sect. 3.1,
we will set up applicable categories for in- and output. CAPE

plays the role of an input variableX as defined in Sect. 2, de-
scribing the potential for convection. The spatial arithmetic
mean of each of the 500 km× 500 km quadrants is used such
that we obtain one CAPE value for each quadrant as the
large-scale atmospheric driver. With energy units, CAPE has
a nonnegative range of values. The model’s output variable
Y is vertical velocity, obtained on a smaller scale. Here, Y
can take positive and negative values for updrafts and down-
drafts, respectively. We average over 250 km× 250 km to
15 km× 15 km according to Table 1.

3.2.1 Categorical input

We consider the range of values for CAPE (X) and generate
n categories by {x ∈Xi | bi−1 ≤ x < bi }. For the category
boundaries bi , we consider the following spaced option in
probability using empirical 1/n quantiles as category bound-
aries bi . This categorization has the advantage of (almost)
equally populated categories. The resulting n categories are
denoted by integers 1, . . .,n. The chosen categorization de-
pends on the amount of available data. We varied input num-
bers and choose n= 10 by subjective physical plausibility. In
Sect. 3.1 we set up the meteorological data with a size of the
observational data S = 1302. That means we have about 130
data points in each CAPE category.

3.2.2 Categorical output

We map vertical velocities ωi at grid box i on a variable Yi ∈
{1,2,3} as

– updraft for Yi = 1, if ωi ≥ a2,

– no draft for Yi = 2, if a1 ≤ ωi < a2,

– downdraft for Yi = 3, if ωi < a1,

(a1,a2) ∈ R2 defines a potentially asymmetric interval
around zero vertical velocity, which we consider neutral,
with a1 < 0 and a2 > 0. The predefinition of “updraft”,
“downdraft”, and “no draft” determines whether there is con-
vection and, if so, how it is directed (upwards or possibly
downwards). The choice of (a1,a2) depends on the scale of
the box over which Y is averaged. In Sect. 4.1 the choice of
the interval for our analysis is described. Once this discretiza-
tion is made, the final output categories needed can be set up.
Let Yi(t) be the discretized vertical velocities at time t with
1≤ i ≤ am numbering the grid boxes on the corresponding
scale; see Table 1. We define the following categorical pro-
cess

Ŷ (t)= (# {Yi(t)= 1} ,# {Yi(t)= 2} ,# {Yi(t)= 3}) ∈ N3, (13)

with #{Yi = k} being the number of grid boxes with vertical
velocity mapped onto k ∈ {1,2,3}. Note that

∑3
k=1#{Yi =

k} =m, the number of grid boxes. There are exactly (am+1)2
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Figure 3. Histogram of spatial mean vertical velocities for day and
night for a resolution of 125 km (64 grid boxes on a small scale)
is presented. The red vertical lines show the interval for vertical
velocity which was selected on the basis of the 75th percentile of
the data set. The sample size of the 12 h mean data set for day and
night sums up to 2S = 2604.

ways to decompose am into the (ordered) sum of three non-
negative numbers; thus the number of actually occurring cat-
egories n

Ŷ
≤ (am+ 1)2. In DBMR, the numbers of actually

occurring categories are counted. These numbers have im-
pact on the probability distribution of the categories for input
and output. We try to conclude down- and updraft behavior
from the Ŷ (t), i.e., the distribution of up- and downdrafts.
Note that we have no information on the (spatial) structure
in this experiment, as the category in Eq. (13) is a triple of
numbers for counts of down- and updraft and low vertical
velocity.

3.2.3 Interval for vertical draft

The 12 h mean data for day and night serve as a basis for
determining the interval for vertical draft which was chosen
symmetrically with interval limits a1 =−0.0048 m s−1 and
a2 = 0.0048 m s−1. In Fig. 3, the histogram of mean vertical
velocities for a resolution of 125 km is shown together with
the interval that defines the no draft category. For the appli-
cation of DBMR, the data for day and night are split up and
will be applied separately with the same interval for vertical
velocity.

3.3 Reliability and assessment of performance

The model reduction is a consequence of using the affiliation
matrix 0, which assigns the n large-scale categories toK < n

latent states. In the frame of DBMR we optimize a relaxed
log-likelihood; see Eq. (9). We ran DBMR 100 times (with
random initializations) for every fixed number K of latent

states. For each K, the run with the maximum log-likelihood
is presented. We also evaluate the exact log-likelihood, as
in Eq. (5), which refers to the case without latent states. 3
in Eq. (5) was replaced by λ0 to compute the likelihood of
the reduced model. Figure 4 shows the exact in blue and the
relaxed log-likelihood in red, both for the reduced problem,
i.e., the one with latent states. The only parameter in the al-
gorithmic procedure introduced above is the reduced process
dimension K for the number of latent states. It can be cho-
sen by comparing results for different K and selecting the
best reduced model according to one of the standard model
selection criteria (cross-validation with a performance crite-
rion, Akaike information criterion (AIC), Bayesian informa-
tion criterion (BIC), or L-curve approach). For an attempt for
model selection, the largest increase in log-likelihood can be
found by increasing K = 2 to K = 3; for K = 6, the maxi-
mum value has been reached. Note that as n= 10, choosing
K = 10 presents no model reduction. In view of uncertain-
ties and biases for parametrization, vertical velocity can be
hard to measure and is likely to be biased in reanalyses. We
work with discretize vertical velocity and thus with a less
precise variable. This makes the problem of uncertainty and
bias less relevant but is definitively not a relief. In a stochas-
tic model for the updraft which is to be developed, one can
think of including an additional parameter as a factor to the
vertical velocity to allow for tuning with respect to the effect
generated by the modeled updraft. Although quantification of
model performance is possible here using, e.g., a cross vali-
dation study given an adequate score of interest, it is probably
not very helpful at this stage. We consider our study rather as
a proof of concept ideally preparing grounds for a stochastic
model for vertical movement to be inserted into a circulation
model. Usefulness should be evaluated then in terms of cir-
culation model simulations. Further work is required to give
the latent states a meteorological meaning in the sense of cir-
culation weather types, regarding all seasons separately.

4 Reduced model for convective activity

4.1 Dynamics separated by day and night

4.1.1 Affiliation to latent states

In Fig. 5 the box plots show the 12 h averaged CAPE
data (spatially averaged over the northwest quadrant of the
COSMO-REA6 data) which are assigned to the latent states
“high” and “low” on the left and right of each of the two
top panels, respectively. The left panel shows the “day” data
and the right panel the “night” data. On each box, the central
mark indicates the median, and the bottom and top edges of
the box indicate the 25th and 75th percentiles of the 10 CAPE
categories. The 25th percentiles of the distributions shown
for the high latent states overlap the 75th percentiles of dis-
tributions shown for the low latent states. The first latent state
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Figure 4. Exact log-likelihood value as in Eq. (5) (blue) and relaxed
log-likelihood value as in Eq. (9) (red) of the reduced Bayesian
model estimated by DBMR with K latent states for day for a reso-
lution of 125 km (64 grid boxes on a small scale).

includes five (for day) and four (at night) CAPE categories
with high values. Five (for day) and six (at night) categories
are affiliated to the second latent state, which is denoted as
low. The structure of the affiliation 0∗ in Eq. (9) is assigned
by minimizing information entropy (the likelihood bound).
Concerning the question of how the latent states are defined
and what criterion the affiliations are based on, we empha-
size that the latent states are found by the algorithm itself.
During daytime the categories reach values up to 386 J kg−1,
whereas at night the values have a range of 343 J kg−1 due
to less convective activity; see box plots in Fig. 5. The af-
filiations to the latent states have no gaps for day and night.
That means the latent states are separate from each other. The
choice of the spatial scale for the categorical output will in-
fluence the latent states identified by the DBMR. The differ-
ence between the scales is small (375 km) with 500 km step
size on the large scale and 125 km step size on the smaller
scale. The scale jump is of factor 4 on the basis of the small
scale. The results for three latent states are shown in Ap-
pendix A. There is a third latent state which represents mean
CAPE categories; see Fig. A1. In the following, the output of
the DBMR is discussed.

4.1.2 Distributions conditioned on latent states

We discuss probability distributions conditioned on the re-
sulting latent states introduced in Sect. 2.3 in two ways:

– Law[X | Z] gives the distribution of CAPE X within a
latent state Z.

– Law[#1,#3 | Z] gives the joint probability distribution
of number of grid points with positive and negative ver-

tical velocity. For updraft, #1 denotes #{Yi = 1}, and for
downdraft, #3 denotes #{Yi = 3}.

The missing number of neutral grid points #{Yi = 2} fol-
lows from #2=m−#1−#3, with m denoting the total num-
ber of grid points. In order to visualize the probabilities of
the small scale conditioned on the latent states of the large-
scale variable, the entries of the λ matrix in Eq. (9) will be
displayed dependent on the number of down- and updrafts.
In Fig. 6, K = 2 bivariate histograms are shown for day and
night respectively. Here the conditional probabilities of ma-
trix λ are displayed for every latent state dependent on the
number of up- and downdrafts (#1 and #3). Since the num-
ber of smaller scale boxes is am, only the lower triangle be-
low the diagonal corresponds to categories. Categories not
populated by data are not shown (white). We noticed that in
the case that the interval for vertical draft in Sect. 4.1 is in-
creased, fewer data points are in the classifications for the
up- and downdrafts (i.e., smaller numbers #1 and #3 change
lower triangular probability matrices of Fig. 6). A compar-
ison of different sizes of intervals for vertical draft is not
shown here. Increasing the interval makes fewer updrafts and
downdrafts, thus moving probability mass away from the di-
agonal, where large fractions of up-/downdrafts are sitting.
In Fig. 6 the results are shown for a 4×4 grid; that means we
have 16 grid boxes with vertical velocities. In the histograms
the numbers of up- and downdraft range from 0 to 16. Vari-
able Z1 represents the high latent state and Z2 the low la-
tent state, as in Fig. 5. The latent states are stochastically
disaggregated in probabilities which describe the chance of
number of up- and downdrafts conditioned on the high and
low latent states. In the top left panel (Z1, day) of Fig. 6,
probability adds up for numbers of updrafts below 10 % to
81 %. In the top right panel, much of the probability mass is
allocated to states with no downdraft and little updraft. For
Law[#1,#3 | Z2] in the bottom left panel for the day, high
conditional probabilities P[#1,#3 | Z2] concentrate in cate-
gories with many boxes with downdraft. Here the probability
of numbers of downdrafts of 6 to 16 is 68 %. At night in
the latent state Z2, we observe that a low number of updraft
boxes is likely, while the overall up- and downdraft activity
seems to be the least probable here (probability concentrat-
ing around (#1,#3)≈ (0,0)). In the bottom left panel (Z2,
night) the probability is accumulated to 82 % for the number
of updrafts between 0 and 4.

4.1.3 Output on the smaller scale

Note that the number of possible output categories Ŷ scales
quadratically with the number m of grid points considered
on the smaller scale. Moving towards the convective scale,
m increases, and so does the number of possible output cate-
gories; yet the number of data points (1302) stays the same.
To avoid the resulting increase of estimation error, we fur-
ther reduce the number of output categories by dividing the
respective numbers for up- and downdraft into three sec-
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Figure 5. (a, b) Box plots show the 12 h averaged CAPE data which is affiliated to the high and low latent states. Panel (a) presents day data
and panel (b) the night data. (c, d) Affiliation of CAPE categories to the latent states. CAPE data are spatially averaged over the northwest
quadrant of the COSMO-REA6 data, and the vertical velocity is averaged for a box discretization of 64 grid boxes; see Table 1.

tions, which leaves six categories. We use 15 km× 15 km
grid boxes on the convective scale for the output of DBMR.
The large scale remains unchanged compared to the previous
example. In Fig. 7 the distribution of CAPE in terms of latent
states based on kernel density estimation (KDE) is shown.
At night, more categories are assigned to the low latent state;
the first latent state has a larger mean and median than during
daytime.

In Fig. 8 the conditional probabilities are shown for 1024
boxes of vertical velocities. In the histograms the three sec-
tions of numbers of up- and downdraft range from 0 to 1024.
The three categories are divided by the following numbers: 0
to 341, 342 to 683, and 684 to 1024 up- and downdrafts. Vari-
able Z1 again represents the high latent state and Z2 the low
latent state; see Fig. 8. The first latent state is represented in
the first row. During daytime, down- or updraft is likely, and
during nighttime there is most likely less downdraft than up-
draft. The smaller scale analysis gives consistent results with
the analysis, where the output is on the mesoscale in Fig. 6.
There are higher probabilities during daytime for medium
to high numbers of up- or downdraft. At night due to less
vertical draft, low to medium numbers of up- or downdraft
are higher. For the second low latent state, the distributions
concentrate on higher and lower numbers of downdrafts and
small numbers of updraft.

4.2 Higher number of latent states

The results for three latent states are considered in Ap-
pendix A. Figures A1 and A2 show results using CAPE as
input with a resolution of 500 km× 500 km on the large scale
and a grid of 125 km× 125 km for the output. The scale dif-
ference is again of factor 4 according to the first example
in Sect. 4.1, where in- and output are on the synoptic scale.
Affiliations without gaps lead to a separation of the latent
states. “No gaps” means that there is no overlap and a clear
separation of the latent states regarding the range of CAPE.
This does not apply to every run with DBMR. Here we show
the best maximum likelihood bound estimate of 100 runs;
see Fig. A1. The affiliations have no gaps for day and night.
Again we have more variance of the conditional probabilities
during daytime. At night, there is less variance of the condi-
tional probabilities, with a concentration at low numbers of
downdraft or updraft boxes. A hierarchy of three different
probability configurations arises for updraft, downdraft, and
no draft. When the number of latent states K is further in-
creased, the latent states can be clustered in groups of high,
low, and medium CAPE categories. In Fig. A1, the top box
plots show CAPE categories by three latent states for the
daily mean (left – day and right – night), and in the mid-
dle the affiliation of CAPE categories to the latent states is
presented. For higher K , the number of latent states with af-
filiation without gaps is higher at night compared to day.
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Figure 6. Histograms show probabilities of numbers of updrafts (#1) and downdrafts (#3) conditioned on high (a, b) and low (c, d) latent
states. Panels (a) and (c) present day data and panels (b) and (d) the night data. CAPE and vertical velocity data correspond to the data
applied in Fig. 5.

4.3 Implications for general atmospheric dynamics

In Sect. 4.1 we discussed the results of the Bayesian model
reduction from a mathematical perspective, and in Sect. 4.2
we interpreted the outcomes for a higher number of latent
states. The method groups input categories into fewer latent
states. These are interpreted as reduced states for the large-
scale atmospheric dynamics with respect to their probabilis-
tic impact on vertical motion. We applied an energetic vari-
able as the driver on the large scale. CAPE is the convec-
tive available potential energy. It does not have to be fully
available, meaning that high CAPE values do not necessar-
ily lead to convective activity on smaller scales but increase
the probability of smaller scale convective activity. The re-
lease of kinetic energy of a certain CAPE level to vertical
movement needs triggers such as flows over mountains or

forests, which lead to instabilities of the hydrostatic equilib-
rium. The dependence on surface conditions on the earth re-
quires a probabilistic way of thinking. Therefore the mathe-
matical tool DBMR provides a simple probabilistic descrip-
tion. Using the method, we intend to draw conclusions about
categorical processes in the atmosphere. Since the system
can not be in two different categories simultaneously, cate-
gories are disjoint, and the relation between the probability
for the large scale and smaller scale can be formulated via
the conditional probabilities and the conservation of the total
probability. The methodology breaks up probability calcula-
tions into distinct parts and relates marginal probabilities to
conditional probabilities. The aim of this work is to test the
stochastic method in an meteorological application towards
a reduced categorical model of smaller scale convective ac-
tivity in the atmosphere depending on large-scale drivers.
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Figure 7. (a, b) Distributions based on kernel density estimation show the 12 h averaged CAPE data which are affiliated to the high and low
latent states. Panel (a) presents day data and panel (b) the night data. (c, d) Affiliation of CAPE categories to the latent states. CAPE data
are spatially averaged over the northwest quadrant of the COSMO-REA6 data, and the vertical velocity is averaged for a box discretization
of 4096 grid boxes; see Table 1.

To analyze the relation of large-scale dynamics in
the atmosphere to smaller scale categorical processes,
the COSMO-REA6 reanalysis data set was applied
(see Bollmeyer et al., 2015). We averaged CAPE for
500 km× 500 km and the vertical up- and downdrafts in
125 km× 125 km domains, as described in Sect. 3.2. Re-
garding the summer months July and August in the years
1995 to 2015, CAPE reaches averaged values between 0
and 400 J kg−1, and the vertical velocities have ranges from
−0.15 to 0.2 m s−1 on the mesoscale and −1.7 to 1 m s−1

on the convective scale. In the meteorological setting we
showed how the Bayesian model reduction is performed.
We combined large-scale CAPE with a subgrid mesoscale
time series for vertical velocity and count the numbers of
up- and downdrafts. Therefore we mapped vertical veloci-
ties as updraft, no draft, and downdraft dependent on an in-
terval around zero vertical velocity. In the preprocessing of
Sect. 4.1, we adjusted the interval for vertical draft with a
range of 0.0096 m s−1 according to the meteorological data.
The interval was chosen symmetrically on the basis of the
histogram of mean vertical velocities in Fig. 3. We chose a
number of 10 input categories and reduced these to two latent
states. This was done for day and night, respectively.

In Fig. 5 the summary statistics with the affiliation of input
categories to the latent states are presented. The affiliations
in Figs. 5 and 7 have no gaps, meaning that the affiliations
are interrelated and are not interrupted. The affiliations lead
to a separation of the latent states in the box plots for day and
night. Thus a certain range of CAPE values can be assigned

to every latent state. During daytime the range of values for
the high latent state is at around 400 J kg−1 and greater com-
pared to the corresponding latent state during nighttime. For
smaller scales we reduced the number of output categories.
In Fig. 7 at the bottom, six high and four low CAPE cate-
gories for the daily mean and four high and six low CAPE
categories at night are affiliated. As a result of the averaging,
the categories are almost evenly distributed over the latent
states. The convective activity of the atmosphere is stronger
during the day than during nighttime. Therefore, the vertical
draft is less at night than during the day. Mean and median
are around 100 J kg−1 for the high latent state and 25 J kg−1

for the low latent state. The mean and median are similar for
day and night. There is a difference for the variance. At night
the distribution of the high latent state is sharper due to less
variance; only four categories are affiliated compared to the
daily mean.

Joint probability distribution of the number of grid points
with positive and negative vertical velocity conditioned on
the resulting latent states is shown in Figs. 6 and 8. The
sum of the probabilities of all categories for every box is
1. Increasing the interval for vertical draft makes fewer up-
/downdrafts, thus moving probability mass away from the di-
agonal, where large fractions of up-/downdrafts are sitting.
There are higher probabilities during daytime for medium to
high numbers of up- or downdraft. Lots of updrafts during
daytime lead to the existence of a lot of downdrafts due to
mass conservation. At night due to less vertical draft, low
to medium numbers of up- or downdraft are higher. For the
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Figure 8. Histograms show probabilities of numbers of updrafts (#1) and downdrafts (#3) conditioned on high (a, b) and low (c, d) latent
states. Panels (a) and (c) present day data and panels (b) and (d) the night data. CAPE and vertical velocity data correspond to the data
applied in Fig. 7.

low latent state, the distributions in Figs. 6 and 8 are con-
centrated on higher and lower numbers of downdrafts and
small numbers of updraft. The representation of probabili-
ties of numbers of updrafts and downdrafts conditioned on
the latent states in Fig. 8 corresponds to the results on the
mesoscale in Fig. 6. The generation of kinetic energy of a
certain CAPE level to vertical draft on smaller scales can oc-
cur up to a few hours later. A temporal shift for the in- and
output could have an effect on the stochastic relation shown
in Fig. 6. We consider the 12 h means. For data with a higher
temporal resolution, one could realize a shift of 2–4 h for the
input. This is deferred to future studies.

5 Conclusions

It is of importance to identify stochastic models using cat-
egorical approaches compared to fluid mechanics described

by continuous partial differential equations. In this study, a
recent algorithmic framework called Direct Bayesian Model
Reduction (DBMR) is applied which provides a scalable
probability-preserving identification of reduced models di-
rectly from data (see Gerber and Horenko, 2017). We assume
that the output of a Bayesian model depends on the input
through a latent variable, which can merely take a small num-
ber of different latent states. In this work, a direct Bayesian
model reduction of smaller scale convective activity condi-
tioned on large-scale dynamics is investigated with regard to
intermediate latent states. We combined the convective avail-
able potential energy (CAPE) as a large-scale flow variable
with smaller scale subgrid time series for vertical velocity.
Therefore we mapped vertical velocities as updraft, no draft,
and downdraft dependent on an interval around zero vertical
velocity and count the numbers of up- and downdrafts. Data
sets of daily means of 12 h for day and night were computed
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using COSMO-REA6 reanalysis over a domain that covers
Germany for a period of the summer months July and Au-
gust in the years 1995 to 2015. In the analysis the scales from
500 to 125 km (mesoscale) and up to 15 km were considered.
The categorical data analysis was done for day and night and
discussed for different numbers of latent states. We chose a
number of 10 input categories and reduced these to two and
three latent states.

The step from the fluid continuum described by partial
differential equations to a categorical stochastic description
with DBMR provides a reduced model defined on a set of a
few latent variables. These are interpreted as reduced states
for the large-scale atmospheric dynamics with respect to
their probabilistic impact on vertical motion. For two latent
states the input is separated into categories with high and low
CAPE values, whereas for three latent states, we have an af-
filiation to categories with high, medium, and low CAPE val-
ues. The output categories for the vertical velocity describe
the number of up- and downdrafts. In the result, we gain con-
ditional distributions for the numbers of up- and downdrafts
conditioned on the latent states for day and night. In the ap-
plication we found a probabilistic relation of CAPE and ver-
tical up- and downdraft.

For a resolution of 125 km we applied a 4× 4 grid and
had 16 boxes with vertical velocities. During daytime the
chance for updraft is higher conditioned on the latent state
with high CAPE values. Probability adds up for numbers of
up- or downdrafts higher than 10 % to 81 %. The distribution
for the latent state with low CAPE values has higher proba-
bilities at high numbers of downdrafts. Here the probability
of numbers of downdrafts of 6 to 16 is 68 %. At night prob-
ability adds up at small numbers of downdrafts for the latent
state with high CAPE values. For low CAPE values, we ob-
serve that a low number of updrafts is likely. The probability
is accumulated to 82 % for the number of updrafts between 0
and 4.

On the smaller scale, with a resolution of 15 km, we ap-
plied a 32× 32 grid and had 1024 boxes with vertical veloc-
ities. We divided the output into three categories of low (0 to
341), medium (342 to 683), and high (84 to 1024) numbers
of up- and downdrafts. During daytime, the probability for a
medium number of up- and downdrafts is 34 % for the latent
state with high CAPE values. Here low and high numbers of
up- and downdraft have a small probability. For low CAPE
values, the maximum in the distribution occurs for a medium
number of downdrafts and low number of updrafts at 50 %.
At night the probability adds up at low to medium numbers
of downdrafts for the latent state with high CAPE values, and
for low CAPE values, we observe that the chance of low and
medium numbers of updrafts is 82 %. The distribution for
the smaller scale resolution (15 km) is a stochastic aggrega-
tion of the distribution with a resolution of 125 km. Therefore
the distributions are qualitatively similar. When the number
of latent states is further increased, the latent states can be
clustered into groups of high, low, and medium CAPE cate-
gories.

The model reduction of smaller scale convective activity is
part of a development process for a model with a stochastic
component for a conceptual description of convection em-
bedded in a deterministic atmospheric flow model. Various
energetic variables are applicable on the large scale. A po-
tential driver to control small-scale models is the Dynamic
State Index (DSI) in Müller et al. (2020) and Müller and
Névir (2019), an “adiabaticity indicator”. Other large-scale
variables driving the smaller scale stochastics are the avail-
able moisture or vertical wind shear. The presented approach
provides a basis for further research on smaller scale convec-
tive activity conditioned on other possible large-scale drivers.
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Appendix A

Figure A1. Box plots show the 12 h averaged CAPE data which are affiliated to the high, mean, and low latent states. Panel (a) presents
day data and panel (b) the night data. (c, d) Affiliation of CAPE categories to the latent states. (e, f) Distribution of CAPE in terms of latent
states based on kernel density estimation. CAPE data are spatially averaged over the northwest quadrant of the COSMO-REA6 data, and the
vertical velocity is averaged for a box discretization of 64 grid boxes; see Table 1.
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Figure A2. Histograms show probabilities of numbers of updrafts (#1) and downdrafts (#3) conditioned on high (a, b), median (c, d), and
low (e, f) latent states. Panels (a), (c), and (e) present day data and panels (b), (d), and (f) the night data. CAPE and vertical velocity data
correspond to the data applied in Fig. A1.
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